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Abstract

Following the publication of the complete human genomic sequence, the post-genomic era is
driven by the need to extract useful information from genomic data. Genomics, transcriptomics,
proteomics, metabolomics, epidemiological data and microbial data provide different angles to
our understanding of gene-environment interactions and the determinants of disease and health.
Our goal and our challenge are to integrate these very different types of data and perspectives of
disease into a global model suitable for dissecting the mechanisms of disease and for predicting
novel therapeutic strategies. This review aims to highlight the need for and problems with
complex data integration, and proposes a framework for data integration. While there are many
obstacles to overcome, biological models based upon multiple datasets will probably become the

basis that drives future biomedical research.

Genetic analysis in the post-genomic era

In 1990, the human genome project was established to
sequence the human genome [1], with the aim of applying
the acquired genomic data to improve disease diagnosis and
determine genetic susceptibility [2]. The publication of the
first draft sequence of the human genome in 2001 [3] was
thus followed by a rapid growth of different approaches to
extract useful information from the genomic sequence.
These approaches included, but were not limited to, the
analysis of genetic variation (genomics), gene expression
(transcriptomics), and gene products (proteomics) and their
metabolic effects (metabolomics).

Each of these post-genomic approaches has already
contributed to our understanding of specific aspects of the
disease process and the development of diagnostic/
prognostic clinical applications. Cardiovascular disease
[4,5], obesity [6-8], diabetes [9-11], autoimmune disease

[12,13] and neurodegenerative disorders [14,15] are some of
the disease areas that have benefited from these types of
data. Taking the metabolic syndrome as an example, our
knowledge on all aspects of the disease has grown. The
metabolic syndrome is the result of a complex bioenergetic
problem characterized by disturbances in lipid, carbo-
hydrate and energy metabolism and blood pressure. In
combination, these metabolic factors contribute to an
increased susceptibility to cardiovascular disease, morbidity
and mortality [16]. Genome-wide association (GWA) studies
have identified possible genes involved in each aspect of the
syndrome: namely type 2 diabetes [11], obesity [17] and
hyperlipidaemia [18]. The findings have confirmed the role
of certain candidate genes as well as the polygenetic nature
of the syndrome. Not surprisingly, replicate GWA studies of
type 2 diabetes revealed that the genes associated with
disease, among others, are involved in beta-cell function and
adipocyte biology [11,17,19]. In contrast, genes found to be
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associated with obesity appear to be those that are pre-
dominantly involved in central appetite regulation [20-22]
as key contributors to positive energy balance.

Genetic association studies in epidemiology have highlighted
a number of issues. Firstly, many common disease states are
related to either many genetic polymorphisms of small effect
or, in selected cases, to a few of large effect. The involvement
of multiple genes with unequal contributions to disease hints
of complex gene-gene and gene-environment interactions.
The understanding of such interactions becomes a daunting
task when other modulating factors remain unknown.
Secondly, some common diseases such as type 2 diabetes
[12] appear to be relatively less genetically determined
compared to diseases such as rheumatoid arthritis [12] and
obesity [23]. In these situations, our understanding of
pathophysiology requires additional data outside of genomic
information. Thirdly, the initial failures to find robust
replicable associations between most of the identified
genetic variants and common complex diseases suggest that
genomic analysis alone will not account for all of the
heritability and phenotypic variation [9,24]. For this reason,
there is a growing need to incorporate information derived
from environmental studies and post-genomic data into
genetic analysis.

Advantages of combining multiple types of data

It is clear that the genetic approach captures only one layer
of the complexity inherent within human biology. There is
thus a need to integrate multiple ‘omics’ datasets when
aiming to unravel the molecular networks underlying
common human disease traits [25]. Attempts have been
made to combine two datasets in relation to the clinical
phenotype, and this is reflected in the combination of terms
found in the literature, for example metagenomics,
pharmacogenomics and epigenetics. Many of the post-
genomic approaches linking the genetic association data
with other ‘omics’ layers focus on the use of ‘omics’-derived
phenotypic data as quantitative traits. The utility of such
approaches has been previously applied, by combining
genetics and metabolomics, in plant functional genomics
[26]. More recently, such approaches have also been applied
to human datasets. For example, Papassotiropoulos and
colleagues [15] identified clusters of cholesterol-associated
susceptibility genes for Alzheimer’s disease by combining
genetics with sterol profiling, while Gieger and colleagues
[27] used ratios of metabolites to identify the function of
putative genes. In another study, proteomics was linked to
quantitative trait loci (QTL) in an attempt to identify
changes in function rather than quantity of the protein [28].

By combining multiple types of techniques, including
genetics, transcriptomics, proteomics and metabolomics, we
are expecting a shift toward ‘environmentome’ research,
where all available information from periconception to

Genome Medicine 2009, Volume 1, Issue 3, Article 35

disease onset, using both longitudinal and cross-sectional
experimental designs, can be obtained [9]. The measure-
ment of traits that are modulated but not encoded by the
DNA sequence, commonly referred to as intermediate
phenotypes, is of particular interest. These intermediate
phenotypes include not only biochemical (metabolites) and
genomic (gene expression) traits, but also an individual’s
microbial (gut microflora) [29,30] and social traits. It is
conceivable that by comprehensively examining an
individual’s ‘environmentome’, we would be able not only to
understand both the genetic and environmental determi-
nants of disease, but also to develop ‘feasible’ personalized
medicine, that is, tailor specific personalized interventions to
the individual’s own environmental profile. As a pioneering
example of this kind, Ores$ik and colleagues [10] investigated
metabolic profiles of children between birth and type 1
diabetes onset in a large birth cohort, and established that
specific metabolic phenotypes, not dependent on human
leukocyte antigen (HLA)-associated genetic risk, precede the
first autoimmune response. The excitement of this research
is the expectation that these early metabolic phenotypes may
be validated as specific diagnostic and prognostic markers of
disease, with therapeutic implications.

Establishing disease causality as a framework for data
integration

The goal of inferring disease causality and disease
mechanisms from integrated data is complicated by the fact
that measuring more variables may provide a better
characterization of the process but still does not contribute
directly to our understanding of cause and effect. In fact,
given the progressively increasing number of variables that
we can measure, the odds of finding spurious associations
that do not reflect true causality are much higher. Con-
founding and reverse causality are among the main sources
of bias for failures to replicate apparently robust associations
between risk factors and diseases [31]. Confounding
specifically refers to a spurious causal effect inferred from
the association between a risk factor and a disease due to the
existence of some common causes, that is, confounding
factors to both of them. This type of spurious causal effect
can be removed if we have enough knowledge about the
most likely confounding factor candidates. However, the
truth is that for most epidemiological studies confounding
factors are unknown and difficult to measure, especially in
case-control studies. Reverse causality, the second source of
bias, refers to an alternative explanation for the observed
association between a risk factor and disease, which states
that the ‘risk factor’ is a result of the disease, rather than vice
versa. The problem of reverse causality is particularly
prevalent in retrospective case-control studies.

One example of a potential confounding association is the
established epidemiological evidence of a strong link
between obesity and insulin resistance. This association has
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A causal model based upon Mendelian randomization. The model
demonstrates the core assumptions for making a valid causal inference
between a phenotype and disease. The three assumptions are:

(1) genotype is independent of the confounder; (2) genotype is associated
with phenotype; (3) genotype is independent of disease conditioning on
phenotype and confounder. If these assumptions are valid, then an
observed association between genotype and disease would imply the
causality from phenotype to disease.

recently been brought into question from the identification
of specific clinical settings where fat mass dissociates from
insulin resistance [32,33]. This implies that adipose tissue
expansion typically associated with obesity per se may not be
the cause of metabolic complications. A potential alternative
explanation may be related to an individual’s ability to
optimally store fat. In the presence of caloric excess, a
person is likely to remain metabolically healthy despite
obesity, provided their adipose tissue can continue to
expand and safely store fat [34]. Therefore, while the
epidemiological evidence associates the risk of metabolic
complication with increased body weight, this relationship
may not be direct and may not necessarily reflect a truly
biologically relevant process.

A randomized control trial (RCT) is the golden standard for
excluding the spurious association that arises from
confounding and reverse causality. A RCT involves random
allocation of risk factors to subjects, such that distribution of
known and unknown confounders in the different groups is
roughly equal, that is, the risk factors become disassociated
from any confounders due to the randomization. Further-
more, since the initial randomization is done preceding the
disease response, this renders reverse causality highly
unlikely. However, the use of RCTs to determine causality is
often not possible due to enormous ethical, financial or
technical difficulties.

An alternative to RCTs could be Mendelian randomization,
which has been proposed as a practical strategy to overcome
the problem of experimental bias while significantly
reducing the difficulties inherent to RCTs [35,36]. The
experimental design of Mendelian randomization aims at
providing a potential way to discern true causality from
spurious associations, provided that several basic assump-
tions are valid (Figure 1). The idea of Mendelian randomi-
zation originated from Katan’s letter to The Lancet [37],
where the main objective was testing the hypothesis that low
serum cholesterol increases the risk of cancer versus the
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alternative one that the cancer induces a lowering of
cholesterol, that is, a hypothesis testing against reverse
causality. Using a language of graphical models [38],
Mendelian randomization could be formulated in a triangu-
lation representation as shown in Figure 1. The essence of
Mendelian randomization is the use of a genetic variant as a
proxy for the random assignment of a risk factor to subjects,
given that the inheritance of the genetic variant in a
population is also random according to Mendel’s second law.
Mendelian randomization may provide a rational approxi-
mation to RCTs that can be used to identify real causal
factors contributing to diseases.

Data integration based upon Mendelian randomization
We envisage that the potential of combining different post-
genome approaches for discovering disease causality and
mechanisms could be integrated within the framework of
Mendelian randomization. In order to apply this idea to
distinguish between association and causation, we need to
first justify the three core assumptions that underlie the
applicability of Mendelian randomization (Figure 1). Two of
the three assumptions (1 and 3) depend on unobserved con-
founding factors and, therefore, cannot be formally tested
from observable data. Therefore, the three associations that
are needed in the Mendelian randomization model, that is,
the genotype-phenotype association, the phenotype-disease
association, and the genotype-disease association, require a
certain degree of initial characterization. Clearly, these
initial models will need to be continually refined as new data
challenge the validity of the assumptions. The downstream
impact of these assumptions is not trivial, as a failure to
detect robust associations could invalidate the power of
Mendelian randomization. While this may imply that
Mendelian randomization requires our complete under-
standing of the biological system, in practice some apparent
violations may not actually negate its biological implications
[36,39]. Applied carefully, Mendelian randomization can
become a useful framework for data integration.

In determining truly positive associations in the presence of
a large number of variables and relatively few samples, one
needs to resort to novel statistical techniques that can
handle such complexity. Bayesian statistical methods can be
seen as an alternative to conventional hypothesis testing and
appear better able to deal with large post-genomics datasets.
In contrast to conventional P-value-centered statistics, a
Bayesian approach provides a measure of the probability of a
hypothesis being true by taking all evidence in an explicit
way. This is clearly a desirable feature as it allows different
forms of data to be combined into a unified hypothetical
model. Competing models are then entered into a selection
framework such that the hypotheses that are most supported
by data are favored. For example, using the language of a
causal Bayesian network [40,41], Mendelian randomization
can be explicitly represented in the graphical model as
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shown in Figure 1; in which the directions of the arrows (or
edges) between the nodes indicate non-reversible causal
relationships and reflect the three core assumptions made.
The plausibility of the graphical model can then be tested
through Bayesian rules, with the evidence provided by all
available ‘omics’ data from different studies. A pioneering
example of using a Bayesian network to infer disease
causality can be found in reference [42], where three
possible model networks that characterize the relationships
between QTLs, RNA levels and disease traits were
evaluated. However, it should be noted that most of the
current applications of Bayesian networks consider
phenotypes and disease traits as discrete rather then
continuous variables; this is due to the computational
difficulties of model selection from an extremely large
model space.

Major methodological challenges with complex data
integration

While the use of heterogeneous high-dimensional post-
genomic data carries many potential benefits, several
challenges exist in the areas of biological interpretation,
computing and informatics, which will need to be
addressed to take full advantage of the wealth of post-
genomic data. See Box 1 for the key issues.

Conclusions

Over the last few years, biomolecular research has
progressed from the completion of the human genome
project to functional genomics and the application of this
knowledge to advance our understanding of health and
disease. It is clear that genomic information alone,
although crucial, is not sufficient to completely explain
disease states, which involve the interaction between
genome and environment. Post-genomic approaches
attempt to contribute to our understanding of this
interaction, with each approach capturing a different angle
of the global picture. Intuitively, the next step forward is to
integrate these datasets, an approach that, if successful,
could be much more informative and predictive than
working exclusively on a single platform.

Associating and correlating variables between datasets as a
means of integrating the large datasets is wrought with
issues such as extracting biological meaning (biology is not
always linear and is often context dependent) and deter-
mining causality and spurious associations.We propose
that data integration should be built upon a model, such as
a Bayesian model, that takes into account the non-linearity
and context-dependent nature of human biology. We
further propose that a putative biological relationship
between individual data points, identified through
association studies, can be efficiently tested (and validated)
using strategies, such as Mendelian randomization, that
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Box 1.

- No model is perfect, and inevitably assumptions have
to be made. It is likely that initial models built around
Mendelian randomization will not accurately model f
or epistasis, pleiotropy, copy number variants, gene-
gene interactions or protein-protein interactions.

- Computational power is becoming a bottleneck when
building complex models from heterogeneous high-
dimensional data. For example, the inclusion of a
single nucleotide polymorphism (SNP) into a model
will require large computational power to correct for
linkage disequilibrium. Similarly, the more genetic,
mRNA, protein or metabolite data are included, the
more permutations are present to be built into and
cross-validate the models.

- It would be difficult for a single center to generate the
complete spectrum of data required for such complex
integration. Data from different experimental
paradigms and from different populations are
required for cross-validation and optimal model
selection. As such, datasets generated from different
centers need to be standardized in terms of
nomenclature and structure. Efforts along these lines
can be seen, for example, in transcriptomics [43],
proteomics [44] and metabolomics [45].

> A new breed of scientist with a working knowledge of
different post-genomic approaches, disease patho-
physiology and mathematical modeling will be needed
during the initial attempts at data integration. For
example, experimental design and subject selections
(such as appropriate controls) will need to be tailored
to utilize the strengths of each profiling platform and
optimize the final dataset for modeling. This needs to
be followed by appropriate model interpretation that
takes into account all the assumptions and limitations
of the experimental and modeling processes. It is
likely that such ‘integrative’ researchers will identify
new insights and unexpected limitations during data
integration, thus providing an additional element of
‘quality control’ over the final model.

approximate the design strengths of a RCT. While there are
clearly obstacles that need to be overcome, biological
models based upon multiple datasets are likely to become
the basis that drives future research.

Abbreviations

GWA, genome-wide association; HLA, human leukocyte
antigen; QTL, quantitative trait loci; RCT, randomized
controlled trial; SNP, single nucleotide polymorphism.
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