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Abstract

Background: Whole genome sequencing is poised to revolutionize personalized medicine, providing the capacity to
classify individuals into risk categories for a wide range of diseases. Here we begin to explore how whole genome
sequencing (WGS) might be incorporated alongside traditional clinical evaluation as a part of preventive medicine. The
present study illustrates novel approaches for integrating genotypic and clinical information for assessment of
generalized health risks and to assist individuals in the promotion of wellness and maintenance of good health.

Methods: Whole genome sequences and longitudinal clinical profiles are described for eight middle-aged
Caucasian participants (four men and four women) from the Center for Health Discovery and Well Being (CHDWB)
at Emory University in Atlanta. We report multivariate genotypic risk assessments derived from common variants
reported by genome-wide association studies (GWAS), as well as clinical measures in the domains of immune,
metabolic, cardiovascular, musculoskeletal, respiratory, and mental health.

Results: Polygenic risk is assessed for each participant for over 100 diseases and reported relative to baseline
population prevalence. Two approaches for combining clinical and genetic profiles for the purposes of health
assessment are then presented. First we propose conditioning individual disease risk assessments on observed
clinical status for type 2 diabetes, coronary artery disease, hypertriglyceridemia and hypertension, and obesity. An
approximate 2:1 ratio of concordance between genetic prediction and observed sub-clinical disease is observed.
Subsequently, we show how more holistic combination of genetic, clinical and family history data can be achieved
by visualizing risk in eight sub-classes of disease. Having identified where their profiles are broadly concordant or
discordant, an individual can focus on individual clinical results or genotypes as they develop personalized health
action plans in consultation with a health partner or coach.

Conclusion: The CHDWB will facilitate longitudinal evaluation of wellness-focused medical care based on
comprehensive self-knowledge of medical risks.

Keywords: genetic prediction, risk assessment, preventive medicine, clinical profiling

Background
Whole genome sequencing (WGS) and exome sequen-
cing are rapidly being incorporated as routine compo-
nents of diagnosis and explanation of rare disorders, and
the trend is moving toward utilization of these for risk
assessment for common diseases as well [1,2]. Each

month, novel mutations (either de novo or transmitted)
that are causal for conditions such as autism, primary
immunodeficiency, and craniofacial abnormalities are
reported [3-8]. In parallel, widespread adoption of gen-
ome-wide association studies (GWAS) have identified
thousands of loci that contribute to multifactorial dis-
eases as diverse as diabetes, asthma, and depression
[9,10]. Because environmental factors make a substantial
contribution to these latter conditions, ‘prediction’ is too
strong a claim for genomic medicine [11,12], but risk
stratification is certainly feasible [13]. Here we explore
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how WGS might be incorporated alongside traditional
clinical evaluation as part of preventive medical care
and the maintenance of good health. The term ‘whole
genome sequencing’ does not imply that the entire
genome of each individual is sequenced, but rather
should be taken to mean that total genomic DNA was
sequenced to high depth, in contrast to targeted or
whole exome sequencing.
We have previously shown in multiple settings how

GWAS results can be used in combination with personal
WGS to evaluate individual risk. The probability of
developing each of approximately 100 diseases was esti-
mated for individuals by integrating allelic risk effects for
multiple well-validated common variants with population-
specific pre-test baseline lifetime risk of disease estimates.
We first showed that the pseudo-individual represented by
the Human Reference Genome (hg19) would have an
increased risk for type 1 diabetes (T1D) [14]. We then
reported on three Caucasian individuals. The first had
known familial risk of heart disease, which was borne out
by his genomic profile of both common variant and rare
deleterious variant-associated risk for coronary artery
disease (CAD) [15]. The second was found to have an
unexpected predisposition to type 2 diabetes (T2D), which
revealed itself in an extended period of hyperglycemia
following a respiratory viral infection [16], and parallel
longitudinal transcriptomic, proteomic, and immune pro-
filing supported the inference of a change in health status.
For the third case, the immunological and pharmacologi-
cal risk assessment was advanced by incorporating new
methodologies for analysis of family quartets [17]. Most
recently, we also evaluated the WGS of a South Asian
woman from Kerala [18], and showed how genetic risk
distribution for a number of diseases varies in different
populations [19].
Although the focus of most genomic medicine is on

disease, routine incorporation into primary medical care
also calls for its inclusion in assessment and promotion
of wellness and health. Currently, health promotion pro-
grams utilize primary preventative measures such as
exercise, diet, weight loss, and stress management [20].
Additionally, clinical indicators and risk factors such as
blood pressure, glucose, and lipids are being incorporated
into screening, and the potential value of combining
these with large-scale genomic and molecular measure-
ments have been discussed [21] but not yet assessed in
the context of health promotion. Further, use of these
measures is on the 10-year agenda for the United States
Department of Health and Human Services Healthy
People 2020 health promotion program [22].
The Center for Health Discovery and Well Being

(CHDWB) is a joint initiative of Emory University and
the Georgia Institute of Technology, which has the
objective of assessing whether comprehensive annual

health evaluation combined with regular discussions
with a ‘health partner’ (an individual trained to interpret
clinical profiles and coach on health-related behavior)
can help people make more informed and better perso-
nal health decisions that maintain wellness, and poten-
tially reduce morbidity and medical treatment for
chronic disease [23,24]. In this program, we obtaincom-
prehensive clinical data pertaining to metabolic, cardio-
vascular, skeletal, and mental health, we carry out a
survey assessment of nutrition, behavior, and family his-
tory of disease every 6 to 12 months, and we are per-
forming WGS and other deep genomic profiling for a
subset of participants.
The objective of this report is to show how these two

types of analysis, namely clinical and genomic, can be
considered as complementary views of participant health.
Clear instances of agreement and of discordance are
described, and strategies for conditioning genomic risk
assessment on clinical data are considered. We conclude
with a discussion of how the complex and voluminous
quantity of data might in the near future be distilled to
support actionable medical inference and personal life-
style choices.

Methods
Subjects
Eight Caucasian individuals (four men and four women)
were selected from a longitudinal cohort of healthy
adult volunteers at the CHDWB at Emory University
Midtown Hospital (Atlanta). The CHDWB participants
were broadly representative of Emory employees and
were free of any known acute illness at the time of
recruitment. The eight selected individuals are drawn
from a panel of 500 CHDWB participants who had
completed at least three visits during the first 2 years of
the Center’s existence, and were chosen pseudo-ran-
domly to represent a range of diversity for metabolic
and cardiovascular phenotypes (for summary, see Addi-
tional file 1). The eight individuals were a non-random
sample in the sense that they were selected from the
upper or lower deciles for body mass index, percentage
body fat, high-density lipoprotein cholesterol (HDL-C),
and triglyceride levels, and the Beck Depression Index
and Augmentation Index values were used to capture
slightly different clinical profiles. They thus represent
classically ‘fit’ and ‘unfit’ phenotypes, whichwere never-
theless different with respect to blood fat and sugar.
The individuals were a random sample in the sense that
another 30 individuals with similar profiles could easily
have been chosen. Their Framingham Risk Scores (FRS)
for diabetes and cardiovascular risk were distributed
across the observed range in the entire cohort, as are
their genotypic risks for both diseases (see Additional
file 2).
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Ethics approval
The study was performed in accordance with the
Declaration of Helsinki. It was approved by the institu-
tional review boards (IRBs) of Emory University
(IRB00007243) and the Georgia Institute of Technology
(H09364) for collection of clinical and genomic data fol-
lowing written consent, and although we discussed
openly with participants regarding their clinical data,
approval for provision of genetic results to individual
participants has not yet been sought or provided.
Because of this, in the interests of participant privacy,
data in some figures and tables are presented as z-scores
so as to preclude personal identification. We carried out
analyses (see Additional file 3) to confirm that partici-
pants would not be able to identify themselves unam-
biguously from the data presented here, as most have
clinical profiles that are very similar to those of other
individuals in the study. In addition, rare variants were
for the most part excluded from discussion, as the IRB
considers these to be more potentially disturbing in the
absence of professional consultation were an individual
to suspect that they are represented.

Clinical assessments
Details about the recruitment of participants and collec-
tion of biomedical and health status data at CHDWB
have been described previously [24]. Participants under-
went extensive clinical measurements to assess their
health status at study initiation, and 6 and 12 months
later, and most are continuing to participate with annual
evaluations. Data gathered include anthropomorphic
measurements, laboratory tests including complete
blood counts, metabolic and lipid profiles, urinary and
serum biomarkers for oxidative stress, inflammation,
and immune function, pulse wave velocity assessment of
cardiovascular function (SphygmoCor; AtCor Medical,
Sydney, Australia), whole body densitometry, and assess-
ment of mental and behavioral health (NexAde; NexSig
Neurological Examination Technologies Ltd, Herzliya,
Israel) as described previously [24]. Self-reported family
and personal medical histories were also recorded, along
with extensive online surveys that were filled in at the
participants’ convenience at or around the time of each
visit. Blood samples were collected at each visit for all
the participants, and DNA was extracted from buffy
coats isolated at first visit.
Risk predictions for 8 year risk of diabetes and 10 year

risk of cardiovascular diseases were calculated using the
equations provided by the Framingham Heart Study [25]
online [26]. We derived z-scores for continuous clinical
variables using the entire CHDWB dataset of over 500
individuals by subtracting the mean and dividing by the
standard deviation. The mean of the first three visits was
considered in all assessments reported here.

Whole genome sequencing
WGS was performed by the Illumina Genome Sequen-
cing Network at the University of Washington on
HiSeq2000 (Illumina Inc., San Diego, CA, USA) auto-
mated sequencers. Briefly, 100 μl of genomic DNA
(> 60 ng/μl concentration) was sheared to give a mean
fragment size of 500 bp, and sequencing libraries were
generated. Imaging and analysis of 100 bp paired-end
read data was performed using standard Illumina soft-
ware. Approximately 125 billion bases that passed the
Illumina analysis filter were obtained for each genome.
Mean non-N reference (that is, after excluding gaps)
coverage was approximately 36X, with 95.5% (mean) of
the positions having coverage of at least 10X. The gen-
ome sequences were aligned against the Human Refer-
ence Genome assembly (hg19 sequence) using CASAVA
(Consensus Assessment of Sequence And Variation)
software (Illumina). On average, 87% of each individual’s
quality filtered reads were aligned. High-confidence var-
iants with a quality score above 20 were retained. The
accuracy of the generated genome sequences was con-
firmed by comparison with previously determined geno-
types from Illumina OmniQuad arrays, which showed
over 99% concordance for all individuals.

Genetic risk assessment based on common variants
Genetic risk predictions for various diseases were gener-
ated using our VARIMED (Variants Informing Medi-
cine) database of complex disease associations [15], and
our previously reported pipeline for combining odds
ratios (ORs) of robustly associated single-nucleotide
polymorphisms (SNPs) with diseases and traits [27]. An
individual’s genetic risk for a disease was calculated as
their ‘post-test probability’. We first computed likelihood
ratios (LRs) for each SNP as the ratio of the probability
of the genotype in an affected person to that of an unaf-
fected person. LRs for each locus were computed from
each case-control study be dividing the genotype fre-
quency in cases by the frequency in controls, weighted
by the sample size of the study. Thus, for an individual
with genotype g in SNP x found in i = 2 ...s studies,
each of size S(i), the LR is computed as:

log LR(x) =

∑s
i=1 log

F(g in cases)
F(g in controls)

× √
S(i)

∑S
i=1

√
S(i)

Only loci that have been found in GWAS in indivi-
duals of European ancestry in at least one study with
P < 1 × 10-6 were used in estimating LR, using only the
most significant site in a haplotype block (r2 ≥ 0.8).
Next, all LRs were combined with pre-test probabilities,
namely the baseline lifetime risk for disease, to estimate
the post-test probability [27]. Sex-appropriate pre-test
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probabilities estimated from published reports were used
to estimate the post-test probabilities by converting
them to pre-test odds using the formula pre-test prob-
ability/1-pre-test probability, multiplying by the genoty-
pic LR to give the post-test odds, and then converting
these to post-test probability by dividing the post-test
odds by 1 + post-test odds.
For example, for n number of SNPs, the post-test odds

are given by:

Post - test Odds = Pretest Odds *
n∏

i=1

LR(i)

Clinical risk assessment
Each person was classified according to five levels of risk
(very low, low, intermediate, high, or very high) for a dis-
ease/trait according to whether they were in the upper or
lower one or two standard deviation unit bins of measured
clinical markers for that disease/trait in the entire
CHDWB cohort (Figure 1). Clinical risk was assessed in
eight major disease categories: immunological, metabolic,
cardiovascular, musculoskeletal, respiratory, cognitive,
psychiatric and oncological. A list of diseases and the mea-
sured clinical attributes considered in each category is pro-
vided (see Additional file 4), but note that this list will vary
depending on the range of clinical attributes that are avail-
able in any study or clinic. The strategy is simply to aver-
age multiple clinical measures so as to place individuals in
five bins for each category. We are currently evaluating
computational strategies for combining the scores in a
weighted manner that also accounts for co-variance, but
in this study we used the simpler strategy of simply aver-
aging each of the contributing z-scores. Additional cate-
gories might include organ failure and reproductive
health, but we did not have data pertaining to these at this
time.

Integration of genetic and clinical data
For joint clinical and genetic risk assessment, we
describe two exploratory approaches.
The first approach directly matches GWAS results with

individual diseases. Two limitations to this approach are
either that there are no appropriate clinical biomarkers
for some diseases in our cohort (such as for asthma and
cancer), or that some biomarkers are precisely the endo-
phenotype of the disease/traits investigated in GWAS
(for example, triglycerides for hypertriglyceridemia or
body mass index (BMI) for obesity), so in a sense the two
are redundant. Nevertheless, we proceeded to use the
strategy shown in Figure 2 for five inter-related and pre-
valent conditions: CAD T2D, hypertension, obesity, and
hypertriglyceridemia. There are two analytical issues,
namely assessing each person’s relative risk, and adjusting

the post-test probability based on that risk. For CAD,
T2D, and hypertension we computed FRS for each per-
son at each visit across the entire CHDWB database.
These scores were averaged over the first three visits to
generate an individual’s average FRS, which was divided
by the sample mean to generate the LR. We used
the relationship that post-test probability = pre-test
probability × LR/(1 + (pre-test probability × (LR-1))) to
generate an adjusted baseline, which can then be modi-
fied by genotypic risks. For obesity and hypertriglyceride-
mia, the intention is to show an individual whether their
risk is due to a combination of both clinical and genetic
factors. For instance, individuals with incident obesity or
hypertriglyceridemia have the disease, but it is neverthe-
less possible to report risk factors of less than 100%. We
proceeded by noting that the relative environmental and
genetic contributions are reflected in the heritability,
which can thus be used to scale the clinical contribution
as a proxy for the environment. Estimates vary in the lit-
erature, but here we assumed heritability of 50% for obe-
sity and 30% for hypertriglyceridemia. Each individual’s
z-score was computed and the LR for individuals with
the same clinical z-score was identified. The pre-test
probability was multiplied by 2 × h2 × LR (namely the LR
for obesity or 60% of the LR for hypertriglyceridemia),
providing a newly scaled pre-test probability that then
seeded the genotypic adjustment.
The second approach combined multiple clinical and

genetic measures in order to generate an overall portrait
of risk in the eight major disease categories mentioned
above (Figure 3). The z-scores for clinical parameters
were adjusted with respect to risk predisposition: for
traits that are known to confer risk at a lower level
(such as HDL-C, hyperemia) we plotted the additive
inverse. Similarly, each participant’s genetic risk score
was ranked according to percentiles into five categories.
The ‘gridiron plot’ (Figure 3C) then showed the relation-
ship between estimates, and allowed an individual to
immediately see for which classes of disease they have
an increased, reduced, or discordant risk. They could
then consult individual clinical and genetic measures
(Figure 3A, B) to discover exactly which attributes they
may consider in developing a health action plan.

Results
Clinical and genomic measures of eight participants in
the CHDWB
In general, clinical parameters show much higher inter-
individual than intra-individual variance, shown in
Figure 1 by the progression of values over time (left to
right) for four traits in each of the eight individuals in
the study. Trends were in a hopeful direction for several
of the participants [23]. For example, BMI dropped con-
sistently for the most overweight individual (CHD-3,
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Figure 1A). Occasionally, one or more individuals showed
hypervariable measurements over time (triglyceride levels
for CHD-8; Figure 1B), but for the purposes of clinical
risk evaluation, average values reflect the rank order of
individuals, and are sufficient to place individuals in
broad categories, from very low (light blue shading) to
very high (pink).
SNP, indel and copy number variant (CNV) or struc-

tural polymorphism called by the Illumina CASAVA
algorithm, as well as the number of homozygous coding
variants and predicted splice site variants. are summar-
ized in Table 1. Each individual had an average of
almost 3.7 million SNPs, 623,000 indels, and 4,100
CNVs, consistent with published estimates of poly-
morphism from WGS [28,29] also summarized in the
Table.

Genotypic risk prediction
Genotypic risk assessments were generated for each of
the participants, and are presented as ‘risk-o-gram’ plots

(see Additional file 5). Baseline pre-test odds were sim-
ply taken from published epidemiological data on gen-
der, age, and ethnicity-adjusted disease prevalence [15].
The number of SNPs per disease or trait ranged from 1
to 66 (for Crohn’s disease), with an average of 9 and
median of 4, where 25 conditions were evaluated from
at least 10 SNPs. Representative short risk-o-grams are
shown for only the common diseases for two individuals
on the linear scale (Figure 2).
Because not all the individuals within a population of

the same sex, age, and with the same environment have
the same overall risk, we propose that pre-test odds can
be conditioned on an individual’s clinical profiles. These
partially capture the lifetime of individual-specific
genetic and environmental factors that have shaped that
individual’s health status. An intuitive way to perform
this conditioning is to modify the baseline risk using a
multiplier that is a function of the heritability, along
with each individual’s z-scores for relevant clinical para-
meters that are related to the specific disease.
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Figure 1 Temporal change in clinical measures in the eight Center for Health Discovery and Well Being (CHDWB) participants:
(A) body mass index (BMI), (b) serum triglycerides, (c) systolic blood pressure (SBP), and (d) bone mineral density (BMD). Each plot
shows the temporal sequence from first to fourth visit over 3 years (left to right, dark to pale shading) for the four men (blue) and four women
(purple) in the study. Data were only available for the first three visits for CHD-1. Adjusted R2 and significance measures refer to ANOVA of the
individual differences, providing an estimate of the proportion of variance between individuals for each measure. Background color coding
shows very high (pink), high (green), intermediate (white), low (yellow), and very low (blue) risk score categories defined by 1 or 2 standard
deviation units from the CHDWB mean. These categories are also used in Figure 3 (see text for specific results). In order to protect participant
privacy, actual trait values are not shown, but ranges in the full cohort are 16 to 61 for BMI, 30 to 708 mg/dL for serum triglycerides, 78 to 187
for SBP, and -3 to +3 for BMD z-scores.
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A simple implementation of the approach resulted in the
further modified risk-o-grams (Figure 2C,D). In this case,
there was no change in relative genotypic risk for a given
disease, but the absolute risk predictionswere in some
cases modified substantially, and as a result of this, the
rank order of diseases changed. For example, the hyper-
tension and hypertriglyceridemia profiles were reversed
for individual CHD-5 on the left, because the clinical data
implies low blood pressure but high serum triglycerides,
despite the currently understood genetic risk. Triglyceride
levels were even higher than expected for CHD-8 on the
right, which contributed to a higher T2D FRS, but other
factors have moderated this individual’s CAD risk. Our
representations (Figure 2) are provided as illustrations of
the principle of how genotypic risks can be adjusted
according to clinical status, and should be interpreted in
light of the numerous methodological challenges that need
to be addressed. Further research is required to refine the
implementation, and establish whether or not this will or
should affect an individual’s health behavior choices and/
or future clinical outcomes.

Comparison of clinical and genotypic risk assessments
An alternative to computing overall disease probabilities
by combining both genotypic and clinical LRs is to

report both evaluations in a simple graphical manner
(Figure 3). Commercial providers of personal genome
services currently present results in browsable disease-
by-disease or gene-by-gene formats, which do not lead
themselves to data integration, and arguably either over-
whelm individuals or focus attention on a few key
results. By contrast, our proposal is to present partici-
pants with summaries of their risk factors and biological
indicators across different aspects of wellness. We devel-
oped this notion in the form of a gridiron plot of risk
(Figure 3C) assessed in the aforementioned eight
domains of health along the x-axis, from both clinical
(y-axis) and genotypic (z-axis) data. These eight pro-
posed domains reflect concerns that most relatively
healthy middle-aged people have about joint and back
pain, body weight, infections, and irritability or sleep
deficits, few of which are directly measured by GWAS
studies, yet can conceivably be related to GWAS disease
results. These domains correspond to established cate-
gories used to classify disease, such as those in the
International Classification of Diseases (ICD), but a
more refined classification might be based on the
human disease network built around shared genetic
etiology [30]. Additional domains can be considered,
such as reproductive health, eyesight and hearing, and
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Figure 2 (A,C) Risk-o-gram plots for common diseases in standard format for two individuals, (A) CHD-5 and (B) CHD-8. (C,D) Risk-o-grams
adjusted according to observed clinical risk for (C) CHD-5 and (D) CHD-8. Gender and age-specific disease prevalence for Caucasians are indicated by
the black triangles (or hash marks in lower panels). Genotypic effects are predicted to increase (right point) or decrease (left point) overall risk by the
indicated magnitude (orange or purple, respectively), resulting in the indicated rank-ordered overall risk. The number of single-nucleotide
polymorphism (SNPs) used in the computation for each disease is indicated to the right. (C,D) The adjusted risk-o-grams according to observed clinical
risk either increase (red triangle) or decrease (green triangle) the baseline without affecting the genotypic component, but result in adjustment of
overall risk and rank order. Note that CHD-5 is a woman, and CHD-8 a man, so breast and prostate cancer are indicated for each as appropriate.
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Figure 3 Joint representation of clinical and genetic risk assessment. (A) Metabolic risk showing joint genotypic likelihood ratios for obesity
(OB), Type 2 diabetes (T2D), and hypertriglyceridemia (HTG) as bars, and related clinical measures as the indicated points, for each of the 8
individuals in the study. (B) Similar cardiovascular risk assessments for hypertension (HTN), myocardial infarction (MI), and coronary artery disease
(CAD) as bars, along with related clinical measures and/or Framingham Risk Score. All measures were averaged over the first three visits to the
Center for Health Discovery and Well Being (CHDWB). (C) Proposal for ‘gridiron plot’ representation of clinical risk (y-axis) against genotypic risk
(z-axis) in eight disease domains described in the text, for individual CHD-5. The plot gives a glimpse of where the two types of assessment are
concordant (for example, cardiovascular disease (CVD), cardiovascular)or discordant (that is, immunological (IMM)), and more refined analyses
such as in (A) and (B) provide further clues as to the genetic basis of overall risk.
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renal health. These domains are most likely to be of
concern for subscribers to wellness and/or preventative
care programs, such as the CHDWB, in which health
maintenance and disease prevention take medical
priority.
One individual, CHD-5, (Figure 3C) is a very fit Cauca-

sian woman in her 50s. There was no indication of great
concern for the musculoskeletal, respiratory, cognitive,
psychiatric and oncological domains, but interesting find-
ings were suggested by the first three domains to the left
of the gridiron. Her metabolic profiles showed general
concordance, as her low BMI and low percentage of body
fat, were matched by her genotypic risk scores for meta-
bolic disease and T2D in the low to moderate range.
There was also clear concordance between her clinical and
genotypic profiles in the cardiovascular disease (CVD)
domain, as she was shown to have moderately high risks
of CAD, myocardial infarction, and stroke (each approxi-
mately two-fold ORs combined from a total of 80 SNPs),
and her standard measures of cardiovascular health (aug-
mentation index of arterial stiffness, hyperemia, measure
of peripheral oxygenation) both placed her in the high-risk
category, contrary to the Framingham risk assessmentthat
generated her revised estimate in Figure 2 (black dot). In
the immunological domain, she had few indicators of
immune impairment other than self-reported intestinal
complaint, so it is interesting to note her genotypic risk
for ulcerative colitis was relatively high, whereas that for
Crohn’s disease was low. The utility of the gridiron plot is
that it is designed to help the individual pay attention to
specific aspects of their health. A drawback of the necessa-
rily superficial summarization is that conflicting genotypic
(or clinical) assessments within a domain can cancel each
other out. More detailed representation of how the data

types can be combined and presented in each domain,
across multiple individuals, is shown (Figure 3A, B).
Perusal of Table 2 indicates many examples where com-

mon variant risk evaluation was concordant with clinical
data (that is, the two types of risk are in the same direc-
tion), with an approximate 2:1 ratio of concordance to dis-
cordance. For example, for the four individuals with
consistently low weight and BMI measures (CHD-1,
CHD-4, CHD-5, and CHD-7) were all found to have a
genotypic risk for obesity that was below the population
average (see also Figure 3A), although the overweight indi-
vidual CHD-3 had a slightly increased genetic risk for obe-
sity. For triglycerides, the evaluation was split, with two of
the three individuals with very high triglyceride levels
(CHD-6 and CHD-8) also showing a greatly increased
genetic risk, whereas CHD-3 showed a reduced genetic
risk. There were no diabetic subjects in the sample, but
the two individuals with very high T2D risk had normal
fasting glucose and insulin levels at the time of assessment.
For CAD (Figure 3B), the three individuals with the high-
est genotypic risk had variable clinical profiles: their FRS
for CAD were not particularly high, and two of them were
at the opposite ends of the augmentation index and hyper-
emia score ranges (CHD-5 being at high risk, and CHD-7
at low risk, by both criteria), while the third had inter-
mediate clinical CAD-related scores. The results for
hypertension were less concordant, possibly owing to the
small number of variants considered, but it is noteworthy
that the individual with very high blood pressure (CHD-3)
had no obvious genetic risk. This may be a case where this
individual’s lifestyle is a major component of her risk, and
notably her systolic blood pressure has dropped consis-
tently over the first 2 years that she has been in the
CHDWB program (Figure 1C). Note that these analyses

Table 1 Summary of variations in genome sequences of eight Caucasian subjects, with data from two previously
reported studies[27,40]

Sample ID Total number of variants (>q20) Coding variantsa

SNP Indel SV Number of SNPs Indel SV

Synonymous
(rare homoz)

Missense
(rare homoz)

Nonsense Splice
overlap

FS NFS Overlapb

CHD-1 3,722.234 641,792 4197 11,887 (18) 11,434 (29) 64 76 303 299 125 41

CHD-2 3,701.558 639,005 4739 11,842 (11) 11,708 (33) 60 81 334 290 118 37

CHD-3 3,691.270 632,544 4033 11,912 (9) 11,488 (31) 65 71 279 304 116 37

CHD-4 3,691.337 633,475 4114 11.757 (9) 11,457 (25) 56 90 317 280 106 49

CHD-5 3,734.820 645,032 3977 11.929 (9) 11,745 (35) 62 90 343 307 123 43

CHD-6 3,650.690 602,744 3916 11.560 (12) 11,285 (37) 60 80 342 280 112 32

CHD-7 3,643.046 597,363 4011 11.814 (17) 11,480 (41) 61 85 289 287 109 31

CHD-8 3,647.944 590,064 3828 11.619 (9) 11,255 (18) 54 76 311 281 95 38

Pelak et al. [28] 3,473.639 609,795 805 (CNVs) - 11069 117 99 479 898 - -

Shen et al. [40] 3,307,678 421,088 - 9,612 9,082 87 - 217 164 - -

Abbreviations: CNV: copy number variant; FS: frameshift; NFS: non-frameshift; SV: structural variant.
aThe coding variants were classified based on Gencode version 7.
bOverlap: located within 2 nucleotides of the exon-intron boundary.
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only include highly significant genotypes from GWAS that
have been independently replicated, thus they capture a
minor proportion of the suspected genetic variance, and
consequently there is not a strong expectation at this stage
of genomic medicine that the relatively small genotypic
samples should be predictive [31,32].

Individualized evaluations
Individual CHD-1 is a woman in her 50s who might be
described as ‘super-fit’ with a body fat percentage under
20% and one of the highest maximal oxygen consump-
tion (VO2max) estimates in the entire cohort. Her only
current health concern at the time of assessment was
recurrent bladder or kidney infections for which she
takes medications, but nothing in her genetic profile
pointed to this condition. She had increased common
variant predictionsfor T2D and age-related macular
degeneration, and a slight increase in CAD-related traits.
She is homozygous for the ApoE2 genotype (present in
<1% of Caucasians), which is protective against late-
onset Alzheimer’s disease, but leads to type III hyperli-
poproteinemia in 2% of cases, thereby increasing risk of
atherosclerosis [33].
Individual CHD-2 is a man in his mid-40s, also with a

very high fitness level, although his low-density lipoprotein
cholesterol (LDL-C) levels are toward the upper end of the
range typically observed in healthy people. He had some
digestive concerns, and an increased T2D prediction.
While depression was suggested by his genotype (although
very little of the variance in the population for depression
is explained by common variants at this time) and his sib-
lingsare affected by depression, his mental health score
shows no sign of depression or anxiety.
Individual CHD-3 is a woman in her 60s who has high

blood pressure and cholesterol, is classified as obese, and
has had cancer. Her risk-o-gram was concordant with obe-
sity, CAD, and stroke, and she is also apparently at
increased risk for asthma, Parkinson’s disease, Alzheimer’s

disease, and Paget’s bone disease, among others. She
appears to be someone for whom genomic medicine
alongside longitudinal clinical profiling could have impor-
tant implications for health maintenance.
Individual CHD-4 is another very fit woman in her 40s,

whose primary health concern is allergies, which run in
three generations of her family. Like many in the study,
she takes supplements for heart and bone health, which
may offer some protection against her increased risk of
CAD and Paget’s disease from common variants. She has
a family history of cancer, and increased breast cancer risk
was indicated genetically, so careful surveillance may be
advisable.
Individual CHD-5 is a woman in her late 50s, whose

profiles are highlighted in Figure 5. We observed strong
concordance of cardiovascular genetic and clinical risk,
as well as a history of intestinal issues that would be con-
sistent with a genotypic liability to ulcerative colitis.
However, her genetically increased T2D risk not indi-
cated by her excellent fitness, low BMI, and normal clini-
cal indicators of diabetes. Two rare variants (not shown)
suggest visual impairment and color vision deficiency,
but there is no indication that these are issues for this
woman.
Individual CHD-6 is a relatively younger man in excel-

lent health except for triglyceride levels at the high
extreme for the entire cohort, which is consistent with
the very strong genetic prediction of hypertriglyceride-
mia from his common variants.
Individual CHD-7 is a man in his early 60s whose most

distinguishing clinical feature was that he had the lowest
triglyceride levels in the cohort, and he also had remark-
ably low signs of inflammation, in that his interleukin (IL)-
6, IL-8, and tumor necrosis factor-a levels were all in the
bottom few percent of the CHDWB sample, and his neu-
trophil-to-lymphocyte ratio was also low. Deep analysis of
his genome may be revealing with respect to the mechan-
isms responsible for his low level of inflammation.

Table 2 Genetic predictions and clinical phenotypes related to metabolic and cardiovascular disorders

Sample ID Common variant prediction Clinical phenotype Clinical risk factors

CHD-1 T2D (4.5) - FMD, CD34+ cells

CHD-2 T2D (3.8); MI (1.24)a - BP, N:L ratio, SEVR, HDL-C

CHD-3 Stroke (2.18); CAD (1.21) a; obesity (1.23)b Obese Total cholesterol, TG, BP, N:L ratio, FMD, PWV, FRS
(CVD)

CHD-4 T2D (1.20); CAD (1.32) a - SEVR, N:L ratio, hyperemia, CD34+ cells

CHD-5 CAD (2.09)a; T2D (2.24); stroke (2.18); MI (1.91)a - Total cholesterol, LDL-C, SEVR, hyperemia, AIX, PWV

CHD-6 Hypertriglyceridemia (3.48)b; atrial fibrillation (1.35) Hypertriglyceridemia HDL-C, SEVR, CD34+ cells

CHD-7 Stroke (2.18)b; MI (1.70); atrial fibrillation (1.35); CAD (1.40) Stroke FMD, CD34+ cells

CHD-8 Hypertriglyceridemia (1.72)b; CAD (1.38)a Hypertriglyceridemia WHR, glucose, FRS (T2D), total cholesterol, LDL-C, BP,
AIX, PWV, FMD

Abbreviations: AIX: Augmentation Index; BP: blood pressure; CAD: coronary artery disease; CVD: cardiovascular disease; FMD: flow-mediated dilation; FRS:
Framingham Risk Scores; HDL: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; MI: myocardial infarction; N:L: neutrophil:lympocyte;
SEVR: sub-endocardial viability ratio; T2D: Type 2 diabetes; TG: triglycerides; PWV: pulse wave velocity;. Numbers in brackets indicate LR due to genetic variants.
aconcordance with clinical risk factors, bconcordance with clinical phenotype.
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Individual CHD-8 is a man in his 40s who was discor-
dant for multiple indicators of heart disease, including
high diastolic blood pressure, arterial stiffness, and
serum lipids, combined with a high FRS for CAD. These
were only mildly indicated by common variant evalua-
tion, but rare homozygous variants have been linked to
cardiomyopathy and to carotid stenosis or thromboem-
bolism. Alcoholism was reported in his family, so this
person certainly is a good candidate for careful clinical
and possibly genetic consideration in development of his
health behaviors.

Discussion
It is inevitable that genome sequence information will be
incorporated into individualized medical care over the
next couple of decades, but just how it will be utilized
remains to be seen. A spectrum of applications ranging
from explanation of rare conditions at or before birth to
enhancement of medical interventions is likely, and to
some extent, genome-wide data may be used to predict
and potentially help prevent early onset of chronic dis-
ease. Clinicians already utilize family history and clinical
information for disease prognosis and diagnosis in a simi-
lar manner, while recognizing that these are also not
individually definitive indicators of the likelihood of dis-
ease progression. Family history and polygenic genotype
scores from SNPs identified by GWAS have similar pre-
dictive ability for common diseases, but genotypes
already outperform family history for many rare condi-
tions [34].
The holistic ‘total evidence’ approach to integration of

clinical and genetic factors in medical evaluation will
surely see dramatic improvements in the near future, and
will be advanced by developments in several aspects of
genomic risk assessment. First, there is ample room for
improvement of baseline risk assessment. In Figure 2, we
proposed that adjustment of the population prevalence
by clinical status has the potential to directly integrate
genetic and clinical risk prediction. We emphasize that
more research needs to be carried out before this strategy
can be considered to be robust, and that medical utility
remains to be demonstrated. Note that the OR approach
to computation of genetic risk is just one of several meth-
ods that could be used. It improves on simple allelic sum
measures through the incorporation of allele frequency
and effect sizes in the computation, but does not account
for epistatic or genotype × environment interactions, and
it is not yet clear how well it captures the actual distribu-
tion of genetic liability for common disease. In addition,
there are important theoretical issues surrounding the
computation of genetic risk [35,36], particularly in popu-
lations of mixed ancestry. Most importantly, GWAS have
as yet discovered only a minority of the variants that con-
tribute to any given disease, in most cases explaining no

more than 15% of the risk. This amount of explained var-
iance does not translate into significant risk prediction,
for example by receiver operating characteristicanalysis
[37], although there are reasons to believe that it does
classify individuals who are toward the tails of the distri-
bution. Even in the presence of complete knowledge of
the genetic contributions, risk prediction is limited to the
square root of the heritability, but we emphasize that
none of the scores available to date approach this limit.
As the sample sizes of GWAS continue to increase to
hundreds of thousands of cases for more common dis-
eases, expanding discovery from dozens to hundreds of
loci, genotypic risk assessment will certainly improve
[38].
This study was conceived as a pilot investigation of how

WGS may be utilized in the context of health mainte-
nance. Participants in the CHDWB interact regularly with
a health partner who helps them to interpret their clinical
profiles in the context of their own medical issues, and to
develop a health action plan [24]. These typically focus on
diet, exercise, and stress reduction, but can include specific
attention to issues such as low bone density, high blood
pressure, or loneliness, and/or lead to physician referral
for indications of previously unrecognized heart or meta-
bolic disease. Across the full cohort of almost 700 partici-
pants, there are encouraging trends toward improved
wellness [23,24], and this is clear for some of the indivi-
duals reported here, in terms of significant reduction in
BMI and inflammation. It will, however, take prospective
and longitudinal studies to evaluate whether wellness
genomic profiling is beneficial either to individuals
(in terms of maintained wellness) or as a matter of public
policy (reduced healthcare costs, improved employee
performance).
We do not currently have IRB approval to share the

genomic profiles with the participants, so cannot yet
evaluate how self-knowledge of gene sequences might
also affect health behavior. Instead, we propose a strat-
egy for presenting the diverse data types in a manner
that we suspect will help individuals see connections
between their genetics, their clinical profiles, and their
own health perception. In the short term, the utility of
the approach is more likely to be measurable in terms
of modification of health behaviors than in economic or
life-long health benefits. We show a modified version of
Figure 3 (see Additional file 6) that captures the type of
data that may be most influential for a hypothetical indi-
vidual, where an overall view of the health domains is
associated with an individual’s genotypic and clinical
scores relative to the population, along with a list of
rare variants of interest. A recent study [39] suggests
that clinical geneticists are reluctant to report incidental
findings on genetic mutations to patients unless the
mutation is known to be pathogenic. However, because
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the expectations are different in the context of wellness,
where subjects actively seek data, we envision that a
physician, genetic counselor, or health partner would
discuss the summary and appropriate specific details of
the evidence with the individual, who would thus be
empowered to consider whether they should act upon
the genetic eviden.
Clearly, our ability to integrate genomics into health

maintenance will improve with experience and the
incorporation of more data, including environmental
exposures and behaviors. Family history of disease and
presence of rare deleterious variants are two obvious
types of information that will be highly relevant: risk
assessment relative to other family members who have
been genotyped will allow a person to evaluate where
they stand, given the known sources of variance in the
family [16,35], and de novo mutations may sometimes
explain specific discontinuity between clinical and com-
mon variant assessments. We are also gathering data on
the metabolome, transcriptome, and epigenome for
these eight individuals, and expect these functional
genomic data types to provide complementary informa-
tion that we will evaluate later.

Conclusion
This pilot study of eight individuals from the CHDWB
proposes two approaches for combining and conditioning
clinical and genetic profiles, which could facilitate longi-
tudinal evaluation of wellness-focused medical care based
on comprehensive self-knowledge of medical risks. The
study shows an excess of concordance between genetic
prediction and observed sub-clinical disease. Further, we
illustrate how more holistic combination of genetic and
clinical data can be achieved by visualizing risk in sub-
classes of disease. The visualization of concordance and
discordance in the genetic and clinical profiles might
help develop personalized health action plans in consul-
tation with a health partner. We acknowledge that the
data presented here falls short of the gold standards of
evidence of inference that are typically required in
genetic analysis of causation, but argue that the objective
of ‘personalized genomics’ is not necessarily to predict
disease with any certainty, but rather to provide another
line of evidence that physicians and other medical practi-
tioners can consider in their interactions with patients.
Ultimately, the utility of the approach described here will
require prospective evaluation in a cohort of healthy
adults followed longitudinally for decades. As the volume
of personalized information increases, the issue of who
will be responsible for interpreting and explaining the
assessments to individuals becomes more acute, and sug-
gests the need for training of a new class of genomic
healthcare professional and development of novel ways
to present the information.

Additional material

Additional file 1: Clinical attributes of the population. Table showing
the clinical attributes of the subjects included in the study at their first
visit.

Additional file 2: Framingham Risk Score (FRS) and genotypic risk
score for Type 2 diabetes and cardiovascular disease. The two plots
contrast genotypic risk score and clinical FRS for each of 182 people in
the Center for Health Discovery and Well Being (CHDWB) cohort. In both
cases, the two scores were positively correlated reflecting contributions
of both pre-test and genotypic risks to the correlation with Framingham
scores. Black dots show the scores for the participants discussed in this
paper.

Additional file 3: Non-identifiability of participants on basis of
clinical phenotypes. Two-way hierarchical clustering of z-scores of 40
traits (columns) for 380 participants (rows) at 3 successive visits shows
clustering of participants, 3 of whom (indicated by orange, green or red
markers to left) cluster separately in at least one visit. The other five
participants have clinical profiles that were always most similar to one
another, but in most cases were so similar to other participants also that
they do not uniquely define a person, given the data reported in this
paper.

Additional file 4: Disease categories. Table showing the classification
of clinical phenotypes into various disease categories for clinical risk
assessment

Additional file 5: Risk-o-grams. Figure showing the risk-o-gram plots
depicting the genotypic risk for all eight subjects.

Additional file 6: Summary clinical profile. This one-page summary of
the joint genomic and clinical profile for a hypothetical individual
suggests how health professionals might present data to patients. The
radar plot at the top summarizes health risks for one or more diseases of
interest in each of the health domains shown in Figure 3, with the outer
ring representing very high genotypic risk and the inner ring very low
risk. The size of each point shows the magnitude of clinical risk in the
same domain, with green dots highlighting concordant high risk, red
dots discordant low genetic and high clinical risk, and blue dots
discordant high genetic but low clinical risk. These are shown in more
detail below, where the frequency distribution summarizes the genetic
risk estimates across a relevant comparison population, and the box-and-
whisker plots show the first two standard deviation intervals either side
of the mean for associated clinical parameters. Colored points indicate
the position of the individual relative to the comparison population. For
example, this individual has relatively high genetic risk of depression,
which corresponds to high Beck Depression Index, low mental health
summary score, and very low social function (possibly suggesting an area
for behavioral modification). In the cardiovascular domain, she has very
high blood pressure despite low genetic risk of hypertension, and this
contributes to relatively high Framingham Risk Score for cardiovascular
disease (CVD risk) despite normal arterial stiffness. In the metabolic
domain, the data show that she is currently healthy, but a high genetic
risk suggests a need for ongoing surveillance. Finally, the report would
mention rare variants of various types, including homozygous deleterious
alleles that are known to promote rare conditions, or to be protective, as
well as carrier status for rare variants that might be of interest in the
context of family planning. In addition to this summary report, we
envision that a more detailed description of specific findings, including
the strength of evidence for associations and any data on clinical
outcomes and interventions, would be provided to the patient, and
discussed along with appropriate explanation of the genetics and
biology.
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