
BAL = bronchoalveolar lavage; CCR = C-C chemokine receptor; RANTES = regulated upon activation, normal T-lymphocyte expressed and
secreted; Th = T-helper (cell).
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Introduction
The eosinophil was originally identified as a unique type of
white cell in the blood, which is characterized by its bilobed
nucleus and its cytoplasmic granules that stain pink with
eosin [1]. An early observation was that this cell accumu-
lates in the asthmatic lung [2], but its significance was not
recognized. Subsequently, eosinophils have become iden-
tified through our defence system against helminth para-
sites. Parasitic worms characteristically induce an immune
response that is polarized toward Th2 lymphocytes. These
cells regulate the production of immunoglobulin E, which
binds to mast cells to provide recognition for specific anti-
gens, and are particularly involved in acute responses to
worms in tissue. Th2 cells also regulate the accumulation
of eosinophils, which are important effector cells for more
chronic responses to worms. Eosinophils accumulate in
high numbers around the parasites, where the cells
become stimulated to release activated oxygen species
and toxic granular proteins (major basic protein, eosinophil
peroxidase, eosinophil cationic protein and eosinophil-
derived neurotoxin).

Allergy is believed to be a manifestation of the host
response to worms that is inappropriately triggered by oth-
erwise innocuous agents in the environment. Helminth
parasites secrete enzymes in order to facilitate various
stages in their lifecycle (eg digestion of tissue for access
or nutrition). The immune system appears to be armed to
detect such enzymes and, as a consequence, enzymes
can be potent allergens (eg the digestive enzymes in
house dust mite faeces).

The prominent role of eosinophils as effector cells in
asthma and allergy has stimulated considerable interest in
the mechanisms that are involved in the recruitment of
these cells. Of particular importance are the chemical
signals released in the lung that initiate and orchestrate
the process of eosinophil recruitment from the blood
microvessels in the airway wall. Until relatively recently, the
nature of these chemoattractants was unknown. Media-
tors with chemotactic effects on eosinophils were recog-
nized, but none of these could explain the selective
accumulation of eosinophils that occurs in allergic-type
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reactions, because the known substances were also
chemotactic for other cell types, such as neutrophils (eg
C5a, leukotriene B4 and platelet-activating factor). The dis-
covery of eotaxin has provided insights into the mecha-
nisms that are involved in eosinophil recruitment in vivo.

Discovery of eotaxin
Exposure of sensitized guinea pigs to an aerosol of oval-
bumin induces many features of human allergic asthma.
Animals exhibit an acute bronchoconstriction, which
results from mast-cell activation and the release of hista-
mine and peptidoleukotrienes. This is followed by delayed
bronchoconstriction associated with an accumulation of
leukocytes, predominantly eosinophils. The airways also
become hyperreactive to spasmogens (but not to the
same extent as in human asthma).

We lavaged guinea pig airways at various intervals after
allergen challenge, injected the bronchoalveolar lavage
(BAL) fluid intradermally in assay guinea pigs that were
previously injected intravenously with 111In-eosinophils,
and measured eosinophil accumulation in the skin sites.
Using this technique, eosinophil chemoattractant activity
was detected in BAL fluid with a peak at 3–6 h after chal-
lenge. This activity was purified in a series of high-perfor-
mance liquid chromatography steps, using the in vivo skin
bioassay at each stage in order to locate the chemoattrac-
tant. Microsequencing revealed a novel 73 amino acid
C-C chemokine that we termed ‘eotaxin’ (condensed from
eosinophil chemotaxin) [3,4]. The chemokine was present
in three fractions at the final reversed phase high-perfor-
mance liquid chromatography purification stage, which are
believed to correspond to three glycosylation variants of
eotaxin. The purified protein was potent in stimulating
eosinophils in vitro and in vivo, but had no significant
effect on neutrophils.

Guinea pig eotaxin was shown to be potent in inducing a
calcium flux in human eosinophils [4], indicating the exis-
tence of a human homologue. Subsequently, primers
based on the protein sequence have been used to clone
cDNA for guinea pig [5,6], mouse [7], rat [8,9], horse [10]
and human eotaxins [11–13]. All of the eotaxins are highly
potent eosinophil chemoattractants, with greater than
60% protein sequence similarity, but with some functional
cross-species restrictions (eg human eotaxin is inactive on
guinea pig eosinophils [14], whereas human eotaxin is
active in the rat, making this species useful for in vivo
studies [15]).

More recently, two other human C-C chemokines have
been discovered that have properties very similar to those
of eotaxin. Thus, these functional homologues have been
termed eotaxin-2 [16,17] and eotaxin-3 [18,19], although
they exhibit sequence similarity of less than 40% and differ
almost entirely in the amino-terminal region. The human

eotaxin gene is located on chromosome 17q11.2 in the
C-C chemokine cluster, whereas eotaxin-2 and eotaxin-3
have been mapped to chromosome 7q11.2. The mouse
homologue of eotaxin-2 has recently been described [20].
The promotor region of the C-C chemokines contain con-
sensus-binding sites for the transcription factors nuclear
factor-κB and AP-1, which are known to be important in
regulating inflammatory reactions.

The eotaxin receptor
More than 50 chemokines have been identified, signalling
via at least 15 different seven-transmembrane-spanning,
G-protein-coupled receptors. Chemokines are notorious
for stimulating via several receptors, making analysis of
their precise in vivo role difficult. The eotaxins are unusual
(but not unique) in signalling via a single receptor: CCR3.
The human receptor was cloned in several laboratories,
and was found to be highly expressed on eosinophils
[13,21,22]. Mouse [23] and guinea pig [14] CCR3 have
also been cloned. Blocking monoclonal antibodies have
been produced to both human [24] and guinea pig [14]
CCR3. CCR3 is also found on basophils [25], mast cells
[26] and a subpopulation of Th2 lymphocytes [27]. This
provides a mechanism for recruitment of all of these cell
types in the context of allergic inflammation.

The presence of CCR3 on Th2 lymphocytes is of particu-
lar interest, because these cells regulate eosinophil
recruitment. In a mouse model of allergic airways inflam-
mation, it was shown that eotaxin is particularly involved in
early Th2-cell recruitment up to 4 days via CCR3, whereas
subsequently another C-C chemokine, macrophage-
derived chemokine, appears to be important, acting via
CCR4 [28].

Following ligation of CCR3 on eosinophils by eotaxin, a
series of events is triggered, including calcium mobiliza-
tion, CD11b upregulation, mitogen-activated protein
kinase activation, oxygen radical production, actin poly-
merization, and a rapid shape change that is associated
with chemotaxis and granule release. CCR3 undergoes
prolonged ligand-induced receptor internalization via
clathrin-coated pits, which is not dependent on G-protein
coupling, calcium transients or protein kinase C activation.
Functional responses to eotaxin are inhibited by pertussis
toxin, suggesting that the receptor is coupled to Gi α-type
G proteins [29].

Eotaxin production in vivo
Early studies demonstrated constitutive eotaxin mRNA
[5,6] and protein [30] in guinea pig lung, which are
believed to be involved in maintaining the basal eosinophil
population recognized in this species. Of more general
importance is constitutive eotaxin expression in the gut
[6]; under basal conditions the majority of eosinophils are
localized to the gut, where these cells are believed to play
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an important role in host defence against helminths.
Eotaxin knockout mice have a selective reduction in
eosinophils in the gut, which suggests that eotaxin may be
important for basal trafficking of eosinophils into this
tissue [31]. Gut eotaxin mRNA is elevated in ulcerative
colitis and Crohn’s disease [12], which may explain the
molecular mechanisms of eosinophil recruitment in these
diseases. In addition, the levels of eotaxin have been
shown to correlate directly with the extent of tissue
eosinophilia in Hodgkin’s disease [32].

Several animal models have demonstrated local eotaxin
production in allergic reactions, which correlate with
eosinophil recruitment. A detailed study of the kinetics of
eotaxin production and eosinophil accumulation [30]
showed that, after allergen challenge of sensitized guinea
pigs, a peak of eotaxin production was observed at 6 h in
lung tissue, falling to low levels over 6–12 h. Similarly,
eotaxin levels also peaked at 6 h in BAL fluid and fell over
6–12 h, but a significant low level persisted in the airway
lumen up to 24 h. The eotaxin levels correlated with the
number of eosinophils infiltrating the lung tissue, but the
appearance of significant numbers of eosinophils in the
BAL fluid occurred later (12–24 h), which may be because
the persistence of eotaxin in the airway lumen resulted in a
reversal in the direction of the chemoattractant gradient
across the airway epithelium over this later period.

The relative contribution of endogenous eotaxin to
eosinophil recruitment varies with the animal strain and
species, the challenge and sensitization protocol, and the
phase of the response. The reasons for this are probably
related to contributions by other CCR3 ligands, other
chemokine receptors on eosinophils (particularly CCR1 in
mice) and nonchemokine chemoattractants. One study
[33] showed a 70% reduction in eosinophils 18 h after
allergen challenge in eotaxin gene-deleted mice, whereas
at 48 h after challenge the eosinophilia was of a similar
magnitude in wild-type and knockout mice. Another study
in a different strain [34] found no difference in allergen-
induced eosinophilic lung inflammation in eotaxin-deficient
mice. Administration of neutralizing antibodies that are
specific for eotaxin have been shown to reduce the accu-
mulation of eosinophils in the lung [35]. In addition, an
antibody to eotaxin was shown to abolish eosinophil
chemoattractant activity in BAL fluid from allergen-chal-
lenged guinea pigs [30]. In multiple allergen challenge
experiments in mice, an antibody to eotaxin reduced
eosinophil recruitment and abolished hyperresponsive-
ness of the lung [36].

Several studies have demonstrated eotaxin expression in
the lungs of asthmatic patients, either as increased mRNA
or protein. In bronchial biopsies from asthmatic persons
increased levels of mRNAs for eotaxin and its receptor
CCR3 were observed, and were associated with airway

hyperresponsiveness and predominant colocalization of
eotaxin mRNA to bronchial epithelial and endothelial cells
in the submucosa [37]. Atopic asthmatic persons were
reported to have high concentrations of eotaxin in the BAL
fluid, and increased expression of eotaxin mRNA and
protein in the epithelium and submucosa of their airways
as compared with normal control individuals. In the BAL
cells the eotaxin immunoreactivity colocalized mainly to
macrophages, with a lesser contribution of T cells and
eosinophils [38]. The number of cells that expressed
mRNA for eotaxin in the bronchial mucosa of asthmatic
persons significantly correlated with airway eosinophilia,
bronchial hyperreactivity and symptom scores [39]. An
association between plasma eotaxin levels, asthma diagno-
sis and compromised lung function has also been demon-
strated [40]. In addition, levels of eotaxin are increased in
the sputum of atopic and nonatopic asthmatic persons
[41]. Increased eotaxin mRNA and protein expression has
been observed in chronic sinusitis and allergen-induced
nasal responses in seasonal allergic rhinitis [42]. In
response to allergen challenge in the skin of atopic
patients, eotaxin was associated with early (6h) tissue
eosinophilia, whereas eotaxin-2 and monocyte chemoat-
tractant protein-4 appeared to be involved in later (24h)
infiltration of these CCR3+ cells [43].

Regulation of eotaxin production by
T-helper 2 lymphocytes
Early studies suggested that eosinophil recruitment in aller-
gic reactions is regulated by Th2 lymphocytes. In accord
with this, it has been shown that eotaxin production is
T-cell-dependent using a mouse allergy model [44]. Many
cell types in the lung appear to be capable of synthesizing
eotaxin (eg airway epithelial cells, airway smooth muscle
cells, vascular endothelial cells and macrophages, as well
as eosinophils themselves) [30,37,38]. Thus, cytokines
that are synthesized by Th2 lymphocytes, such as inter-
leukin-4, interleukin-13 and interleukin-5, have been investi-
gated as potential intermediaries in eotaxin production.

The first study to link eotaxin production to interleukin-4
was performed in the mouse [45], in which it was shown
that tumours transfected with the interleukin-4 gene
induced eosinophil recruitment associated with eotaxin
mRNA upregulation. In addition, an anti-interleukin-4 anti-
body inhibited eotaxin mRNA expression in a model of
type 2 cell-mediated lung granulomas [46]. Similarly,
eosinophil accumulation induced by intradermal interleukin-4
in the rat was found to be mediated in part by endoge-
nously generated eotaxin [15]. In addition to inducing
eotaxin, interleukin-4 has recently been shown [20] to
upregulate eotaxin-2 mRNA expression in mouse lung.
Interleukin-13, another cytokine that is generated by Th2
cells, was shown [47] to be more potent than interleukin-4
in inducing eotaxin expression by lung epithelial cells and
promoting lung eosinophilia in vivo. In addition, pulmonary



expression of interleukin-13 induced eotaxin production
and eosinophil infiltration, as well as mucus hypersecre-
tion, subepithelial fibrosis and bronchial hyperreactivity
[48]. Both interleukin-4 and interleukin-13 can induce
eotaxin-3 mRNA expression in human vascular endothelial
cells [18]. Studies in vitro [49] have demonstrated that
interleukin-4 synergizes with the pro-inflammatory cytokine
tumour necrosis factor-α to increase eotaxin production
from lung fibroblasts. Interleukin-5 does not appear to
mediate eotaxin generation, because neutralization of this
cytokine in vivo has no effect on eotaxin production stimu-
lated by allergen [30]. Thus, these observations have
established a mechanism that links Th2 cells to eosinophil
recruitment in vivo (Fig. 1).

Polarization of T-lymphocytes into Th1/Th2 phenotypes
involves cytokines that amplify one pathway while down-
regulating the other. There is recent evidence that
chemokines may also have a role in this process. It has
been shown in mouse models [50] that monocyte chemo-
tactic protein-1 is involved in regulating inflammation

polarized toward Th2 cells. Moreover, eotaxin has been
shown to act as an antagonist of the CXC chemokine
receptor-3, which is preferentially expressed on Th1 cells
[51], whereas ligands that stimulate CXC chemokine
receptor-3 (IP-10, MIG and I-TAC) are potent antagonists
of CCR3 [52].

Release of eosinophils from bone marrow
Eosinophils normally circulate in the blood in low numbers
(1–2% of blood leukocytes), so mechanisms are neces-
sary to increase circulating cells when required. An intra-
venous injection of interleukin-5 in guinea pigs induces an
acute increase in circulating eosinophils, and this amplifies
tissue recruitment induced by locally administered eotaxin
[53]. In accord with this, an antibody that neutralizes inter-
leukin-5 inhibits both allergen-induced blood eosinophilia
and the recruitment of eosinophils to the lung [30]. In
experiments in which the microcirculation of the femoral
bone marrow was perfused in situ, it was shown [54] that
intra-arterial injection of interleukin-5 induced the release
of eosinophils into the draining vein. Eotaxin was also
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Figure 1

Eotaxin-induced eosinophil recruitment in asthma. Inhaled allergen activates mast cells and Th2 lymphocytes in the lung to generate the cytokines
interleukin (IL)-4, IL-13 and tumour necrosis factor (TNF)-α. These cytokines stimulate the generation of eotaxin by lung epithelial cells, fibroblasts and
smooth muscle cells. Eotaxin acting on CCR3 on eosinophils then stimulates the selective recruitment of these cells from the airway microvessels
into the lung tissue. Ig, immunoglobulin.



shown [55] to stimulate eosinophil release, and a marked
synergism with interleukin-5 was observed. In addition,
eotaxin, but not interleukin-5, released eosinophil progeni-
tors from the bone marrow, which may be relevant to the
presence of such cells in the peripheral circulation of aller-
gic individuals [55].

Thus, a combination of interleukin-5 and eotaxin produced
by the allergen-challenged lung and released into the cir-
culation may be involved in producing the observed blood
eosinophilia by acting remotely on the bone marrow in
vivo [55]. This is in addition to the other important effects
of interleukin-5, such as stimulation of differentiation and
proliferation of bone marrow eosinophils and suppression
of eosinophil apoptosis at sites of inflammation.

C-C chemokine receptor-3 as a therapeutic
target
Helminth parasites have evoked many strategies to avoid
host defence mechanisms. Interestingly, hookworms
secrete an enzyme that selectively cleaves and inactivates
eotaxin [56]. Prevention of the effects of eotaxin is also the
aim of therapy developed to interfere with leukocyte traf-
ficking to the lung. Neutralization of eotaxin by an antibody
is a possible route to therapy in allergic disease. An alter-
native route is by blocking the receptor. Early studies [57]
showed that human RANTES (regulated upon activation,
normal T-lymphocyte expressed and secreted) acted as an
antagonist to CCR3 on guinea pig eosinophils, and could
be used to block eotaxin-induced eosinophil recruitment in
vivo. Met-RANTES, which has an additional methionine at
the amino-terminus, inhibited eosinophil recruitment in a
late allergic reaction in the mouse skin [58], and attenu-
ated leukocyte infiltration and airway hyperresponsiveness
in a model of allergic airways inflammation in the mouse by
antagonizing both CCR3 and CCR1 [35]. Another
chemokine mutant, Met-CKβ7, a modified form of the C-C
chemokine macrophage inflammatory protein 4, has been
shown to be a potent and selective CCR3 antagonist
[59]. Furthermore, guinea pig CCR3 cDNA has been
cloned, and a blocking antibody to the receptor has been
produced [14]. This antibody has also been shown to
block eotaxin-induced eosinophil recruitment in vivo [14].

Significantly, it has been shown recently that low molecular
weight compounds can block human CCR3, and now
several pharmaceutical companies have small molecule
antagonists in development. The first report of one such
antagonist (the compound UCB 35625, based on a Japan-
ese patent from Banyu Pharmaceuticals, Tokyo, Japan)
[60] indicated that this compound effectively blocks both
CCR3 and CCR1. This may be advantageous, because it
has been shown that about one in 10 individuals have
eosinophils that respond to macrophage inflammatory
protein-1α acting via CCR1, in addition to responses to
eotaxin acting via CCR3 that are seen in all individuals

[61]. Another compound, SB-328437, has been described
that acts selectively as a CCR3 antagonist [62].

Conclusion
The discovery of eotaxin has led to a greater understand-
ing of the mechanisms that are involved in eosinophil
recruitment at sites of allergic inflammation. Small mole-
cule antagonists that block CCR3, perhaps taken as a
once daily tablet, may prove to be effective therapeutic
compounds that are aimed at suppressing important
effector mechanisms involved in the pathogenesis of
asthma and allergy.
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