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Abstract

The efforts of the Human Genome Project are beginning to provide important findings for human
health. Technological advances in the laboratory, particularly in characterizing human genomic
variation, have created new approaches for studying the human genome - genome-wide
association studies (GWAS). However, current statistical and computational strategies are taking
only partial advantage of this wealth of information. In the quest for susceptibility genes for
complex diseases in GWAS data, several different analytic strategies are being pursued. In a
recent report, Baranzini and colleagues used a pathway- and network-based analysis to explore
potentially interesting single locus association signals in a GWAS of multiple sclerosis. This and
other pathway-based approaches are likely to continue to emerge in the GWAS literature, as
they provide a powerful strategy to detect important modest single-locus effects and gene-gene

interaction effects.

Current approaches in genome-wide association
studies

In the search for susceptibility genes for common complex
diseases, we are faced with enormous challenges. The past
decade’s paradigm of focusing a study on just one or a few
candidate genes limits our ability to identify novel genetic
effects associated with disease. In addition, many suscep-
tibility genes can show effects that are partially or solely
dependent on interactions with other genes and/or the
environment. Genome-wide association studies (GWAS)
have been proposed as a solution to these problems;
however, the analysis of whole-genome data is problematic
because we must separate the one or few true but modest
signals from the extensive background noise. Moreover, with
GWAS data alone, the ability to elucidate gene-environment
interactions is limited. GWAS researchers must embrace the
abundant clinical and environmental data available to
complement the rich genotypic data, with the ultimate goal
of revealing the genetic and environmental factors that are
important for disease risk. So far, GWAS have taken a
simplistic, ‘one SNP at a time’ analysis approach. This

approach is ignoring the complexity of common complex
diseases.

Recent technological advances enable the genotyping of
hundreds of thousands of human single-nucleotide polymor-
phisms (SNPs) on thousands of samples. We are hindered in
exploiting these laboratory advances because strategies for
analyzing the data have not kept pace with technological
progress. Even with these challenges, successful reports of
GWAS have emerged in the literature [1-6]. In fact, the
National Human Genome Research Institute (NHGRI)
keeps an updated GWAS catalog on their website [7], which
lists over 273 published GWAS so far. Unfortunately, as
expected, only the strongest associations can be detected
using these traditional approaches, and there are many more
genes still to be found [8,9].

The majority of these studies analyzed one SNP at a time,
meaning that they have barely scratched the surface of
interesting information within these datasets. Ultimately,
supplementary data, replication datasets, or multiple
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analytical approaches must be used to filter the results down
to a manageable number of the ‘most likely’ genes. In their
recent report in Human Molecular Genetics, Baranzini et al.
[10] developed and applied a pathway- and network-based
analysis to exploit interesting association signals in the SNPs
that fell between the thresholds of P = 0.05 and P = 108 in
the original single-SNP association analysis. It is methods
such as this that are likely to allow us to better characterize
and exploit GWAS signals in the so-called ‘gray region’
between genome-wide significance (P = 10-8) and the typical
P = 0.05. In the field, genome-wide significance has been
determined to be at P = 10°8 because that is the Bonferroni
correction for P = 0.05 for 1 million tests.

Pathway-based results in multiple sclerosis

Because some of the replicating, positive results in GWAS
fell below the level of genome-wide significance (that is, had
P-values over 108 ), Baranzini and colleagues [10] propose a
protein interaction and network-based analysis (PINBPA)
for the study of a multiple sclerosis (MS) dataset. This
approach is similar to those in microarray studies in which
gene ontologies are used for analysis [11]. The idea of using
prior knowledge for GWAS has been used successfully in
studies of diseases such as Parkinson’s disease, age-related
macular degeneration, bipolar disorder, rheumatoid
arthritis, and Crohn’s disease [12-14].

The first step of PINBPA is to compute a gene-wise P-value
by choosing the lowest P-value of all SNPs mapping to a
given gene. These genes are then mapped onto a curated
protein interaction network. Any markers that do not map to
genes or unannotated genes are eliminated from this
analysis. Next, using a plug-in for the Cytoscape [15] soft-
ware, searches are conducted to extract potentially meaning-
ful sub-networks associated with the phenotype of interest.
Finally, a test is performed to determine the extent to which
significant network modules could be obtained by chance.
Baranzini and colleagues [10] applied PINBPA to two MS
datasets: (i) the International Multiple Sclerosis Genetics
Consortium (IMSGC) GWAS [16], consisting of 334,923
SNPs passing quality control from the Affymetrix Human
Mapping 500K Array in 931 family trios, and (ii) the
GeneMSA study [17], with 551,642 SNPs passing quality
control from the Illumina HumanHap550 bead chip in 978
cases and 883 controls. After single-locus analysis using
logistic regression, 78 and 87 SNPs had a P-value of less
than 1 x 104 in the IMSGC and GeneMSA datasets,
respectively.

Using PINBPA analysis, 346 significant modules were
identified on the basis of their aggregate degree of asso-
ciation with MS. Because of the nature of the algorithm,
many modules overlap extensively; thus, the modules with
the highest scores were selected. Module I included several
human leukocyte antigen (HLA) genes, including the known
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risk factor for MS HLA-DRBi. Interestingly, this module
shows HLA-DRA as the most significant node. HLA-DRB1
and HLA-DRA are in high linkage disequilibrium and some
SNPs in HLA-DRA serve as proxies for HLA-DRB1 with high
sensitivity. Module II includes an extensive pattern of
immunity-related genes, including several HLA genes: CD4,
CD82, ITGB2, IL2Ra, and CD58. Finally, modules IIT and IV
suggest a neural component, including genes expressed in
neurons and glia, such as NCK2, EPHA3, EPHA4 (module
IIT) and glutamate receptor genes (module IV) and many
more. The results of this study [10] provide insights into the
role of several immunological pathways, including cell
adhesion, signaling, and communication, and, more impor-
tantly, neural pathways in MS. In particular, signals for
axon guidance and synaptic potentiation were over-
represented in MS. This is very exciting, as it is one of the
first reports demonstrating genetic associations in a neural
pathway contributing to the susceptibility of MS. Because
the pathophysiology of MS suggests that neural pathways
are likely to have a role, these results provide enormous
potential for follow-up research.

The future of GWAS using prior knowledge and
pathway-based approaches

Baranzini et al. [10] demonstrate the utility of protein
interaction network information in the analysis of MS data.
Several GWAS [12-14,18,19] have proposed the use of prior
knowledge in the form of pathway databases, such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Biocarta, or gene ontology databases. Baranzini et al. [10]
suggest that the network-based approach not only reduces
the number of relevant interactions found but also increases
the likelihood that proteins that interact are part of the same
biological pathway [10]. This approach was certainly
successful for MS.

Consistent with this line of thought, Bush et al. [20] have
constructed the Biofilter as another alternative approach for
detecting interactions in GWAS data. The Biofilter combines
six sources of disease-independent information (information
that is not related to the phenotype of interest) from the
public domain: KEGG, Reactome, Gene Ontology, Database
of Interacting Proteins (DIP), Protein Families Database
(PFAM), and Netpath. It also includes disease-dependent
information in the nature of previous linkage regions, asso-
ciation studies, and microarray expression results. All these
sources are combined specifically to prioritize the search for
gene-gene interactions in GWAS data [20].

Pathway-based approaches are continuing to emerge in the
literature as a more comprehensive approach to the analysis
of GWAS data. This trend is likely to continue as we learn
more about the optimal strategies for incorporating prior
knowledge into analyses. In fact, as we move to using next-
generation sequencing data, such approaches may also
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expand into the next-generation sequencing arena: looking
for rare variants in a particular pathway that are present in a
higher proportion of disease cases than healthy controls. As
more biological knowledge and genomic data become
publicly available and more easily accessible, we will con-
tinue to see methodological developments exploit this infor-
mation to better dissect the genetic architecture of common,
complex disease.
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