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Abstract

Multiple subclonal populations of tumor cells can coexist within the same tumor. This intra-tumor heterogeneity will
have clinical implications and it is therefore important to identify factors that drive or suppress such heterogeneous
tumor progression. Evolutionary biology can provide important insights into this process. In particular, experimental
evolution studies of microbial populations, which exist as clonal populations that can diversify into multiple sub-
clones, have revealed important evolutionary processes driving heterogeneity within a population. There are trans-
ferrable lessons that can be learnt from these studies that will help us to understand the process of intra-tumor
heterogeneity in the clinical setting. In this review, we summarize drivers of microbial diversity that have been iden-
tified, such as mutation rate and environmental influences, and discuss how knowledge gained from microbial ex-
perimental evolution studies may guide us to identify and understand important selective factors that promote
intra-tumor heterogeneity. Furthermore, we discuss how these factors could be used to direct and optimize re-
search efforts to improve patient care, focusing on therapeutic resistance. Finally, we emphasize the need for longi-
tudinal studies to address the impact of these potential tumor heterogeneity-promoting factors on drug resistance,

metastatic potential and clinical outcome.

Patterns of tumor evolution

In 1976, Peter Nowell published a landmark paper [1] in
which he applied the evolutionary biology concept of
‘survival of the fittest’ to the field of tumor progression;
he proposed that tumor cells will undergo changes (ac-
quire mutations), and selection pressures will facilitate
the outgrowth of some clones but not others. This con-
cept of clonal evolution has been developed further into
two models: linear versus branched tumor evolution
(Figure 1). The linear model states that tumor cells ac-
quire mutations over time, and that the fittest tumor
cells outgrow the other cells through clonal succession,
implying that the majority of the tumor mass will consist
of the fittest clone [2,3]. Another important characteris-
tic of this model is that the fittest clone will harbor all
mutations that have previously occurred during the tu-
mor’s evolutionary history (Figure la). The branched
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tumor evolution model states that different tumor cells
acquire different mutations over time, and that multiple
clones can expand independently within the tumor
(Figure 1b) [2,3]. However, it is important to note that
finding a tumor mass that contains one clone does not
necessarily mean that branched evolution has not oc-
curred; a recent selective sweep (such as following drug
treatment) might have resulted in the survival of one
clone in a tumor originally showing a branched evolu-
tion pattern. Recent deep-sequencing analyses revealed
that the majority of mutations are often found in just a
fraction of tumor cells (reviewed in [3-5]). Such intra-
tumor heterogeneity may have important clinical conse-
quences, as it may affect biomarker validation and the
emergence of drug resistance (reviewed in [6-9]). There-
fore, understanding the drivers of intra-tumor hetero-
geneity and its maintenance has potential implications
for the development of novel treatment strategies.

The evolution of population diversity has been studied
extensively in the field of microbiology, using direct ex-
perimental approaches in which microbial populations
have been followed over time to study evolutionary pro-
cesses in action. Of particular relevance to this review,
this approach has been used to successfully investigate
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Figure 1 Schematic representation of linear and branched evolution patterns. The linear evolution model implies that each new subclone
carries forward all the pre-existing mutations, whereas the branched evolution model implies that subclones expand independently and acquire
different mutations over time. In this schematic representation, mutations are indicated by colors, with the previous mutations indicated in small

evolutionary drivers and dynamics of diversification, re-
vealing important insights regarding the role of both bi-
otic and abiotic factors. Here, we summarize the key
drivers of diversity in microbial populations and discuss
how these insights may be important for driving and
maintaining intra-tumor heterogeneity.

The spectrum of intra-tumor heterogeneity

It is generally accepted that tumor tissues are heteroge-
neous. Pathologists often observe heterogeneity of mor-
phological features within a tumor and therefore
routinely examine multiple sections of a tumor to clas-
sify the tumor by its highest observed grade. Initial

evidence of intra-tumor heterogeneity at a genetic level
was provided by cytogenetic analyses. Karyotype analyses
revealed multiple subclones carrying distinct chromo-
somal aberrations in several tumor types [10-12]. In
addition, fluorescent in situ hybridization (FISH) experi-
ments evaluating a specific region of the genome often
showed heterogeneity in terms of copy number signals
in different cells from one tumor (reviewed in [13]). Al-
though having the advantage of single-cell analysis, a
disadvantage of these studies is the limited number of
markers that can be studied. Current genomic sequen-
cing techniques, such as deep DNA sequencing, provide
the opportunity to systematically analyze the complete
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Table 1 Summary of impact of biotic and abiotic environment on diversification in experimental evolution, with

parallels in tumor biology

Factors in Effect Evolutionary theory Observed patterns in oncology References
diversification on
diversity
Biotic
Mutation 1 A higher mutation rate increases genetic variation Genomic instability is an important source of [5,6,23,24]
and facilitates faster adaptation, with fitness cost as  genetic alterations (nucleotide mutations, deletions,
trade-off amplifications and chromosomal rearrangements)
Interspecific T Competitive intereactions may drive diversification Tumor cells do interact with their environment, but  [8,25-32]
interactions under weak selection. Under strong selection, the role of the microenvironment in driving genetic
bottlenecks may reduce diversity heterogeneity remains poorly understood
T Cooperative interactions drive diversification as Tumors that grow at metastatic sites display organ-  [8,25-32]
structured environments mediate interactions specific genetic alterations, which might be due to
between local cells creating heterogeneity across microenvironmental differences
space
Intraspecific T In a heterogeneous environment, localized Intra-tumor heterogeneity exists at genotypic and at  [33-35]
interactions interactions (competitive or cooperative) will phenotypic levels (such as quiescent cells,
increase diversity; in an homogenous environment, a differentiated cells, stem cells), which probably
single clone will tend to dominate influence each other, in either a cooperative way
(for example, generating specific niches) or a
competitive way (for example, competition for
limited resources or space)
Individual i Migrants will encounter different ecological Deep-sequencing data show that metastases do [14,15,36,37]
movement conditions and thus will diverge from their primary ~ have unique mutations that are not detected in the
(migration/ population primary tumor
dispersal)
Abiotic
Heterogeneity 1 A heterogenic environment provides multiple niches Levels of oxygen and nutrients are not uniform [38-41]
in space throughout a tumor
Heterogeneity 1 Different subclones will be favored over time. A A longitudinal study that included untreated CLL [42/43]
in time more rapidly changing environment will maintain patients failed to observe a change in the relative
more subclones presence of subclones in most cases within the
time-frame of the study
Exposure to ! Exposure to antagonists tend to create bottlenecks,  Drug treatment can create a bottleneck, selecting [7,42,44,45]
non-living limiting diversity and favoring only resistant clones  the survival of less sensitive clones, thereby

antagonists

decreasing heterogeneity

genome on a large scale, resolving the extent of intra-
tumor heterogeneity at unprecedented detail at the
single-nucleotide level.

The extent of intra-tumor heterogeneity has been par-
ticularly revealed by studies that analyzed multiple
spatially separated regions of one tumor. One of the first
deep-sequencing studies that examined multiple primary
tumor regions was presented by Yachida and colleagues
[14]. They analyzed 426 somatic mutations in multiple
regions of two pancreatic tumors and found regionally
distinct subclones, each of which had expanded inde-
pendently [14]. In a study by Gerlinger et al. [15],
whole-exome sequencing of multiple spatially separated
regions of four renal carcinomas revealed that only
about a third of the non-synonymous somatic mutations
were detectable in all regions of the tumor. Such a high
level of intra-tumor heterogeneity implied that the re-
gions diverged early during tumor evolution and contin-
ued to expand independently, following a branched
evolution pattern (Figure 1b). Navin et al. [16] described

similar findings at the DNA copy number level based on
single-nucleus sequencing of different regions of two
high-grade breast tumors. They identified several sub-
populations in a tumor; although each subpopulation
was related to the others by shared genomic alterations,
the subpopulations had also diverged and developed
unique alterations.

Several studies evaluated intra-tumor heterogeneity by
deep-sequencing analysis of one sample per tumor. Al-
though spatial separation is lost in this type of analysis,
it estimates the level of intra-tumor heterogeneity by
evaluating tumor clonality. Clonal mutations are shared
by all cancer cells within the sample and thus are de-
rived from a common ancestor, whereas subclonal muta-
tions have occurred in a subset of cells. These studies
often analyzed tumor samples from larger cohorts, and
therefore could address the variation of intra-tumor het-
erogeneity within one tumor type rather than between
tumors. In non-small-cell lung cancer samples, Govindan
et al. [17] found that 10 of the 17 tumors (from 17
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Figure 2 Schematic representation of how treatment affects tumor heterogeneity. A population of cells with various levels of competitive
ability show differential responses to treatment, depending on the strength of the selection pressure imposed by the treatment and the
heterogeneity present in the population. Treatment providing weak selection pressure (a,b) is expected to result in a balanced regrowth of the
population that continues to progress when the heterogeneity is low (a); however, a reduction in population size offers opportunity for
colonization and preferential growth of any aggressive clones that may be present in more heterogeneous populations (b). A strong selection
pressure (c,d) will not allow clones with low-level tolerance to persist. Therefore, a homogeneous population that does not harbor a resistance
mutation will respond well to strong treatment and population sizes are expected to dramatically reduce (c). However, heterogeneous popula-
tions are more likely to harbor cells with a mutation that confers resistance, and under strong selection these cells will be the only ones to sur-
vive. The subsequent population will no longer respond to treatment (d). In all cases, cells that survive treatment can acquire further mutations,

this will be particularly important for resistant populations and the propensity for multidrug resistance.

different patients) showed a signature of multiple sub-
clones. In triple-negative breast cancer, Shah et al. [18]
observed that some tumors showed a wide spectrum of
clonal frequencies, indicating multiple subclones, while
others showed just one or two clonal frequency modes,
suggesting a few subclones. Furthermore, a detailed ana-
lysis of 21 breast tumors [19,20] demonstrated subclo-
nal mutations in all samples that often outnumbered the
clonal mutations. And although some tumors showed a
broad range of subclones, others showed fewer and
more distinct subclonal expansions [20]. Altogether,
these data revealed a broad range of intra-tumor hetero-
geneity, often supporting branched tumor evolution.
Given that this might have major clinical implications, it
is important to understand what fosters and drives such
diversity in tumors.

Insights from experimental microbial evolution

Experimental evolution uses fast-replicating organisms
(typically microorganisms) to study evolutionary processes
in real time in a controlled laboratory environment. This
allows hypothesis-driven experiments regarding the

importance of controlled selective factors on the patterns
and trajectory of an evolved trait of interest. Such studies
have provided insights into what drives and maintains
diversity with numerous mechanisms being identified
[21,22], revealing the important roles of both the biotic
factors (living properties) and the abiotic factors (non-
living chemical and physical properties) in creating
ecological opportunities for diversification (Table 1).

Biotic factors

Biotic factors include all biological factors such as muta-
tion rate, cell-to-cell interactions and cell movement
(migration and dispersal). Mutation rate is likely to be
important in tumor heterogeneity and therefore deserves
special attention. For diversity to evolve, variation must
exist in a population, and the source of this variation will
be determined by genetic factors, including point muta-
tions and genomic rearrangements. Most genetic alter-
ations will be deleterious and purged from the population
(or maintained at low frequencies) but, in rare cases, these
mutations will provide a fitness advantage - fueling adap-
tive evolution. Therefore, a high mutation rate (number of
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genetic mutations over time) will increase the potential
for adaptive evolution by increasing the variation on
which natural selection can act. This concept is clearly
discussed in the classic 1932 paper by Sewall Wright [46],
in which he describes that mutations provide a system of
‘trial and error’ for individuals within a population that
enables them to explore the potential for adaptation
within an environment. Moreover, we must also consider
how the spread of these mutations will be affected by
population size, with changes in allele frequencies in small
populations governed more by chance (genetic drift) than
in large populations, in which the strength of selection will
have a larger role [47].

Experimental evolution studies with microorganisms
(typically bacteria [48] and yeast [49]) have shown that
populations with greater variation adapt more quickly
than those that are genetically homogenous, and hetero-
geneous populations thus fare better in stressful or rap-
idly changing environments [50,51]. However, there is an
important trade-off to consider, as an increased muta-
tion rate will come at the cost of increased mutational
load [52], in which the random deleterious mutations ac-
cumulate in the genome, conferring a large fitness cost.
This effect can be so severe that populations can be
driven to extinction, in a process called mutational melt-
down [49,53,54].

The effect that the mutation rate has on adaptation
and diversification will depend on the strength of selec-
tion (Figure 2) [23]. If beneficial mutations under strong
selection occur rarely, we would expect selective sweeps
to drive these mutations to fixation, resulting in low di-
versity and a linear evolution pattern. However, if benefi-
cial mutations under strong selection occur frequently,
they will coexist within a population (without sweeping
to fixation); this can increase population diversity and
result in a branched evolution pattern [55,56]. On the
other hand, weak selection can drive diversity through
the accumulation of small-effect deleterious mutations
[57], with detrimental overall population fitness effects
unless coupled with a sufficient gain of beneficial muta-
tions to counterbalance this effect [58].

Another biotic factor that can influence population di-
versification is cell-to-cell interaction, and this can be ei-
ther competitive (interaction will come at a cost), or
cooperative (beneficial for all individuals involved in the
interaction). In evolutionary studies, there is evidence
for both types of interaction, with opposing conse-
quences for diversification. In a recent study, Bailey
et al. [59] investigated the impact of both intraspecific
(within-species) and interspecific (between-species)
competitive interactions on the diversification of the
model bacterium Pseudomonas fluorescens when compe-
tition for resources was high (strength of competition
was strong), with variable opportunity for diversification.
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They found that intraspecific competition was positively
correlated with diversification, whereas strong interspe-
cific competitors were able to prevent diversification
through niche exclusion; however, weak interspecific
competitors actually promoted diversification by increas-
ing the strength of intraspecific competition [59]. This
study exemplifies the importance of context when con-
sidering how the local competitive environment is likely
to influence diversification - and the predictions are un-
likely to be clear cut. In general, competitive interactions
will be determined by the strength of competition and
the ability of the competitors to diversify.

As with competitive interactions, the consequences of
cooperative interactions will depend on whether they are
within or between species. In general, cooperative inter-
actions between interspecifics are considered to increase
diversity because both will be maintained in the popula-
tion, as both gain a benefit from the interaction, whereas
intraspecific interactions are more likely to depend on
the structure of the environment [60-62]. Experimental
evolution studies have found that structured environ-
ments are more likely to sustain multiple cooperating
clones, whereas in unstructured environments, fewer
clones will dominate [61].

The movement of individuals between different popu-
lations (migration) and to new sites (dispersal) has the
potential to increase gene flow between populations and
therefore increase diversity, either through the introduc-
tion of new genetically distant individuals into a popula-
tion or through the expansion of a population through
colonization of a new patch, where niche specialization
can occur and thus populations can diverge [36].

Abiotic factors

Abiotic factors include all non-living and physical factors
from the environment. A heterogeneous environment
may vary in either space or time (or both), creating
distinct niches within a single population. Distinct
niches, differentiated by the physical environment [38]
(for example, habitat structure, quality and so on) or
the competitive environment (for example, individuals
competing for similar/different resources), create a
trade-off between competitive advantages in one envi-
ronment against another, thus increasing and main-
taining overall population diversity [63,64]. Indeed,
Rainey and Travisano [38] have shown that diversity in
a bacterial population evolved rapidly in a spatially
heterogeneous, but not spatially homogeneous envi-
ronment. It was recently shown that such niche
specialization can be caused by a self-generated oxygen
gradient [65]. Furthermore, a structured, competitive
environment where resources are limited will favor
genotypes that are not in direct competition with a
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dominant genotype, that is, that occupy slightly different,
untapped niches [33,38,66,67].

Moreover, we must consider how ‘non-living antago-
nists’ (in the specific case of cancer this refers to drug
treatment) might influence the diversification of a popu-
lation. Exposure to drugs in the first instance is likely to
create a bottleneck, favoring the few clones that may
randomly possess a mutation that confers resistance to
the drug. There is evidence from both microbial [68]
and cancer cell populations (discussed below) that drug
treatments can reduce heterogeneity of a population
when they are naive to the drug.

Parallels with potential drivers of diversity in
tumors

As we have discussed above, both genetic and environ-
mental factors influence microbial population diversifi-
cation, and the current challenge is to understand how
these factors translate to intra-tumor heterogeneity.

Biotic factors

In tumors, genomic instability (mutations and chromo-
somal rearrangements) is an important characteristic
that fosters tumorigenesis [69]. Mechanisms that main-
tain genome stability are often lost in tumor cells, and
exposure to DNA-damaging agents, such as ultraviolet
radiation or smoking, will increase the mutation rate.
Such genomic instability is likely to increase heterogen-
eity within a tumor, as discussed in several recent re-
views [6,25,70].

Evidence that the classical trade-off observed in micro-
bial experimental populations - that a high mutation rate
facilitates rapid adaptation but at the cost of increased
mutational load - can also be relevant in tumors is based
on findings on chromosomal instability. This instability
is typically associated with poor patient prognosis and is
found to mediate intrinsic multidrug resistance [71].
However, further investigations revealed that extreme
levels of chromosomal instability were associated with
improved prognosis [72]. These results suggest that an
intermediate level of genome instability confers the high-
est fitness to tumor cells, which could be due to the
trade-off between adaptability and accumulation of dele-
terious effects associated with an elevated mutation rate,
analogous to mutational meltdown. Understanding of
such trade-offs in cancer might help us to develop or
improve current treatment strategies.

It is evident that tumor cells interact with cells in their
close environment. As such, the tumor microenviron-
ment (such as fibroblasts, vasculature and immune cells)
can create local differences that have an impact on the
organization and progression of the tumor (Table 1;
analogous to interspecific interactions between microor-
ganisms) [26-28]. In addition, recent reviews regarding
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drug resistance have drawn a parallel between bacterial
populations and tumor cells and suggested that hetero-
geneity in treatment response is, at least partly, due to
heterogeneity in the tumor microenvironment [8,29,73].
Anderson et al. [74] explored in silico the effect of both
cellular and environmental factors on tumor progres-
sion, and their model predicted that a ‘mild’ microenvir-
onment (resulting in weak selection pressure) would
enable the coexistence of many different subclones
within a tumor, whereas a harsh environment would se-
lect a few more aggressive clones, similar to what has
been observed in microbial populations (Figure 2).

Evidence that different microenvironments have differ-
ent selective pressures that could result in heterogeneity
at the genetic level was provided by recent deep-
sequencing analyses of multiple metastatic sites of pan-
creatic tumors [37]. This study revealed specific DNA
arrangements in lung metastases that differed from
those identified in abdominal metastases. These data in-
dicate that the different organs exerted a different select-
ive pressure; they either attracted different tumor cells
or the metastatic tumor cells evolved differently as a re-
sult of microenvironmental differences.

In addition, if structure of the ‘interspecific’ (with
other cell types) and ‘intraspecific’ (with tumor cells)
tumor cell interactions promoted heterogeneity within a
tumor population, we may expect to detect more hetero-
geneity in solid than in hematological tumors: because
solid tumors grow in a restrictive environment, there
will be greater cell-cell competition for resources, such
as space and nutrients. Indeed, several recent studies
[30,75,76] reviewed the frequency of copy number alter-
ations and somatic mutations across multiple tumor
types and found that solid tumors show a higher level of
both compared with hematological tumors. In addition,
a recently published deep-sequencing study on the pro-
gression of a hematological cancer (from myelodysplastic
syndrome to acute myeloid leukemia (AML)) [77] identi-
fied various subclones in the AML cells, but in such a
way that each new subclone carried forward all the pre-
existing mutations, indicating a linear evolution pattern
instead of a branched evolution pattern (Figure 1). These
data suggest that intraspecific tumor cell interactions
can have a role in driving heterogeneity (Table 1), but
that other factors are also involved.

Abiotic factors

It is harder to separate biotic and abiotic factors in the
context of tumors, as their environment is a living or-
ganism, and thus by definition a biotic environment.
However, the tumor environment can vary in space in
terms of access to nutrients because of uneven
vascularization [39,40] and in terms of diffusion of drugs
through a solid tumor mass [41]. In addition, time and
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especially exposure to non-living antagonists (such as
therapeutic drugs) are thought to affect intra-tumor
heterogeneity.

We are not aware of longitudinal studies in untreated
solid tumors. However, a recent longitudinal study of
leukemia (CLL) did include six untreated patients [42].
When two samples were taken from each patient with a
median time interval of 3.7 years between the first and
repeat sample, five of these six paired samples main-
tained the relative presence of the subclones. The
authors speculate that more time might be required for
a new clone to take over the population [42]. This is in
contrast with leukemia samples treated with cytotoxic
chemotherapy, as shown in the same and another study
[42,44]. Analyzing CLL and AML, respectively, both
studies showed that a subset of clones had disappeared
in the post-treatment sample, while other subclones ex-
panded and acquired new mutations, indicating that
these subclones survived better during treatment and
showed rapid outgrowth (as in Figure 2d). Nevertheless,
a minority of CLL tumors maintained the subclonal
equilibrium during treatment [42]. These data indicate
that the treatment functioned as a strong selective pres-
sure in the majority of tumors, resulting in a bottleneck
effect, but not in all tumors, and the underlying cause of
this differential response is currently unclear.

Implications of intra-tumor heterogeneity for
clinical outcome

Evolutionary studies suggest that populations with
greater genetic variation will adapt faster than clonal
populations, because beneficial mutations are more
likely to already be present in the population, rather
than needing to occur de novo within the population
[78]. Therefore, it is predicted that genetic variation is
particularly important for organisms that must adapt
quickly to a stressful and rapidly changing environment.
Such stressful change occurs for a tumor, for example,
during drug treatment, and several reviews have com-
pared the emergence of drug-resistant tumor cells to the
emergence of antibiotic-resistant bacteria [8,29,73]. In
parallel to bacterial studies, it would be interesting to
see whether the effect of the treatment depends on drug
dose in combination with the extent of intra-tumor het-
erogeneity (Figure 2). An important finding in the CLL
study described above [42] was that the subclonal, rather
than the clonal, driver mutations present in the pre-
treatment sample were associated with poorer treatment
response. This observation supports the notion that a
higher level of intra-tumor heterogeneity can enhance
the development of drug resistance. In addition,
chromosomal instability, a potential driver of intra-
tumor heterogeneity, is typically associated with poor
prognosis in solid and in hematological tumors [70]. It is
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currently unclear if this is the result of drug-resistant
subclones already present in the tumor, or if tumors with
more subclones have a higher capacity to adapt to a new
environment because of, for example, enhanced genetic
instability.

Interestingly, a reversion of a drug-resistant tumor to
a drug-sensitive one has been described for two lung
cancer patients treated with an epidermal growth factor
receptor (EGFR) inhibitor. A second mutation in EGFR
(T790M) resulting in resistance was initially detected in
the resistant sample but after an interval without the in-
hibitor, this mutation was no longer detectable and the
tumors became responsive again [79]. This suggests that
the cells harboring a T790M mutation were outcom-
peted by cells that did not harbor such mutation in the
absence of the inhibitor. Another study showed that cells
that acquired a T790M mutation by long-term culture in
the presence of drugs in vitro had a reduced prolifera-
tion rate compared with the parental cells [80]. Never-
theless, as the T790M mutation has been detected in
tumors in the absence of the drug, albeit at low fre-
quency, and has been shown to enhance EGFR activity
in experiments in vitro [81-83], it is currently unclear
whether the reduced growth rate is due to the T790M
mutation itself or to other mutations that might have oc-
curred at the same time. This involves resistance to a
kinase inhibitor with a specific resistance mechanism
(EGFR-T790M), which is different from resistance to
chemotherapeutic agents. Exploring these differences
might provide an opportunity to understand the finer
details of the evolved resistance mechanisms.

From a clinical perspective, the above discussion
would imply that, in order to prevent the outgrowth of
resistant clones that would be likely to acquire second-
ary beneficial mutations to compensate for the initial
costs of resistance, drug treatment should be adjusted as
soon as resistant clones emerge in the population. In-
deed, such an adaptive strategy has been proposed and
successfully studied in xenograft models; in these
models, a population of treatment-sensitive cells was
maintained so as to suppress the growth of the less fit
but resistant cells through intra-tumor competition
[84,85]. However, proof of this principle in cancer pa-
tients is not yet available, and a major challenge will be
the early detection of resistant clones, as these will ini-
tially be present at very low frequency when they first
emerge in the population. Using a standard biopsy to
evaluate the tumor may miss these clones until they are
present at greater number - making early detection more
difficult. A major challenge is that compensatory muta-
tions will most likely emerge while the resistant clones
are rare, and once the cost of resistance has been com-
pensated for, these resistant clones will increase in fre-
quency within the population. In the case of resistance
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to EGFR kinase inhibitors, an alternative approach of
pulsed high doses of inhibitors has been proposed,
which did delay the outgrowth of resistant clones to
EGER kinase inhibitors in an experimental setting [80].
Another crucial question that must be addressed with
such a treatment method is whether all resistant muta-
tions are, in fact, associated with a fitness cost, or only
some mutations. It would be hasty to assume that all re-
sistance mutations carry a cost without accurately meas-
uring the fitness effects of each, and studies that
categorically address this question are becoming ur-
gently necessary.

Overall, care must be taken not to draw too close par-
allels between microbial and cancer systems in terms of
resistance mechanisms. There are many factors to con-
sider that have the potential to alter standard predictions
made from unicellular models, and these differences
may be key in tumor progression. In particular, we are
likely to find major differences in the evolution of drug
resistance in tumors, because in contrast to antibiotics
that target a specific pathogen, tumor cells are derived
from normal cells and share many of their characteris-
tics, thereby limiting the drug dose and combinations of
drugs that can be used in the clinic owing to adverse
side-effects. Nevertheless, important insights can be
gained from experimental evolution with microbes if we
focus on the population genetics of evolved resistance in
terms of the spread of alleles given certain selection
pressures and costs of resistance in certain given micro-
environments. There is a pressing need for hypothesis-
driven and rigorously designed experiments alongside
longitudinal studies that address whether intra-tumor
heterogeneity drives clinically important cancer charac-
teristics, such as invasiveness, metastatic potential and
the evolution of drug resistance.

Conclusions and future perspectives

The extent of genetic intra-tumor heterogeneity is be-
coming clearer as a result of recent deep-sequencing ap-
proaches. Experimental evolution has taught us
important lessons about the evolution and maintenance
of diversity within populations. By using and applying
these general theories to cancer evolution, we can draw
parallels and make predictions as to which selective fac-
tors may be most important during tumor progression.
As summarized in Table 1, genetic instability and inter-
actions with other tumor cells (intraspecific) and the
microenvironment (biotic and abiotic) are expected to
have a role in driving and maintaining heterogeneity.
However, although many of the issues considered in this
review have been successfully addressed using experimental
evolution in microbes, tumors present new challenges
because of their increased complexity and multicellular
existence. The general insight that microbial studies
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offer into fundamental evolutionary processes is therefore
where useful comparisons and predictions can be made in
tumors. Techniques from experimental evolution could be
useful in the context of tumor biology to systematically
quantify mutation rates and evaluate costs of resistance
(at least in vitro) and determine the role of the microenvi-
ronment in diversification. This will improve the predictive
power of evolutionary trajectories and potential drug
resistance profiles during tumor progression.

Fortunately, tumors share many beneficial characteris-
tics with microbial model systems that make them ideal
for experimental evolution studies [86]. Conveniently,
laboratory-adapted microbes and tumor cell lines can be
relatively easily followed over time, enabling accurate
measurements of mutation rates and prediction of asso-
ciated consequences for tumor progression and progno-
sis. And to account for the differences between microbes
and cancers, future experimental studies need to be con-
ducted to explicitly test evolutionary theory within the
context of cancer. Accurately measuring mutation rates
and cell consequences in vivo will be more challenging
in the case of tumors, with limited material and often no
longitudinal follow-up. Nevertheless, detection methods
are becoming more sensitive, allowing timing estimates
of progression of a tumor sample [14], and several
surrogate markers have been described, as recently
reviewed [30].

Many questions regarding the importance of intra-
tumor heterogeneity in tumor progression remain to be
addressed in a systematic way, such as its impact on
drug resistance, metastatic capacity and survival out-
come. Satisfactorily addressing these questions is not a
trivial task, requiring novel and innovative research ap-
proaches. Initially, there is an urgent need for detailed
longitudinal studies that follow the level and shape of
intra-tumor heterogeneity over time. Such studies will
enable us to evaluate whether levels of intra-tumor het-
erogeneity correlate with clinical outcome - with the hy-
pothesis that heterogeneous tumors have a higher
chance of containing or acquiring a cell that has the
ability to metastasize or to be intrinsically drug resist-
ant, while acknowledging that excessive genomic in-
stability may be deleterious for cancer growth and
progression [87].

Longitudinal data collection from solid tumors may
prove challenging. However, recent developments in the
ability to deep-sequence circulating tumor DNA offers a
promising approach to following the tumor landscape in
a non-invasive manner [55,88]. Together with the evalu-
ation of tumor behavior, the expectation is that such
longitudinal studies might also provide insights into po-
tential drivers of intra-tumor heterogeneity, which can
be investigated in more detail using the insights from
the field of microbial experimental evolution.
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