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Background: The majority of mammalian genes generate multiple transcript variants and protein isoforms through
alternative transcription and/or alternative splicing, and the dynamic changes at the transcript/isoform level
between non-oncogenic and cancer cells remain largely unexplored. We hypothesized that isoform level
expression profiles would be better than gene level expression profiles at discriminating between non-oncogenic

Methods: We analyzed 160 Affymetrix exon-array datasets, comprising cell lines of non-oncogenic or oncogenic
tissue origins. We obtained the transcript-level and gene level expression estimates, and used unsupervised and
supervised clustering algorithms to study the profile similarity between the samples at both gene and isoform

Results: Hierarchical clustering, based on isoform level expressions, effectively grouped the non-oncogenic and
oncogenic cell lines with a virtually perfect homogeneity-grouping rate (97.5%), regardless of the tissue origin of
the cell lines. However, gene levelthis rate was much lower, being 75% at best based on the gene level
expressions. Statistical analyses of the difference between cancer and non-oncogenic samples identified the
existence of numerous genes with differentially expressed isoforms, which otherwise were not significant at the

gene level. We also found that canonical pathways of protein ubiquitination, purine metabolism, and breast-cancer
regulation by stathmin1 were significantly enriched among genes thatshow differential expression at isoform level
but not at gene level.

Conclusions: In summary, cancer cell lines, regardless of their tissue of origin, can be effectively discriminated from

non-cancer cell lines at isoform level, but not at gene level. This study suggests the existence of an isoform
signature, rather than a gene signature, which could be used to distinguish cancer cells from normal cells.

Background

The past decade has witnessed unprecedented develop-
ments in high-throughput technologies, and their appli-
cation has led to the molecular classification of many
cancers [1]. Molecular profiling of gene expression, using
microarrays, has shown that heterogeneity in outcome
and survival of patients with cancer can be explained, in
part, by genomic variation within the primary tumor.
These technologies have helped identify many genetic
and epigenetic modifications involved in the initiation
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and progression of various cancers, but their precise
molecular mechanisms remain unclear. Furthermore,
novel drugs have been developed to target some of the
molecular pathways underlying the carcinogenic pro-
cesses and maintenance of cancer phenotypes [2,3] yet,
these drugs have provided limited survival benefits to
only a small subset of patients with cancer, and only a
small number of practically useful biomarkers are pre-
sently available. Improved molecular classification of can-
cers is essential to identify highly sensitive and specific
biomarkers and therapeutic targets that reflect the mole-
cular mechanisms functionally involved in tumor type-
specific survival, drug resistance, tumor relapse, and
patient outcome [4].
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One of the reasons for the limited success in the quest
for genomic-based, personalized medicine is the assump-
tion of a ‘one gene — one protein — one functional path-
way’ paradigm in most of the studies investigating
molecular classification or therapeutic targets for cancer
[5]. Recently, by making use of chromatin immunoprecipi-
tation sequencing (ChIP-seq) and mRNA sequencing
(mRNA-seq) approaches, we and others have discovered
widespread use of alternative promoters and alternative
splicing in mammalian genes in various tissues, develop-
mental stages, and cell lines [6-9]. In fact, numerous genes
displaying complex gene regulation via use of alternative
promoters and alternative splicing, have been known for
some time, and recent evidence suggests that almost all
multi-exon human genes have more than one mRNA
isoform. During alternative splicing, the coding and non-
coding regions of a single gene are rearranged to generate
several messenger RNA transcripts, yielding distinct pro-
tein isoforms with differing biological functions. Notably,
there is growing evidence linking aberrant use of alterna-
tive mRNA isoforms with cancer formation; several onco-
genes and tumor-suppressor genes (for example, LEF],
TP63, TP73, HNF4A, RASSFI1, and BCL2L1I) are already
known to have multiple promoters and alternative splice
forms [10-16]. Moreover, it is known that the aberrant use
of one isoform over another in some of these genes is
directly linked to cancer cell growth [17]. Although the
prevalence of alternative splicing in cancer genomes has
been discussed in the literature [18-20], and it has been
shown that use of splice forms provides better classifica-
tion of normal and cancerous prostate tissue, it is not
clear whether the use of genome-wide isoform level gene-
expression profiles can provide a better global discrimina-
tive signature for cancer and normal cells.

Microarray expression profiling remains a powerful tool
for identifying different subtypes of cancers. However,
almost all microarray-based studies reported to date have
measured the expression of the gene at gene level in a
given locus, although a few exceptions in recent years
have used exon arrays to measure differences at the exon
and/or at transcript variant level. The recent application of
exon arrays [21] and the advent of massive parallel
sequencing is allowing whole cancer genomes and tran-
scriptomes to be sequenced with extraordinary speed and
accuracy, providing insight into the bewildering complex-
ity of isoform level expression of gene transcripts [7]. The
Encyclopedia of DNA Elements (ENCODE) consortium, a
collective effort to facilitate and accelerate the annotation
of functional elements in the human genome, is generating
genome-wide expression data in various human cell lines
through the use of exon microarrays [20]. Among the
available data are gene-expression datasets, generated by
the ENCODE consortium using an Affymetrix platform
(GeneChip Human Exon 1.0 ST Array), across various cell
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lines that can be classified as either oncogenic (tumor/
cancer) or non-oncogenic (normal). The arrays interrogate
transcripts across their entire length, which can detect
splicing differences between various types of samples
[22-24]. Exons within a gene are represented on the
microarray by multiple probe sets. The exon expression
can thus be obtained by summarizing all the probe sets for
this exon on the microarray. Once the exon-level expres-
sions are obtained, the individual transcript expression of
the gene and the total expression of the gene itself then
can be inferred from the calculated exon expression, based
on assumptions that the isoform structures and number of
isoforms of the gene are known beforehand.

With genome-wide isoform level and gene level expres-
sion profiles in hand, it is natural to ask how the isoform
level expression profiles of different oncogenic and non-
oncogenic samples will cluster together, and whether iso-
form level expression profiles can lead to more accurate
discriminators between oncogenic and non-oncogenic
samples compared with gene level expression profiles. If
the answer is yes, it is important to know which genes and
pathways contribute to the improvement of discrimination
at isoform level compared with gene level.

In the present study we analyzed Affymetrix exon-array
data-sets collected from the public domain, primarily the
ENCODE project from the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus
(GEO) database, which comprises 160 datasets from var-
ious cell lines of either non-oncogenic or oncogenic tissue
origin. These data-sets were used to test the hypothesis
that isoform level expression analysis provides abetter dis-
criminator between non-oncogenic and oncogenic cell
types than gene level expression analysis.

Methods

Summary of exon-array datasets

Unprocessed gene-expression datasets, generated using a
whole-transcript GeneChip platform (Human Exon 1.0
ST Array; Affymetrix Inc., Santa Clara, CA, USA), were
downloaded from the GEO public data depository,
deposited mainly by the ENCODE project[18]. The GEO
records GSE15805 [25], GSE17778, GSE19090 [26] and
GSE17349 [27] contain, respectively, 79, 36, 83, and 8
samples of various cell lines. After excluding samples
that were related to blood, progeria fibroblast, and stem
cells, we had a total of 160 exon-array datasets, corre-
sponding to 87 non-oncogenic and 73 oncogenic cell
lines of various tissue origins. From the 160 datasets
included in the analysis, we used 8 melanoma samples
and 4 non-oncogenic melanocyte samples to form the
first matched non-oncogenic and oncogenic pair, and
used 4 datasets representing non-oncogenic human
mammary epithelial cells (HMEC) and 8 datasets from a
human breast adenocarcinoma cell line (MCF?7) to form
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the second matched non-oncogenic and oncogenic pair.
The complete classification and labeling information of
cell lines used in this study are summarized in the sup-
plementary information (see Additional file 1: Table S1).

Estimation of isoform level and gene level expression
values from exon-array data

The isoform level (transcript-level) and gene level expres-
sion estimates were obtained by the Multi-Mapping Baye-
sian Gene eXpression (MMBGX) algorithm for Affymetrix
whole-transcript arrays [28], based on the Ensembl data-
base (version 56) [29], which contains a total of 114,930
different transcript annotations that correspond to 35,612
different gene models. We set the burn-in iteration at
8,192 and real iteration at 16,384 for both gene and iso-
form levels. All other parameters were set to their default
values in the stand-alone algorithm. The algorithm gave a
stable estimation of both gene level and isoform level
expressions. For example, two independent runs on the
same sample provided almost identical expression levels
even with different seeds for the algorithm (correlation
coefficient > 0.999, data not shown), whereas runs on dif-
ferent samples gave comparable results, but with much
lower correlation (correlation coefficient of about 0.97).
Expression estimates across all the samples were then nor-
malized using the locally weighted scatterplot smoothing
(loess) algorithm [30,31], also incorporated in the package.

Clustering and pathway analyses

We used the general hierarchical cluster algorithm to clus-
ter the samples, using Euclidean distance as a measure-
ment for dissimilarities [32]. We also applied consensus
hierarchical clustering to assess the stability of the cluster-
ing results by multiple runs of the clustering algorithm on
resampled data [32,33], and calculated consensus index as
reported previously [33]. Briefly, the consensus index is
defined for each pair of samples, that is, the consensus
index of sample pair (i, j) records the number of times that
samples i and j are assigned to the same cluster, divided by
the total number of times both samples are selected. To
find the differential genes between two conditions, we
used the limma method [34,35]. An isoform or gene was
selected if both its fold change was greater than a cut-off
value of 2, and the false discovery rate (FDR)-adjusted P
value was smaller than a cut-off value of 0.01 for all com-
parisons between the two conditions. Ingenuity Pathway
Analysis (IPA) [36] was used to associate the identified
gene sets with biological functions, canonical pathways,
and networks. To identify pathway differences arising
from gene sets identified at either isoform or gene level,
we used the counting method on the P values of pathways
from the IPA analysis; the P values were used as an indica-
tor of association strength between the gene sets and path-
ways. For the three pairwise oncogenic/non-oncogenic
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comparisons (all oncogenic cell lines versus non-
oncogenic cell lines, melanocyte versus melanoma, HMEC
versus MCF7), a pathway was selected and reported if it
was significantly associated with the gene sets identified at
isoform-level in all three pairs of comparisons, but was
not significantly associated with the gene sets identified at
gene-level in all three pairs of comparisons, or vice versa.
The significance level was set at P < 0.05 for all compari-
sons. All calculations were performed using Bioconductor
(version 2.8 or above; Open Source software for bioinfor-
matics, http://www.bioconductor.org) and R platform
(version 2.10; The R Project for Statistical Computing,
http://www.r-project.org) [37].

Ethics approval

The study protocol was approved by the institutional
review board, and all data collection and analyses
adhered to the protocols approved by the institutional
review board. Informed consent was obtained from all
participants.

Clinical characteristics of study cohort

Women with primary operable breast cancer undergoing
breast surgery at the Hospital of the University of Penn-
sylvania were asked to participate in our tissue-banking
protocol. The study cohort included four women diag-
nosed with breast cancer between 2010 and 2011. Clini-
cal characteristics, including age at diagnosis, ethnicity,
histology, tumor size, tumor grade, and number of
involved (positive) axilla nodes are provided (see Addi-
tional file 2: Table S2A).

Sample collection

After completion of surgery, the breast cancer within
the surgical specimen was examined by surgical patholo-
gists. Upon completion of gross examination and inking
of the tumor specimen, fresh tumor tissue was taken
from the center of the tumor without interfering with
margin assessment as determined by the pathologists. A
small portion of the tumor tissue and a small portion of
normal adjacent breast tissue were collected, then
immediately immersed in liquid nitrogen and stored at
-80°C. RNA was isolated using this snap-frozen tumor
tissue.

RNA isolation and reverse transcriptase-quantitative PCR
experiment

Expression of transcripts/isoforms for seven genes in
HMEC, MCF7, MDA-MBA-231, and T47D cell lines and
expression of two TPM4 isoforms in primary breast-cancer
tissues were measured by reverse transcriptase -quantitati-
vePCR (RT-qPCR). Total RNA from cells and tissues were
using TRI reagent (Sigma-Aldrich Inc., St. Louis, MO,
USA) in accordance with the manufacturer’s instructions.
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For breast-cancer and normal breast tissues, up to 50 mg
of frozen tissue was transferred to 1 ml of TRI reagent,
then the tissue was immediately homogenized and RNA
extraction protocol was followed. Briefly, 0.5 pg of total
RNA was reverse-transcribed in a 20 pl reaction with
Superscriptll reverse transcriptase (Invitrogen Inc.) in
accordance with the manufacturer’s instructions. RT-qPCR
was performed using a master mix (Power SYBR Green;
Applied Biosystems Inc., Foster City, CA, USA) and fold
expression was calculated using the 22T method. RT-
qPCR results were normalized based on the expression
of GAPDH for TPM4 and TBP for the other transcripts.
The measured isoforms and the primers used for the iso-
form-specific PCR are presented (see Additional file 2:
Table S2B).

Results

Clustering of samples using isoform level expression
estimates provided more homogeneous grouping than
gene level expression estimates of oncogenic and
non-oncogenic cell lines gene level

Initial processing of the exon-array datasets generated
expression estimates for a total of 114,930 different
transcripts and 35,612 different genes in 160 different
datasets or samples. To test our hypothesis that the iso-
form level expression profiles are better than the gene
level expression profiles at discriminating non-oncogenic
and cancer cellsgene level, we performed unsupervised
clustering of 160 samples. Hierarchical clustering was
performed by selecting the transcripts/genes showing
the most variable expression, as determined by coeftfi-
cient of variation for the estimated isoform-/gene level
expression values across all samples. The dendrograms
showed more homogeneous clustering of samples for
isoform level expression analysis (Figure 1A) than for
gene level expression analysis (Figure 1B). Similar clus-
tering results were obtained by selecting different sets of
the isoforms/genes with the greatest variation (see Addi-
tional file 3: Figures S1 and S2).

We expected the clustering of samples to result in a
first-level grouping of different tissues, followed by a sec-
ond-level grouping of cancer and non-oncogenic cell lines
within each tissue type. Unexpectedly, however, we found
almost uniform grouping of cancer and non-oncogenic
cell lines into two large clusters, with an overall cluster
purity of 97.5% at isoform level (Figure 1A). Further, the
samples belonging to same cell/tissue type within each
cancer/non-oncogenic group were clustered together, con-
firming the discriminatory power of isoform level gene-
expression profiles. For example, the paired non-onco-
genic melanocyte and cancerous melanoma samples, and
the matched pairs of MCF7 (breast-cancer cell line) and
the HMEC samples (non-oncogenic origin) were separated
correctly into either non-oncogenic or cancer groups, with
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one exception from MCF7 samples (Figure 1A). Overall,
only four samples, two each from non-oncogenic and
cancer cell lines, were clustered into the wrong group.
The cancer cell lines that were clustered into the non-
oncogenic group were one MCF7/mammary gland adeno-
carcinoma (GEO accession number GSM472936) and one
pancreatic carcinoma cell line (GEO GSM472939), and
the non-oncogenic samples that were assigned to the
cancer group were one adult non-oncogenic human epi-
dermal keratinocyte (NHEK) sample (GEO GSM472937)
and one non-oncogenic umbilical vein endothelial cell
(HUVEC) sample (GEO GSM472935).

Although the clustering at gene-level showed some
power of discrimination between non-oncogenic and
cancer cell lines, the overall grouping was significantly
less efficient than the clustering at isoform-level. The
gene level cluster purity was 75%, with 20 samples from
the non-oncogenic and cancer cell lines clustered into
the wrong group (Figure 1B). The better separation of
non-oncogenic and cancer cell lines at isoform-level
(97.5% cluster purity) compared with gene -(75% cluster
purity) implies that gene-expression profiles in cancer
cells are more specifically altered at isoform-level for
numerous genes, which could not be detected using gene
level analysis.

We also appliedconsensus hierarchical clustering to
compare the stability of the isoform-based approach to the
gene-based approach [33,38]. The empirical cumulative
distribution function (CDF) plot of the consensus index
(Figure 2A) indicated that isoform-based clustering gives
more stable results than gene-based clustering. We further
plotted the silhouette width for isoform-based and gene-
based clustering (Figure 2B and 2C, respectively) [39]. The
larger silhouette width of one sample indicates higher
similarity to its own group than to any other group mem-
ber. The average silhouette width for isoform-based clus-
tering was 0.22, which was larger than the gene-based
width of 0.18, indicating that the clustering based on iso-
forms is more homogenous than that based on genes.

We next focused our analysis on two specific cancers,
breast cancer, and melanoma, for which we had matched
oncogenic and non-oncogenic cell lines, in addition to the
comparison of all oncogenic versus all non-oncogenic cell
lines.

Transcript variants of numerous genes were differentially
expressed between non-oncogenic and cancer cell lines

We evaluated differential gene expression, both at gene
and isoform level, between 1) all non-oncogenic and all
cancer cell lines (see Additional file 4, Table S3), 2) a
non-oncogenic breast cell-line (HMEC) and a breast-can-
cer cell-line (MCF7)cell lines (see Additional file 5: Table
S4), and 3) non-oncogenic melanocytes and melanoma
cell lines (see Additional file 6: Table S5) (Figure 3A-C).
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epithelial cells) and TMCF7 is the breast-cancer cell line MCF7.

Figure 1 Hierarchical clustering dendrograms of 160 datasets (73 oncogenic and 87 non-oncogenic) from cell lines of various tissue
origins, using expression estimates of (A) 87,345 transcripts and (B) 27,063 genes. The top 76% of genes/transcripts with the highest
coefficient of variation (CV) of expression profile across all the samples was used for the clustering (see Additional file 3: Figures ST and S2 for a
series of dendrograms obtained by different CV cut-off points). The non-oncogenic melanocyte (N.Mel) and melanoma (T.Mel) cell lines were
clustered together and separated into non-oncogenic and oncogenic groups in dendrogram A, whereas in dendrogram B, the N.HMEC samples
were not grouped together and were clustered with the overall oncogenic group. NHMEC is the normal breast cell line (human mammary

After performing the three comparisons independently,
we overlapped the identified gene sets to identify those
genes or gene isoforms that were consistently upregu-
lated or downregulated in cancer compared with non-
oncogenic cell lines (see Additional file 7, Table S6). We
denoted the genes that were found to be significantly dif-
ferent between non-oncogenic and cancer groups in all
the three comparisons as the core set of genes/gene iso-
forms (Figure 3D). Interestingly, we found numerous
genes that were significantly differentially expressed at
isoform level but not at gene level. A gene was declared
as differentially expressed at isoform level if at least one
of its isoforms showed significant differential expression
between non-oncogenic and cancer groups. For example,
29 and 13 genes were found to be significantly upregu-
lated and downregulated, respectively, at isoform level
but not at gene-level in all three pairwise comparisons
(Figure 3D). Overall, we found a total of 260 different
transcript variants or gene isoforms (Figure 3E) of 182
unique genes (Figure 3F) that had significant gene-
expression differences at either isoform or gene level.

In each pair of comparisons, of the total genes identified to
be significant at isoform level, at least 30% (range from
30% to 55%) were found to be significant only at isoform
level. In other words, more than one isoforms of these
genes displayed differential expression between non-
oncogenic and cancer samples, but the gene-level expres-
sion differences were cancelled out by the combined effect
of various isoforms of the same gene. These genes dis-
played alternate splicing between non-oncogenic and can-
cer cell lines. This observation strongly supports previous
reports such as that by David and Manley [18]. For exam-
ple, the MITF (micro-ophthalmia transcription factor)
gene uses at least nine different promoters and first exons
to generate a remarkably diverse set of mRNAs and pro-
tein isoforms that differ at the N-terminus. The gene plat-
form we used (Affymetrix GeneChip Human Exon 1.0 ST
Array) has probe sets corresponding to 16 different tran-
script variants of this gene, based on Ensembl gene anno-
tations. The alternative promoters of MITF reflect the
tissue specificity of its isoforms, which are selectively
expressed in melanocytes, macrophages, osteoclasts, heart
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muscle, or retinal pigmented epithelium. MITF, generally
believed to play a primary role in melanocyte stem-cell
proliferation and expression of a set of pigment-related
genes [40], has been shown to be amplified in a small per-
centage (10 to 20%) of melanomas, and seems to confer a
poor prognosis when overexpressed [41]. In the compara-
tive analysis between non-oncogenic melanocytes and
melanoma cell lines (Figure 3C), no differential expression
of MITF was found by the gene level analysis. However,
the MITF isoform ENST00000352241 was found to be sig-
nificantly overexpressed in melanoma compared with mel-
anocytes (FC = 3.4), whereas the transcript variants
ENST00000433517 (FC = -5.6) and ENST00000472437
(FC = -3.4) were underexpressed in melanoma (Figure 4A).
Similarly, the TPM4 gene was seen to have weak differen-
tial expression in MCF7 compared with HMEC cell lines
samples. However, although one of the TPM4 isoforms
(ENST0000030933) was found to be strongly overex-
pressed (FC = 5.47), another isoform (ENST00000344824)
was found to be significantly underexpressed in MCF7
samples (FC = -7.75) (Figure 4B). These two isoforms thus

cancelled each other out, resulting in the overall gene
expression not being significantly different between the
non-oncogenic and oncogenic cell lines. TPM4 has been
reported to be differentially expressed in breast cancer [42].
Our analysis suggests that whereas gene level expression
estimates of TPM4 and MITF contribute little to the discri-
mination of cancer cell lines from non-oncogenic cells,
expression estimates specific to one or more isoforms of
these genes have a better discriminating power. Interest-
ingly, we found a total of 294 isoforms, corresponding to
110 genes in melanoma (see Additional file 6: Table S5),
and 75 transcript isoforms, corresponding to 16 genes in
breast cancer (see Additional file 5: Table S4), that showed
opposing expression patterns at isoform level.

Experimental validation of differentially expressed
transcript variants in breastcancer cell lines and samples
To validate the existence of the opposing expression
patterns of isoforms for various genes, we measured iso-
form expression by RT-qPCR for two opposing isoforms
of seven genes in three breastcancer cell lines relative to
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MCF7 is an ER+ breast-cancer cell line.

the non-oncogenic HMEC cell line (Tables 1). The
expression pattern of isoforms obtained from exon-array
and RT-qPCR experiments were similar for all seven
genes in MCF7 cell lines. However, in the case of
MDA-MB-231 and T47D cell lines isoforms of four and
two of the seven genes, respectively had an expression
pattern similar to that seen in the exon-array data for
MCF7. To further validate opposing transcript expres-
sion in patient samples between non-oncogenic and can-
cer tissues, we selected the TPM4 gene in breast cancer as
an example. The opposing expression patterns of the
TPM4 isoforms were confirmed in the estrogen receptor-
positive and triple-negative breast cancer sample.
Although the Her2+ sample did not show the opposing
pattern of expression, one isoform had the significantly
highest fold change of all the samples (Figure 4C). In all
samples, the simple Student ¢-test results between the
averaged fold expressions of the two isoforms were all sig-
nificant (P < 0.001). These results strongly support our

hypothesis that isoforms of multi-transcript genes can
have opposing roles in cancer.

Supervised analysis identified an isoform set able to
separate the tumor lines from normal lines in an almost
perfect pattern

We performed IPA (version 6.0; Ingenuity”™ Systems, Red-
wood City, CA, USA) [36] to find significant molecular
functional categories enriched in the differentially
expressed gene sets, and transformed the target genes into
a set of relevant networks by using literature-based records
that are maintained in the IPA Base. We first performed
this analysis using the core gene set of 182 genes that were
consistently up-regulated or downregulated in cancer cell
lines (Figure 3F). The analyses found 10 molecular and
cellular functions that were significantly enriched in the
core gene set (see Additional file 8: Table S7). Interest-
ingly, the top five molecular and cellular functions identi-
fied by IPA were ‘Role of BRCA1l in DNA damage
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Table 1 Isoform expression in breast-cancer cell lines as measured by reverse transcriptase -quantitative PCR (RT-

qPCR).
RT-qPCR
Gene Transcript ID Exon array MCF7 MDA-MB-231 T47D
TPM4 ENST00000344824 =775 -500 -5.55 -1
ENST00000300933 547 2.14 1.01 -2.08
WDR45 ENST00000460501 2.86 522 217 124
ENST00000486337 -248 =222 -1.61 112
GART ENST00000381831 238 1.66 -142 278
ENST00000381815 -3.83 217 -1.13 1.09
FLIl ENST00000474265 -348 232 -1.58 158
ENST00000461110 227 1.27 1.85 314
CHNT ENST00000490654 247 109 193 12
ENST00000444573 -427 -16.66 10.23 -55.55
OXR1 ENST00000312046 372 19.7 335 136
ENST00000445937 -36 -100 337 -26.31
SRGAP3 ENST00000489616 211 361 2.88 12.93
ENST00000475560 -4.39 -125 -500 1.04

The fold expression of the indicated transcripts in the three cell lines was calculated relative to HMEC (N) cells.

response’, ‘Mitotic roles of Polo-like kinase’, ‘Hereditary
breast cancer signaling’, ‘Role of CHK proteins in cell
cycle checkpoint control’, and ‘Cell cycle: G2/M DNA
damage checkpoint regulation’, which are frequently
deregulated in cancer initiation and progression. There-
fore, we considered that the core genes involved in these
pathways might also be useful to effectively separate can-
cer from non-oncogenic samples. To test this hypothesis,
we repeated the clustering analysis, using the core genes
and their isoforms that belonged to the five most signifi-
cant pathways (Figure 5). The clustering analysis per-
formed by filtering out the isoforms for which there was
relatively little variation in expression estimates across all
the samples produced an almost identical result (18 iso-
forms, corresponding to 14 unique genes, Figure 5A) to
that obtained by using all the gene isoforms (Figure 1A).
However, at gene level, the clustering based on these 14
genes produced a comparable result, but with relatively
lower cluster purity (92.5%, or 12 of 160 cell lines were
grouped in the wrong cluster) than at isoform level (97.5%
or 4 of 160 were grouped in the wrong cluster) (Figure 5B).
These 14 genes are WNTS5B, CCND2, SERPINB7,
GPR176, INHBA, EFNBI, PTRF, CDHI11, ZBTBI6,
GJA1l, COL5A2, NID1, PRDM1, and TCF4. Except for
CCND2 and GPR176, all other genes in our database
have more than one isoform. Four genes (SERPINB?,
INHBA, GJA1, and NIDI1) have two isoforms that have
significantly different expression between the cancer and
non-oncogenic groups. Interestingly, 12 of these 14
genes belong to the same gene network, involved in
hematological system development and function, tissue
morphology, and cellular development. According to the

Ingenuity Pathway Knowledge Base, the network con-
sists of a total of 27 different genes, which suggests that
almost 50% of the genes belonging to this network are
dysregulated either at the gene or isoform level between
non-oncogenic and cancer cells (Figure 5C). Moreover,
most of these genes have already been implicated both in
tumorigenesis and in several developmental processes
[43-48]. For example, it was shown that the phosphoryla-
tion-dependent interaction between c-Jun and TCF4 regu-
lates intestinal tumorigenesis by integrating c-Jun kinase
(JNK) and adenomatous polyposis coli (APC)/B-catenin,
two distinct pathways activated by Wnt signaling [49].
Multiple alternatively spliced transcript variants that may
encode different protein isoforms of these genes (for
example, TCF4, WNT5B) have been described. Therefore,
it would be interesting to evaluate the components of this
gene network in different cancers at isoform level.

Gene level and isoform level analyses identified
interesting pathways associated with cancer

To test whether the genes that are differentially
expressed at isoform level but not at gene level could
reveal interesting pathways associated with cancer, we
focused the pathway-enrichment analysis on two differ-
ent gene sets: 1) genes that are significant at isoform
level only and 2) genes that are significant at gene level
only Figure 3A-C; genes without overlaps in the middle).
We performed this analysis separately for each of the
three comparisons (all cancer versus all non-oncogenic;
HMEC versus MCF7; and melanocytes versus melanoma
cell- lines) between the non-oncogenic and cancer pairs.
This analysis led to the identification of three canonical
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network of the 14 core genes, of which 12 belong to the canonical pathway with associated known functions in hematological system
development and function, tissue morphology, and cellular development (in red).
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pathways (protein ubiquitination, purine metabolism,
and breast-cancer regulation by stathminl) that were
significantly enriched in isoform level gene sets, but not
in gene level gene sets (Figure 6).

Discussion

Human cancer is a complex disease. It is known that most
of the genes in mammalian genomes generate different
transcript variants and protein isoforms, which often func-
tion in a cell/tissue type-specific and developmental stage-
specific manner in non-oncogenic cells. Cancer results
from the sequential acquisition of a number of genetic and
epigenetic alterations, and these mutations may alter the
expression of specific isoforms but not the others of a
gene. Despite this growing knowledge, most biomarker
and drug-discovery studies still evaluate expression differ-
ences and study gene regulatory mechanisms at gene level
rather than at isoform level. In this study, we have shown
that oncogenic cell lines could be more accurately discri-
minated from non-oncogenic cell lines, regardless of their
cells of origin, by gene-expression profiling at isoform
level compared with gene level. In spite of the differences

in tissues of origin, the cell lines were broadly clustered
into two groups, non-oncogenic and oncogenic, by iso-
form level gene-expression profiles. We noted that numer-
ous genes showed differential expression at isoform level
but not at gene level. For some of these genes, the differ-
ential expression of alternative transcripts occurred in the
opposite direction; while some of the isoforms of the same
gene were upregulated, others were downregulated, result-
ing in them cancelling each other out and producing insig-
nificant expression differences at gene level between
cancer and non-oncogenic groups. Our findings are in
agreement with a previous study on prostate cancer that
investigated the expression of 1532 splice forms for 364
prostate cancer-related genes, using data from a custo-
mized exon junction array [20]. The authors found that
many genes were differentially expressed at splice-form
level but not at gene level and this increase in the number
of differentially expressed variables at splice-form level
contributed to a 92% accuracy for a 128 splice-form-based
classifier for normal and cancerous prostate tissue,
whereas the accuracy was 87% using a classifier based on
32 genes. That study profiled 1532 mRNA splice forms
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from 364 potential prostate cancer-related genes, whereas
in the current study, we used genome-wide exon-array
data that identified the expression of 114,930 transcripts/
isoforms corresponding to 35,612 different genes, includ-
ing all known non-coding genes in the Ensembl database.
In addition, our study focused on discriminating onco-
genic and non-oncogenic cells in general, irrespective of
their tissue of origin. Using genome-wide isoform level
versus gene-level expression information, we found that
oncogenic and non-oncogenic cells could be segregated
using isoform level information with 97.5% accuracy ver-
sus 75% accuracy for gene level information, and even a
smaller signature of 18 isoforms was effective in separating
the two groups, with equal accuracy. These subtle differ-
ences at isoform level in discriminating non-oncogenic
and oncogenic cell lines reflect the fact that gene level
expression measurements, whose estimates are generally
the summation of all the isoform level expression esti-
mates of individual genes, are less accurate in characteriz-
ing cancer and non-oncogenic cells.

The pathway-enrichment analysis of genes that are
differentially expressed in cancer cell lines at isoform
level but not at gene level produced three interesting
pathways that have been implicated in various cancers.
It is well known that protein phosphorylation and pro-
tein ubiquitination regulate most aspects of cell life, and
defects in these control mechanisms cause cancer and
many other diseases [50]. Similarly, abnormalities in
purine metabolism and over-expression of Stathmin 1
(STMN1) are characteristic features of many human
tumors [51,52]. The key genes of these pathways (for
example, STMNI, PNP, RPS27A and UBAS2) transcribe

different transcript variants, some of which encode dif-
ferent protein isoforms. It is therefore necessary to eval-
uate the gene-expression differences and to study gene
regulatory mechanisms at isoform level rather than at
gene level between non-oncogenic and disease condi-
tions, such as cancer. Recent advances in cancer geno-
mics have shown that gene-expression signatures are
useful for biomarker identification and drug discovery
[53]. In this regard, the present study highlights the
importance of studying gene-expression signatures at
isoform level rather than at gene level, and makes a
strong case for isoform level gene/protein-expression
profiling methods for improved cancer biomarker and
therapeutic discovery.

Conclusions

In conclusion, we have identified a common, isoform
level signature that can be used to discriminate effec-
tively between cancer and non-cancer cell lines. We
found numerous genes for which the differential expres-
sion of alternative transcripts occurred in opposing
directions, with some of the isoforms of the same gene
being upregulated while others were downregulated,
resulting in insignificant expression differences at gene
level between cancer and non-oncogenic groups. This is
supported by our experimental validation of opposing
expression patterns for TPM4 gene isoforms in non-
oncogenic and oncogenic tissue samples from breast
cancer patients. The present study highlights the impor-
tance of studying gene-expression signatures at isoform
level rather than at gene level in characterizing the can-
cer transcriptome.
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