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Abstract

Background: Translational research typically aims to identify and functionally validate individual, disease-specific
genes. However, reaching this aim is complicated by the involvement of thousands of genes in common diseases,
and that many of those genes are pleiotropic, that is, shared by several diseases.

Methods: We integrated genomic meta-analyses with prospective clinical studies to systematically investigate the
pathogenic, diagnostic and therapeutic roles of pleiotropic genes. In a novel approach, we first used pathway
analysis of all published genome-wide association studies (GWAS) to find a cell type common to many diseases.

Results: The analysis showed over-representation of the T helper cell differentiation pathway, which is expressed in
T cells. This led us to focus on expression profiling of CD4+ T cells from highly diverse inflammatory and malignant
diseases. We found that pleiotropic genes were highly interconnected and formed a pleiotropic module, which was
enriched for inflammatory, metabolic and proliferative pathways. The general relevance of this module was
supported by highly significant enrichment of genetic variants identified by all GWAS and cancer studies, as well as
known diagnostic and therapeutic targets. Prospective clinical studies of multiple sclerosis and allergy showed the
importance of both pleiotropic and disease specific modules for clinical stratification.

Conclusions: In summary, this translational genomics study identified a pleiotropic module, which has key
pathogenic, diagnostic and therapeutic roles.
Background
Medical research typically focuses on individual diseases
and individual genes. This focus is complicated by many
patients having more than one disease, the heterogeneity
of diseases as well as the involvement of thousands of
genes, many of which are shared by more than one disease.
Several observations point to the need to systematically in-
vestigate the pathogenic roles of shared, or pleiotropic
genes: their importance is well established in model organ-
isms and monogenic diseases [1-3]. For example, mutations
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in the same gene, ARX, cause two highly diverse diseases,
namely ambiguous genitalia and lissencephaly, a disease
of the brain (Online Mendelian Inheritance in Man no.
300215). Genome-wide association studies (GWAS) have
also shown the importance of pleiotropy in complex dis-
eases [4-8]. Identification of pleiotropic genes by GWAS
of complex diseases is limited by the relatively modest ef-
fects of genetic variants [5] and because epigenetic causes
also play important roles [9,10]. Since mRNA expression
can be affected by both genetic and epigenetic variants,
expression profiling may be an optimal way to identify
pleiotropic genes. In order to get an overview of the large
number of genes involved in complex diseases, a module-
based strategy can be applied. Briefly, this strategy is based
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on the concept that disease-associated genes are not ran-
domly distributed when mapped on the human protein-
protein interaction (PPI) network. Instead, they tend to
co-localize and form modules in the PPI network [11-22].
The advantages of modules are that they are thought to
contain a limited number of the most disease-relevant
genes, and that a functional overview of disease mech-
anisms can be obtained by pathway analysis.
In this study, we used a module-based approach to

systematically investigate the pathogenic, diagnostic and
therapeutic roles of pleiotropic genes. The approach was
applied to public expression profiling data from different
diseases. Because gene expression varies in different cell
types, such data should ideally be derived from the same
cell type. To reach this ideal, we first performed pathway
analysis of all published GWAS to find a cell type com-
mon to many diseases. This resulted in the identification
of the T helper (Th) cell differentiation pathway, which
is expressed in T cells. We therefore focused on expression
profiling of CD4+ T cells from highly diverse inflammatory
and malignant diseases. Analysis of the expression profiling
data, which were independent from the GWAS data, re-
sulted in the identification of pleiotropic genes. These genes
were highly interconnected and formed a pleiotropic mod-
ule. Despite being derived from the same cell type, this
module was associated with a general increase in disease
susceptibility: it was enriched for highly diverse pathways,
as well as genetic variants described by all GWAS and can-
cer studies. The module was also enriched for known diag-
nostic and therapeutic targets. Moreover, the pleiotropic or
disease-specific modules could be used to stratify patients
in prospective clinical studies of multiple sclerosis and
allergy. Our results show the clinical importance of pleio-
tropic genes as well as of translational genomics.

Materials and methods
Ethics statement
The studies were approved by the ethics board of
University of Gothenburg and the ethics board of University
of Linköping. All participants provided written consent
for participation.

Study subjects
The study comprised two different sets of experimental
data: 1) response to cortisone treatment in 48 seasonal
allergic rhinitis (SAR) patients, of which 8 were classified
as high responders (HRs; see below for definitions) and
8 as low responders (LRs; 5 men and 11 women, mean age
35.6 ± 2.3 years); and 2) response to natalizumab treatment
in 50 multiple sclerosis (MS) patients, of which 8 were
classified as HRs and 8 as LRs (14 men and 2 women,
mean age 35.6 ± 1.5 years). The SAR patients and healthy
donors were of Swedish origin and recruited at The Queen
Silvia Children’s Hospital, Gothenburg. SAR was defined by
a positive seasonal history and a positive skin prick test or
by a positive ImmunoCap Rapid (Phadia) to birch and/or
grass pollen. Patients with perennial symptoms or asthma
were not included. The healthy subjects did not have any
history for SAR and had negative ImmunoCap Rapid tests.
The MS patients suffering from relapsing-remitting disease
were of Swedish origin and recruited at the Department of
Neurology at Linköping University Hospital. Patients had
definite MS according to the McDonald criteria. All the
microarray data from this study have been deposited under
the Gene Expression Omnibus superseries GSE44966.

Definition of low and high responders to treatment
An initial cohort of 48 allergic patients was asked to mark
their symptoms (rhinorrhea, congestion, and itching) on a
visual analogue scale (VAS) before and after two weeks of
nasal treatment with fluticasone. We defined LRs/HRs
from the decrease in symptom scores when treated for
two weeks in the pollen season, using previously described
methods [23]. Fifty patients were included in the MS group
and treated with natalizumab (NZB; Tysabri®); patients
were classified as LRs (n = 8) if they had experienced at
least one relapse during this follow-up period and as HRs
if this had not occurred (n = 42, of which 8 were selected
because of age, gender and disease matching to the LR
group). All patients were followed for three years, except
two LRs, who were followed for two and one year, respect-
ively. The annual relapse rate was 0.65 ± 0.26 for LRs and
0 for HRs. Samples analyzed for gene expression were
taken prior to clinical natalizumab treatment. Both groups
had comparable age distribution (mean age 37.3 ± 5.8
(standard deviation) years for LRs and 33.9 ± 6.2 for HRs),
Expanded Disability Status Scale score (LR, median 2.5,
range 0.0 to 7.0; HRs, 2.0, range 1.0 to 5.0), disease duration
(LR, mean 9.1 ± 6.6 (standard deviation) years; HR, 9.9 ± 6.3
years) and gender distribution (seven males in both groups)
at the time of inclusion.

Bioinformatics analyses
Public data were downloaded from the Gene Expression
Omnibus that met the following criteria on 31 December
2012 (Table S6 in Additional file 1): i) expression profiling
of CD4+ T cells from healthy controls and patients with
T-cell-related non-virus diseases; ii) at least five samples per
disease and controls; and iii) the patients were not drug
treated. In this study, data were quantile-normalized and
log-transformed. The GCs and natalizumab materials were
corrected for potential batch effects using COMBAT [24],
with phenotype and stimulation as covariates. We mapped
all probes to the corresponding genes and in cases where
multiple probes for the same gene were present we used
the median probe levels. Differential expression was com-
puted using the LIMMA package in R. Classification by the
LASSO was performed by the MatLab function lassoglm in



Gustafsson et al. Genome Medicine 2014, 6:17 Page 3 of 12
http://genomemedicine.com/content/6/2/17
Statistics Toolbox choosing λ from the minimum deviance
of leave-one-out cross-validation starting from all the mea-
sured genes of the platform. To determine if a set of genes
was differentially expressed we used the mean of the
squares of the student t-test statistic. This particular choice
was made since its theoretical distribution is X2(n - 1) and
thereby the size effect was easy to interpret [25]. However,
for calculating the P-values we still used permutation test
of the mean value of the squared student t-values. We also
performed complementary analysis using the log P-values
with similar results. Permutation tests were performed
using 106 permutations if nothing else is stated, and for the
estimation of small P-values we approximated the distribu-
tion using [26]. The enrichments of GWAS genes, cancer
genes, mouse knockout phenotypes, therapeutic targets,
and biomarkers was also controlled for connectivity biases.
This was performed by randomly sampling 158 genes from
the STRING network with the same median (182) and
minimal degree (39) as the pleiotropic module and repeat-
ing this procedure 106 times. The false discovery rate (FDR)
was determined using the Benjamini Hochberg [27] correc-
tion method. The size effect was represented by fold en-
richments (FEs), which is defined here for a specific feature
and test set by the frequency of genes in the tested set with
a certain feature divided by the frequency of the feature
among all annotated genes. For example, we found the
GWAS frequency 33.5% (53/158) among the pleiotropic
genes, whereas this in the background of all genes is about
10.2% (2,298/22,500), and therefore FE = 33.5/10.2 = 3.3.

Databases
In order to test the robustness of the pleiotropic module
we downloaded the latest versions (15 November 2013) of
five different databases covering different aspects of the hu-
man interactome, namely HPRD [28], Reactome [29], Intact
[30], HI2 (updated union of HI-2011, HI-2009 and HI-2005
from [31]) [30], and a high confidence database [32]. For
each of these databases we then first computed the shortest
distances between all pairs of proteins in the pleiotropic
module that were also present in the largest connected
component. Then we randomly selected the same number
of genes from the largest connected component and
similarly computed their shortest paths. We repeated
the random selection procedure 1,000 times and calcu-
lated P-values using a Wilcoxon test of the mean
values of the shortest paths. The enrichment of path-
ways within GWAS genes was tested using all pathways
(as of 15 November 2013) in three different annotation
databases, namely Kyoto Encyclopedia of Genes and
Genomes (KEGG) [33], Ingenuity Pathway Analysis
(IPA; Ingenuity® Systems, [34]), and Gene Ontology
(GO) [35]. These enrichment analyses were performed
using all human genes in NCBI (National Center for
Biotechnology Information) as background. The analysis
of mouse knockout phenotypes was performed by down-
loading phenotypic information from [36] as of 31 January
2013. The analysis of therapeutic targets and biomarkers
was also performed by first downloading all therapeutic tar-
get drugs and all genes annotated as markers for disease or
prognosis in the IPA database. P-values for enrichment were
calculated using Fisher's exact test (FET) using all genes as
background (n = 22,500 for human and n = 6,964 for mice).
For the correlation analysis between the basal expres-

sion of the 158 genes and the drug responses across can-
cer cell lines, data were downloaded from the Genomics
of Drug Sensitivity project [37]. This dataset included
IC50 values for a total of 131 drugs that were assessed in
a panel of 638 human cancer cell lines. In combination
with this information, gene expression data from the same
study (corresponding to the basal transcriptional profiles
for 595 cell lines and publicly available on the ArrayExpress
reference E-MTAB-783) were analyzed. Normalized expres-
sion values were obtained using the RMA algorithm [38].
Non-annotated probes were removed from the analysis and
correlations were computed using the Pearson’s correlation
coefficient (PCC). For the null distribution, 1,000 sets of
158 genes randomly selected from the same microarray
dataset were analyzed.

Disease-associated network modules
The network and modules were constructed using a modi-
fied version of a previously described method [39]. First, all
maximal cliques [29] were extracted from the human PPI
database STRING [40] (version using 9.03 interactions with
a confidence score ≥0.7). Then, each clique was assigned a
weight, defined as the sum of the -log(P-values) for all the
genes in the clique, based on the differential expression
analysis (henceforth referred to as the real weight). To as-
sess how the weight for each clique differed from the null
distribution, the P-values for all the genes in the differential
expression analysis were randomized, and the weight for
each clique was again determined by the same method. This
process was repeated 10,000 times, to give a null distribution
of weights for each clique. The significance of each clique’s
weight was defined as the fraction of random permutations
that resulted in a higher weight than the real weight. Disease
modules were then constructed by mapping the cliques
that had a significantly higher weight than expected by
the null distribution (P < 0.01). This analysis resulted in a
module associated to each disease. We then identified the
intersection between the disease modules. To determine
how the size of the intersection differed from random, we
repeated the above analysis 100 times using randomized
P-values. This resulted in 100 disease modules for every dis-
ease. We then determined the intersection between these
100 sets of disease modules and compared this to the real
intersection. Furthermore, we used these 100 sets of disease
modules to identify genes that were represented in more
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disease modules than expected by chance. Like before, the
P-value of each gene was equivalent to the ratio of random
permutations that included the gene in as many or more
disease modules as the disease modules that resulted from
real (non-randomized) data. The R code for the identifica-
tion of disease modules from interactome and P-values can
be found in Additional file 2, and the output disease mod-
ules are provided in Table S22 in Additional file 1.

Culturing of CD4+ T cells from patients with SAR
Challenges with allergen or allergen plus glucocorticoids
(GCs) were performed as previously described [41-43].
Briefly, peripheral blood mononuclear cells were pre-
pared from fresh blood by means of centrifugation in
Ficoll-Hypaque, washed, and stimulated with allergen
extract (100 μg/ml; ALK-Abelló A/S Hørsholm,
Denmark), or allergen plus hydrocortisone (10-7 M;
Sigma-Aldrich, St. Louis, Missouri, USA). After 17 hours
and 7 days, respectively, of incubation at 37°C and 5%
CO2, the supernatant was removed and CD4+ T cells
enriched. The RNA samples were then analyzed using
Agilent Sureprint G3 Human Gene Expression.

Culturing of CD4+ T cells from patients with MS
Briefly, mononuclear cells were thawed from liquid N2.
Next, CD4+ T cells were separated using the Isolation Kit II
(Miltenyi Biotech, Bergisch Gladbach, Germany). Purity of
samples was typically >97%. The CD4+ T cells were split
into three cultures and an unstimulated culture served as
baseline control. Two cultures were stimulated with pre-
coated anti-CD3/-CD28 monoclonal antibodies (0.1 μg/ml).
Cells were cultured for 48 hours in media consisting
of Iscove's modified Dulbecco's medium (IMDM) sup-
plemented with 5% fetal calf serum (Sigma-Aldrich),
L-glutamine (292 mg/ml; Sigma-Aldrich), sodium bicarbon-
ate (3.024 mg/ml; Sigma-Aldrich), penicillin (50 IE/ml;
Cambrex, East rutherford, New Jersey, USA), streptomycin
(50 μg/ml; Cambrex), and 100× non-essential amino acids
(Gibco BRL, New York, USA). One of these cultures was
supplemented with Tysabri® at a final concentration of 25
μg/ml. After culturing, cells were lysed using TRI Reagent
(MRC, London UK). Total RNA was extracted according to
the manufacturer’s instructions. RNA quality and quantity
were assessed with the NanoDrop ND-1000 (NanoDrop
Technologies Wilmington, New Jersey, USA). The Agilent
Sureprint G3 Human Gene Expression 8x60k was used for
gene expression analysis (Agilent Technologies, Santa Clara,
California, USA).

Results and discussion
Pathway analysis of GWAS leads to the selection of T cells
to study the expression of pleiotropic genes
In order to identify pleiotropic genes at the transcriptomics
level, the expression of those genes should ideally be
measured in the same cell type. Because expression varies
in different cell types, we performed pathway analysis of
GWAS to find a pleiotropic pathway. The aim was to use
that pathway to find a pleiotropic cell type that was
accessible for independent expression profiling studies.
This led to the identification of Th differentiation, which
is expressed in T cells, as described below.
First, meta-analysis of GWAS combined with pathway

enrichment analysis was performed (Figure 1, analysis 1).
We downloaded GWAS data compiled by the National
Human Genome Research Institute [44]: this included 256
diseases and traits, and 2,298 gene loci harboring poten-
tially associated SNPs (mapping inter-genic SNPs to the
nearest upstream and downstream genes at a significance
threshold P < 10-5; see Table S1 in Additional file 1 and
Figure S2 in Additional file 3 for disease/trait distribution).
These genes, which represent potential associations with
diseases or disease traits, are henceforth referred to as
'GWAS genes' (Table S2 in Additional file 1). Next, using
a large curated database (Ingenuity® Systems [34]), the Th
cell differentiation pathway (Figure S2 in Additional file 3)
was identified as the most enriched in the GWAS genes
measured by the P-values from a FET (n = 38, FE = 5.3,
Bonferroni-corrected P < 10-15; Table S3 in Additional file 1
shows all genes and pathways). Th differentiation results in
different T-cell subsets, such as Th1, Th2 and Th17, which
are thought to have key roles in immune-related diseases,
but are also associated with many other diseases [45-48].
In order to test the importance of Th differentiation in

diseases that were not a priori immune related, and to
minimize knowledge biases related to immune diseases,
we performed six complementary analyses. These analyses
supported the importance of Th differentiation.
First, we queried the GO [35] database for enrichments

of the GO process T-cell differentiation and found that this
was the case (P < 2 × 10-6, FET). Second, we tested that
the corresponding pathway (T-cell receptor pathway,
P < 4 × 10-3) was enriched for the GWAS genes using
KEGG (Table S4 in Additional file 1; see Figure S3 in
Additional file 3 for a comparison of the overlap of IPA,
KEGG, and GO). Third, we manually classified the disease
traits into immune and non-immune (Tables S1 and S2 in
Additional file 1) and again found the Th differentiation to
be highly enriched also in the non-immune disease cat-
egory (P < 1 × 10-7; Table S5 in Additional file 1). Fourth,
we repeated the analyses for all genes within each block,
where the corresponding gene is in linkage disequilibrium
[49] (Th differentiation, P < 3 × 10-7; Tables S6 and S7
in Additional file 1). Fifth, we repeated the analysis for
446 genes with known somatic cancer mutations [50],
henceforth referred to as 'cancer genes' (Th differentiation,
P < 5 × 10-4; Tables S8 and S9 in Additional file 1).
Sixth, 4,613 genes annotated to disease from the Online
Mendelian Inheritance in Man database [51] (visited on 12
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November 2013; Th differentiation, P < 2 × 10-11; Tables
S10 and S11 in Additional file 1).
Since the Th differentiation pathway is expressed in

CD4+ T cells, we proceeded to analyze expression profiling
data from this cell type. Note that the analyses below are
based on all genes, and not only genes associated with Th
differentiation.

A pleiotropic module in CD4+ T-cell-associated diseases
was associated with generally increased disease
susceptibility
In order to identify pleiotropic genes, publicly available gene
expression microarray data for eight diseases were analyzed:
four inflammatory diseases (allergy, multiple sclerosis,
rheumatoid arthritis, and systemic lupus erythematosus),
and four malignant or proliferative diseases (acute
myelogenous leukemia, adult T cell leukemia, chronic
lymphocytic leukemia, and hypereosinophilic syndrome;
Figure 1, analysis step 2; Table S12 in Additional file 1; the
diseases were chosen because they met the criteria de-
scribed in Materials and methods).
Despite the diversity of these diseases, we found that the

genes that were differentially expressed between patients
and healthy controls were not generally dispersed when
mapped on the human PPI network. Instead, the genes
from each disease formed modules, which partially over-
lapped. The overlapping genes were highly interconnected
and formed a pleiotropic module. This module was associ-
ated with a wide variety of diseases, as shown by pathway
analysis, phenotypes resulting from mouse knockout stud-
ies, as well as an enrichment of GWAS and cancer genes.
The analyses are detailed below.
We first confirmed that patients and controls could be cor-

rectly classified using the LASSO approach (10-16 < P < 10-3,
permutation test; Figure S4 in Additional file 3; Table S12 in
Additional file 1; see Materials and methods for details).
Differentially expressed genes for each of the eight

diseases were identified and subsequently mapped on a
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network of known and predicted human PPIs from the
STRING database [40] (Materials and methods). For
each disease, we identified subnetworks of highly inter-
connected and differentially expressed genes, using our
previously published method [39]. Such interconnected
and differentially expressed genes are henceforth referred
to as disease modules. In our study, this led to the identifi-
cation of eight different sets of partially overlapping and
interconnected disease modules, which each consisted of
1,215 to 1,933 genes.
We examined if the disease modules for each of

the eight different diseases overlapped significantly
(Materials and methods). We found a highly significant
overlap of 158 genes (Table S13 in Additional file 1) in all
eight disease modules (FE = 7.0, P < 10-61 permutation test;
Materials and methods; Figure 2). The 158 genes were
highly interconnected and had 7,144 interactions between
each other. By contrast, the mean number of connections
between the 158 genes in the disease module and 158 ran-
dom genes was only 376 (P < 10-300, permutation test). As
different PPI databases have different inclusion criteria,
we tested if the overlapping 158 genes had a lower mean
shortest path among each other than 158 random genes,
using five different databases covering different aspects
of the human interactome (Materials and methods).
This analysis showed that, for all five analyzed data sets,
we had significantly lower mean shortest paths among the
Figure 2 The pleiotropic module was enriched for GWAS genes, canc
(A) Schematic representation of the pleiotropic module. The inner circle re
according to Gene Ontology. Therapeutic targets are marked with squares,
colors code for GWAS genes (yellow), cancer genes (blue), both (green). Fo
module genes. (B) Strongly positive correlations were found between the
number of disease modules. PCC, Pearson's correlation coefficient.
158 genes in the overlap of all the disease modules than
expected (P < 10-3 in four databases and P < 0.011 for one
database using one-sided Wilcoxon rank test; see Materials
and methods and Figure S5 in Additional file 3 for details).
Henceforth, the 158 genes are referred to as the

'pleiotropic module'. Despite the expression profiling data
being derived from T cells, pathway analysis of the pleio-
tropic module showed enrichment not only of inflamma-
tory pathways, but also of multiple other disease-associated
pathways (Table S14 in Additional file 1 shows results for
all pathways enriched in the pleiotropic module). Because
of the pleiotropy and interconnectivity of the pathways,
we hypothesized that the genes in the pleiotropic module
would generally increase disease susceptibility. This was
supported by analysis of the mouse knockout database,
which showed that a wide range of phenotypes and dis-
eases resulted from knock out of genes in the pleiotropic
module (Bonferroni corrected P-values from P < 10-50, FET;
Table S15 in Additional file 1). The pleiotropic module
was also significantly enriched for both GWAS and cancer
genes (GWAS, n = 53, FE = 3.3, P < 10-15; cancer, n = 47,
FE = 15.4, P < 10-41; Figure 1). Moreover, we tested the
general disease importance of the pleiotropic module by
only studying GWAS for the 158 diseases and disease
traits that were not a priori associated with immune-related
diseases and cancer (see Table S1 in Additional file 1
for disease categorizations), which then consisted of
er genes, as well as therapeutic targets and biomarkers.
presents nucleoplasmic genes and the outer non-nucleoplasmic genes
biomarkers with tilted squares, and hexagons represent both. Node
r clarity we do not show the 7,144 interactions between the pleiotropic
fraction of GWAS genes and cancer genes in the modules versus the
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1,437 genes. e found 19 of the pleiotropic genes were
significantly associated with these diseases and disease
traits (FE = 1.9, P < 4 × 10-3).
We also confirmed that the enrichment was signifi-

cantly more than expected by the degree of the corre-
sponding genes (Materials and methods; Table S16 in
Additional file 1). Then, in order to test if the enrichment
was dependent on the definition of the pleiotropic module,
we performed a correlation analysis: we correlated the frac-
tion of disease susceptibility genes and the number of dis-
ease modules for each gene and found a strong significant
positive PCC for both GWAS (PCC = 0.91, P < 4 × 10-4)
and cancer (PCC = 0.94, P < 2 × 10-4) genes (Figure 1B).
Thus, the enrichment was not due to the definition of
the pleiotropic module.
A limitation in the above analyses of SNPs from public

databases was that those SNPs had been defined based
on genome-wide significance levels, although we had only
examined 158 genes. In order to increase statistical power,
we also analyzed the 158 genes for nominally significant
associations in the original GWAS data from MS [52],
comprising approximately 25,000 individuals. We defined
a gene to be nominally significant if it harbored at least one
SNP with a nominally low P-value. We found that the pleio-
tropic genes were enriched for MS SNPs using P-values in
the range 10-5 to 0.05 (Figure S6 in Additional file 3). For
example, we found that 60% (89/148) of the assayed probes
had at least one SNP with P-value <0.05 (P < 2 × 10-6, FET)
and 40% had SNPs with a P-value <0.01 (P < 10-12). Fur-
thermore, by examining all assayed SNPs (n = 4,990) of the
pleiotropic genes we found that 150 SNPs for 51 unique
pleiotropic genes (Table S17 in Additional file 1) were
disease associated using a 20% FDR, which represents
a huge increase from the five genes originally reported
using genome-wide significance criterion.

The pleiotropic module was highly enriched with known
diagnostic markers and therapeutic targets
Having identified a link with disease development, we
next assessed if the pleiotropic module was enriched
for known diagnostic markers (n = 1,177) and/or thera-
peutic targets (n = 404) compiled from all diseases [53].
The results from these analyses revealed a significant
enrichment in both markers and targets (n = 88, FE =
5.5, P < 10-46; n = 36, FE = 12.8, P < 10-28, respectively,
using FET; Figure 1A). These enrichments were not
confounded by the high connectivity of the pleiotropic
module or by the number of genes/proteins and dis-
eases examined (Figure S7 in Additional file 3; Table
S11 in Additional file 1). Since the interaction partners
of known drug targets are likely to be functionally
related, we hypothesized that those partners may be
novel therapeutic candidates across diseases. Indeed,
examination of predicted druggable PPIs [54] in the
pleiotropic module identified 173 novel therapeutic
candidates (Table S18 in Additional file 1).
Since the pleiotropic module was associated with gen-

erally increased disease susceptibility, the identification
of approved drugs that may significantly alter its activity
could be clinically relevant. To address this hypothesis,
data from the determination of the half maximal inhibi-
tory concentration (IC50) of more than 100 drugs across
100 cancer cell lines [37] was analyzed. Although some
correlations may be specific to cancer status, this dataset
represents a large collection of different tissue types. Next,
relative to 1,000 random sets of 158 genes compiled from
the same expression dataset, several drugs were found
to be frequently correlated with genes from the pleio-
tropic module (Figure S8 in Additional file 3; Table S19
in Additional file 1). This analysis showed 37 of the drugs
significantly changed the expression of the genes in the
pleiotropic module more than other genes at a FDR of 5%.
Thus, those drugs may be therapeutic candidates in mul-
tiple diseases. The top significant drugs were two allosteric
AKT inhibitors (AKT inhibitor VIII and MK-2206), which
suggests that signaling though this kinase would be critical
in different pathologies. Importantly, the pleiotropic in-
fluence of AKT function has been previously discussed
in different scenarios, which include immune-related
processes and pathologies.

Disease stratification based on pleiotropic or
disease-specific genes
Because the pleiotropic module was enriched for known
therapeutic targets, we hypothesized that changes in the
expression of pleiotropic or disease-specific genes could
be used to stratify patients for response to drugs target-
ing these two gene categories. Briefly, we carried out
prospective clinical studies of 50 patients with MS and
48 patients with SAR to define HRs and LRs to treatment.
In order to identify genes that responded to treatment,
CD4+ T cells from the patients were analyzed with gene
expression microarrays before and after in vitro exposure
of the drug. Next, we examined if genes that were shared
or specific for the two diseases could separate HRs and
LRs. We found that HRs and LRs could be separated by
shared genes in SAR, and by MS module genes in MS.
The 48 SAR patients were treated with GCs for two

weeks during the pollen season. GCs generally reverse
the expression levels of genes involved in the inflamma-
tory response [41] and are used in the treatment of sev-
eral immune diseases. The 50 MS patients were treated
with natalizumab, and followed clinically during three
years. Natalizumab is a drug that is mainly used in MS
and specifically targets a membrane protein responsible
for lymphocyte passage through the blood-brain barrier,
and also influences gene expression in lymphocytes [55,56].
In both diseases, clinical specialists classified subsets of
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patients that were HRs and LRs (Materials and methods).
The CD4+ T cells were obtained from untreated patients
during symptom-free periods. Gene expression microarray
analyses of the SAR patients showed increased likelihood
of GC response for genes within many disease modules
(PCC= 0.79, P = 0.0011; Figure 3A). By contrast, in MS, the
opposite non-significant trend was found for natalizumab
(PCC= -0.61, P = 0.079; Figure 3A).
Next, we analyzed if the disease module knowledge

could be translated to prediction of treatment response
for the two drugs. Therefore, we first selected only genes
differentially expressed in vitro by the drug for further
analysis (P < 0.05). Since genes in multiple disease mod-
ules more frequently responded to GCs, we further
limited the GC classifier into genes within at least two
disease modules (n = 311). Then, using the LASSO and
cross-validation for model parameter fits, most patients
in both diseases were correctly classified as LRs or HRs
(permutation test P < 3 × 10-4; Figure 3B). Analysis of the
classifiers showed that they exploited different features.
The GC classifier used GC pathway (n = 29, P < 10-13,
FET; see Table S20 in Additional file 1 for all pathways). By
contrast, since natalizumab did not affect genes in multiple
modules more frequently, we limited the MS classifier to
genes in the MS module (n = 28). Conversely, the natalizu-
mab classifier utilized genes dispersed in different pathways,
and instead the main difference between HRs and LRs
was due to a higher perturbation of the LRs than HRs
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P < 10-300; Figure S9 in Additional file 3; see Table S21 in
Additional file 1 for enriched pathways in the differentially
expressed genes for LRs).
Thus, pleiotropic or disease-specific genes have the

potential to stratify patients for drug response depending
on which genes are targeted by the drug.

Conclusions
The main findings of this study are that pleiotropic
genes in T-cell-associated diseases formed a module of
highly interconnected genes. This pleiotropic module
generally increases disease risk and is an important
source for diagnostic markers and therapeutic targets.
To our knowledge, this is the first study to systematic-
ally address the functional and clinical implications of
pleiotropic genes in complex diseases. Our study may
have important implications for the general under-
standing of complex disease mechanisms and transla-
tional genomics.
The background to our study was that translational

research mainly focuses on investigating disease-specific
genes/proteins. Nonetheless, recent observations from
GWAS have suggested an important etiological role for
pleiotropic genes/proteins [4,6-8,39]. However, an import-
ant limitation in the studies of pleiotropic genes based on
GWAS is that epigenetic causes may play important roles
for complex disease susceptibility [9].
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In this study, we reasoned that mRNA expression
would be an optimal level to identify pleiotropic genes
because it can be affected by both genetic and epigenetic
variants. To address the problem that gene expression
varies in different diseases and cell types, we searched
for a common cell with pleiotropic genes based on pathway
analysis of GWAS. This novel approach resulted in the
identification of the Th differentiation pathway, which is
expressed in CD4+ T cells. The Th differentiation pathway
has a key role in orchestrating immune responses in auto-
immune and allergic diseases [45], atherosclerosis [46],
cancer [47], and obesity [48]. Our finding is in line with
previous GWAS showing the importance of immune-
related genes in complex diseases [5]. On the other hand,
the identification of the Th pathway could be confounded
by the selection of diseases analyzed with GWAS. Some
definitions of pleiotropy require that the studied diseases
or disease traits are seemingly unrelated, while others
argue that such definitions are too subjective [57]. In this
study, we addressed this potential confounder by comple-
mentary analyses. For example, to test if the identification
of the Th pathway was due to the selection of diseases ex-
amined by GWAS, we repeated the analyses on somatic
mutations in cancer and found that the Th pathway was
significantly enriched. Next, we analyzed expression pro-
filing data from CD4+ T cells from eight inflammatory and
malignant diseases. In each of the diseases we could define
modules of differentially expressed genes. Despite the
diversity of the diseases, the modules overlapped. The
overlapping part was highly interconnected and formed a
pleiotropic module, which was enriched not only for the
Th differentiation pathway, but also for several other in-
flammatory, metabolic and proliferative pathways. These
pathways contained individual genes of known or recently
recognized importance for multiple diseases. For example,
GATA3 is known to have a key role in Th2 differentiation
in allergy, but is also a potential diagnostic marker in epi-
thelial cancers [58]. Conversely, the tumor suppressor
gene BRCA1, which has an important role in breast can-
cer, was also differentially expressed in allergen-challenged
T cells. This finding is in line with BRCA1 potentially hav-
ing a role in regulating inflammation [59].
We speculated that because of the pleiotropy and in-

terconnectivity of the pathways, the pleiotropic module
would generally increase disease susceptibility. Remarkably,
despite the pleiotropic module being derived from eight in-
flammatory and hematological diseases, it was significantly
enriched with GWAS genes from all published analyses
of diseases and disease traits. Thus, rather than being
dispersed in the interactome, a limited number of highly
interconnected genes that regulated key pathways generally
increased disease susceptibility.
A confounding factor when using collections of experi-

mental studies might be potential knowledge-related biases,
that is, the experimental studies are not equally distributed
among the genes. Therefore, to limit this problem we
confirmed that the identified pleiotropic module genes
were highly associated using databases with several
other inclusion criteria, including systematic and high
confidence databases. It is also important to note that
the genes in the pleiotropic module were more enriched
for both GWAS genes and disease phenotypes than the
disease-specific genes. The findings for the GWAS
genes were also replicated for cancer genes. This indi-
cates that pleiotropic genes may have larger impact on
disease phenotypes than specific genes, which has im-
portant diagnostic and therapeutic implications that are
discussed below.
We then tested the potential of therapy of the pleiotropic

module, and found that it was highly enriched for known
diagnostic markers and therapeutic targets. Interestingly,
the module also contained a large number of druggable
genes that were not known drug targets. Those genes
represent new therapeutic candidates across diseases.
Thus, while disease-specificity is often desired for both
types of molecules, our observations point to pleio-
tropic genes/proteins being relevant for '4P medicine'
(predictive, preventative, personalized and participatory
medicine [60]). Knowledge from the pleiotropic module
also provides insight into disease stratification for indi-
vidualized medication. Prospective clinical studies in
MS and SAR combined with gene expression profiling
revealed differences relative to the modular impact of the
respective disease treatments. While the GCs (used in SAR)
affected multiple disease-associated modules, natalizumab
(used in MS) was linked to a single module. Subse-
quently, the expression of the pleiotropic genes was
found to classify GC responders with high accuracy,
while the disease-specific genes classified natalizumab
responders. This observation leads us to propose that
the definition of pleiotropic versus specific genes/proteins
may help to identify markers for stratification, based
on network molecular consequences of the therapies.
Prospective studies in other diseases are required to
assess this hypothesis.
Another important future research direction is to

examine how the same pleiotropic genes can be associated
with different diseases. Possible explanations include
altered interactions between those genes, as well as between
disease-specific genes. Furthermore, analyses of pleiotropic
genes in other pleiotropic cells are warranted. Our pathway
analysis of GWAS data indicates that there may be sev-
eral different pleiotropic cells, for example, B lympho-
cytes, macrophages and epithelial cells. Since these cell
types interact, it would be very interesting to simultan-
eously profile their gene expression profiles. This could
help to understand disease-associated interactions on a
multi-cellular scale.
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In summary, given the results of this study, we propose
that the pleiotropic genes/proteins warrant extensive
functional and clinical studies across diverse diseases.

Additional files

Additional file 1: Table S1. Manual classification of all traits and
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Table S7. Ingenuity pathways for the genes in Table S6. Table S8. Gene
symbols of the mapped genes with a somatic cancer mutation in the
COSMIC database. Table S9. Ingenuity pathways for the genes in Table
S8. Table S10. Gene symbols of the mapped genes within the OMIM
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therapeutic targets, cancer genes, immune mice knockout genes and
pleiotropic module genes. Table S17. Nominal P-values for disease
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pleiotropic module genes. Table S18. Analysis of all druggable interactions
between the pleiotropic module genes. Table S19. Drugs significantly
associated with the expression of the pleiotropic module genes. Table S20.
Ingenuity pathways for the GC-perturbed genes. Table S21. Ingenuity
pathways for the genes differentially expressed in low responders of
natalizumab treatment. Table S22. Identified disease modules for each of
the studied diseases.

Additional file 2: R code for the derivation of the disease modules,
which integrate binding and expression data.

Additional file 3: Figure S1. Pie chart of the distribution of manual
classification (Table S2) of disease traits from all GWAS. Figure S2. The
Th differentiation pathway (Ingenuity® Systems [34]), where GWAS genes
(grey), growth factors (squares), transcription factors (broad ovals),
complexes (standing ovals), and receptors (double standing ovals) are
marked. Figure S3. Comparison of the overlap of genes annotated to T
helper (Th) differentiation according to different data sources. Figure S4.
The estimated probabilities (cross-validated) of a sample being a patient
based on the LASSO classifiers of each of the eight T-cell diseases.
Figure S5. The genes in the pleiotropic module had relative mean
shortest paths among each other. Figure S6. Enrichment of nominally
associated SNPs of MS for the genes in the pleiotropic module (black bars)
using different cutoffs for the P-value for determining disease association.
Figure S7. Mean (dots) ± standard error of the mean (bars) of the fraction
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number of disease modules. Figure S8. Correlation analysis between the
expression of the pleiotropic module genes and the responses of 131 drugs
across cancer cell lines measured using IC50 (see Materials and methods).
Figure S9. Differential expression of genes between MS patients before
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