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Epigenetic variability in cells of normal cytology
is associated with the risk of future
morphological transformation
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Abstract

Background: Recently, it has been proposed that epigenetic variation may contribute to the risk of complex
genetic diseases like cancer. We aimed to demonstrate that epigenetic changes in normal cells, collected years in
advance of the first signs of morphological transformation, can predict the risk of such transformation.

Methods: We analyzed DNA methylation (DNAm) profiles of over 27,000 CpGs in cytologically normal cells of the
uterine cervix from 152 women in a prospective nested case-control study. We used statistics based on differential
variability to identify CpGs associated with the risk of transformation and a novel statistical algorithm called EVORA
(Epigenetic Variable Outliers for Risk prediction Analysis) to make predictions.

Results: We observed many CpGs that were differentially variable between women who developed a non-invasive
cervical neoplasia within 3 years of sample collection and those that remained disease-free. These CpGs exhibited
heterogeneous outlier methylation profiles and overlapped strongly with CpGs undergoing age-associated DNA
methylation changes in normal tissue. Using EVORA, we demonstrate that the risk of cervical neoplasia can be
predicted in blind test sets (AUC = 0.66 (0.58 to 0.75)), and that assessment of DNAm variability allows more
reliable identification of risk-associated CpGs than statistics based on differences in mean methylation levels. In
independent data, EVORA showed high sensitivity and specificity to detect pre-invasive neoplasia and cervical
cancer (AUC = 0.93 (0.86 to 1) and AUC = 1, respectively).

Conclusions: We demonstrate that the risk of neoplastic transformation can be predicted from DNA methylation
profiles in the morphologically normal cell of origin of an epithelial cancer. Having profiled only 0.1% of CpGs in
the human genome, studies of wider coverage are likely to yield improved predictive and diagnostic models with
the accuracy needed for clinical application.

Trial registration: The ARTISTIC trial is registered with the International Standard Randomised Controlled Trial
Number ISRCTN25417821.

Background
It has been proposed that epigenetic variation may con-
tribute to the risk of complex genetic diseases like can-
cer and that differential exposure to environmental risk
factors may underlie much of this variation [1,2].

Consistent with this view, a recent study has shown that
regions that are differentially methylated between nor-
mal and cancer tissue appear to be highly variable in
cancer itself, and that identification of cancer-relevant
markers may therefore benefit from statistics that mea-
sure differential variability [3]. Based on these insights,
we here aimed to demonstrate that analysis of epigenetic
variability in prospectively collected normal cells can
predict the risk of future morphological transformation.
In order to demonstrate this in humans, two require-

ments are mandatory: the cells that are used for
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epigenetic analyses need to be (i) the cells of origin for
the studied cancer, and (ii) they need to be collected
years in advance of the onset of cytological and mor-
phological signs of cancer. Currently, the only human
organ that meets these two requirements is the uterine
cervix. Thus, we used Illumina Infinium technology [4]
to measure DNA methylation (DNAm) at 27,578 CpG
sites in cytologically entire normal cells (liquid-based
cytology (LBC) samples) from the uterine cervix of 152
women (aged 19 to 55 years) in a nested prospective
case-control study within ARTISTIC (A Randomised
Trial of HPV Testing in Primary Cervical Screening
[5,6]). Prospective cases were women who developed a
cervical intraepithelial neoplasia of grade 2 or higher
(CIN2+) within 3 years of sample draw, while controls
were women who remained disease-free. To further sup-
port our data we used completely independent LBC
samples with abnormal cytology and associated controls,
as well as cervical cancer tissue and normal cervix
specimens.

Methods
Study population
The ARTISTIC trial
The LBC samples we analyzed were collected from
women as part of the ARTISTIC trial [5,6]. All women
underwent two screening rounds with an interval of 3
years. Within the ARTISTIC trial, women, aged 19 to
64 years who were undergoing routine screening as part
of the English National Health Service Cervical Screen-
ing Programme in Greater Manchester were randomly
assigned in a ratio of 3:1 to either combined LBC and
human papilloma virus (HPV) testing where the results
were revealed and acted on, or to combined LBC and
HPV testing where the HPV result was concealed from
the patient and investigator. There were a total of
24,510 eligible women at entry. In the first round of
screening 453 women had CIN2+. In the second round
of screening 75 women (who were screen-negative in
the first round and who had a sample stored from the
first round) had developed CIN2+ (44 were HPV-posi-
tive and 31 were HPV-negative in the first round).
Seventy-seven women who had not developed any cyto-
logical changes were matched (age and HPV status in
round 1) to the cases. The cytologically normal samples
from round 1 from these 152 women were used for
DNAm analysis. Further details, cytology and HPV scor-
ing are described in Additional file 1. This trial is regis-
tered with the International Standard Randomised
Controlled Trial Number ISRCTN25417821.
DNA methylation nested case control study
A total of 152 samples in a prospective nested case con-
trol study within ARTISTIC were selected for DNAm
analysis. Cases were 75 women who had normal

cytology in screening round 1 but demonstrated CIN2+
after 3 years in round 2. Controls were 77 women who
had normal cytology at entry and in the second screen-
ing round. Cases and controls were matched for age
(Wilcox rank sum test P = 0.95) and HPV status: 92
were HPV-positive (44 cases and 48 controls) and 60
were HPV-negative (31 cases and 29 controls) at entry
(Fisher test P = 0.74). Informed consent was obtained
from the main study population and this study has been
approved by the ethical committee (National Research
Ethics Service Reference Number 10/H1107/15).
Other DNA methylation data sets
In addition to the nested case control prospective study
within ARTISTIC, we used two additional DNAm data
sets that were also generated using the same Illumina
Infinium 27 k platform. Set 1 comprised a total of 30
LBC samples (19 HPV-negatives and 11 HPV-positives)
with normal cytology and 18 LBC samples (all HPV-
positive) with CIN2+, as described in [7]. Set 2 com-
prised a total of 63 cervical tissue samples: 48 cervical
cancers, 15 normals. The normal cervical tissue samples
were from women (mean age 55.4 years) who under-
went a hysterectomy for fibroids of the uterine corpus,
that is, these women did not have fibroids in the uterine
cervix. The 48 cervical cancer specimens were from
women (matched for age with mean age 56.8 years) who
were treated at the Innsbruck Medical University. Of
these 48 cancers, 26 were of stage 1, 10 of stage 2, 4 of
stage 3 and 7 of stage 4 (1 sample had missing stage
information). In terms of grade, 7 were of grade 1, 28 of
grade 2 and 11 of grade 3 (2 samples had no grading).
All specimens were obtained with informed consent and
approval from the ethics committee UN4044-290/4.9.
DNA extraction and methylation assay
The DNA extraction protocol is described in Additional
file 1. Genome-wide methylation analysis using the Illu-
mina Infinium Methylation27K beadchip (Illumina Inc.,
USA, WG-311-1201) was performed. This chip interro-
gates the methylation status of over 27,000 CpG sites
throughout the human genome, covering the promoters
of over 14,000 genes [4]. Further details are in Addi-
tional file 1.
Data availability
All data in this manuscript have been deposited in the
Gene Expression Omnibus repository [8] under acces-
sion number [GSE30760].
mRNA expression data of normal cervical and cervical
cancer tissue
We used the publicly available normalized expression
data (all Affymetrix) from the Gene Expression Omni-
bus with accession numbers [GSE9750] [9], [GSE7803]
[10], and [GSE6791] [11]. For each downloaded data set
we only selected the normal squamous cervix epithelial
and squamous cervical cell carcinoma samples: for
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[GSE9750] there were 24 normal and 33 cancers, for
[GSE7803] there were 10 normals and 21 cancers, and
for [GSE6791] there were 8 normals and 20 cancers.
Probes mapping to the same Entrez ID were averaged,
resulting in 13,213 genes [GSE9750], 13,262 genes
[GSE7803] and 20,827 genes [GSE6791].
mRNA expression data analysis
From the above three expression data sets we built an
integrated (merged) expression set over 42 normal cer-
vical epithelial samples and 74 cervical cancers using a
procedure that we have validated many times pre-
viously [12-14]. Briefly, there were 13,213 genes in
common between all three expression arrays. For each
of these genes and for each expression set we then
renormalized the gene expression profile to mean zero
and unit variance, yielding ‘z-profiles’. For each gene,
its z-profile in each of the three studies was then
merged. This resulted in a merged expression set over
13,213 genes and 116 samples (42 normal and 74 can-
cers). For each gene, we then computed a t-statistic P-
value against normal/cancer status. Of the 140 risk
genes, 86 were found in the merged expression set. Of
these 86, 46 exhibited differential expression P-values
< 0.05. A binomial test was used to test the signifi-
cance of the skew towards differential under- or over-
expression. To adjust for any global (that is, over all
13,213 genes) skew towards under- or overexpression,
we also estimated the P-value using a Monte Carlo
procedure (1,000 Monte Carlo runs) in which 86 genes
were selected at random and a binomial test P-value
was recomputed. The fraction of the 1,000 runs with a
binomial test P-value more extreme than the observed
gives an independent P-value estimate.

Statistical methods
Full details of statistical methods are in Additional file 1.
Brief descriptions of the different parts of the statistical
analysis are given below.
Quality control and inter-array normalization
The raw DNAm data were subject to a similar quality
control procedure as used in our previous publication
[7].
Supervised analyses
To identify CpGs associated with age (aCpGs) we used
surrogate variable analysis [15]. False discovery rate
(FDR) estimation was implemented as in the q-value
package [16]. To identify age-independent variable CpGs
(vCpGs), we adjusted the data for age, and subsequently
estimated the variances for each CpG. Because of the
heteroscedasticity of b-values [17], we also estimated the
variance using R-values (defined as R = M/U) [18]. To
identify differentially variable CpGs (DVCs) between
prospective CIN2+ cases and normals, we used Bartlett’s
test [19]. In doing so, variances were estimated after the

methylation profiles were linearly adjusted for age
within each phenotype.
EVORA: Epigenetic Variable Outliers for Risk Prediction
Analysis
Full details and the model assumptions on which
EVORA is based are described in Additional file 1.
There are three important statistical aspects to EVORA:
(i) identification of candidate risk CpGs; (ii) identifica-
tion of samples that constitute methylation outliers; and
(iii) a method for assigning risk to each sample, which is
robust and independent of the scale used. For (i) we use
Bartlett’s test [19], since our hypothesis is that DVCs
defined by outlier profiles are more likely to define risk
CpGs [3]. To define outliers in a scale-independent fash-
ion (ii) we use the COPA (Cancer Outlier Profile Analy-
sis) transformation [20]. Lastly, to assign a risk score to
a sample, we use an adaptive index algorithm framework
[21]. EVORA is freely available as an R-package (evora)
[22].

Results
DNA methylation variability is increased in cytologically
normal cells predisposed to neoplasia
A stringent quality control and inter-array normaliza-
tion procedure resulted in a normalized data matrix of
methylation values (b-values, 0 < b < 1) over 24,039
CpGs and 152 samples (Methods). Prospective cases (n
= 75) and controls (n = 77) were matched for age and
HPV status (Methods). Following the suggestion that
epigenetic variability may mark genes that contribute
to the risk of cancer [1,3,23], we hypothesized that dif-
ferential variability in normal tissue might be asso-
ciated with an increased risk of neoplasia. We thus
derived a list of CpGs that showed significantly differ-
ent (age-adjusted) variability between future (CIN2+)
cases and controls (DVCs) (Methods). We observed
many DVCs (Figure 1a) and among the top 500 (FDR
< 0.0001; Additional file 2) the majority (73%) were
more variable in future cases (Figure 1c). The set of
DVCs was largely unchanged if variability was not
adjusted for age or if also adjusted for HPV status
(Additional file 3). In contrast, testing for differential
methylation using t-statistics (differentially methylated
CpGs (DMCs)) did not yield genome-wide significance
levels (FDR ~0.6 for the top 50 CpGs; Figure 1b).
DVCs that showed significantly higher variance in
future cases (hypervariable DVCs) generally exhibited
small yet consistent increases in mean methylation
levels (Figure 1d; Additional file 2). Inspection of typi-
cal methylation profiles of such DVCs revealed that
the increased or decreased variability was due to
approximately 20 to 30% changes in DNAm present in
only a relatively small number of ‘outlier’ samples (Fig-
ure 1d; Additional file 4). Developmental genes, and in
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particular polycomb group targets (PCGTs) [24] (see
Additional file 1 for precise definition), were enriched
only among the DVCs showing increased variance in
the normal cells of prospective cancer cases (odds
ratio = 4.9 (3.9 to 6.3), P < 1e-31) and were six times
more likely to exhibit higher variability in prospective
cases than lower (Additional file 5). PCGTs were also
the most highly enriched gene category out of a total
of 6,173 gene sets in a Gene Set Enrichment Analysis
[25] (Additional file 6). Random permutation of sample
labels also showed that this enrichment could not have

arisen by chance (Additional file 5). Thus, all these
results indicate that increased DNAm variability affects
PCGTs and is an intrinsic property of normal cells
predisposed to neoplasia.

Age-associated variation in DNA methylation also
correlates with the risk of neoplasia
An unsupervised singular value decomposition and a
supervised linear regression analysis (adjusted for CIN2
+ status) both confirmed a strong age-associated signa-
ture (644 CpGs at FDR < 0.05) with the majority (392,
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Figure 1 Differentially variable and differentially methylated CpGs. (a) Histograms of P-values derived from Bartlett’s test comparing
differences in variance between normal samples that become neoplastic (CIN2+) and samples that remain normal (differentially variable CpGs
(DVCs)). (b) Histograms of P-values derived from t-tests comparing differences in mean CpG methylation levels between the same two
phenotypes (differentially methylated CpGs (DMCs)). (c) Scatterplot of Bartlett statistics (logarithm of the ratio of the variance in prospective CIN2
+ to that in normal) shown on the y-axis against the corresponding t-statistics (x-axis) for the top 500 DVCs. The numbers of hypervariable
(hyperV) and hypovariable (hypoV) DVCs are given. (d) Typical methylation profile of a hypervariable DVC (blue = prospective CIN2+, green =
normal). The thin dashed lines indicate the mean levels of methylation in each phenotype. The P-values shown are from a Bartlett’s test
(differential variability) and t-test (differential methylation).
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61%) hypermethylated with age (Additional files 7 and
8). Interestingly, we observed that the 644 CpGs
undergoing age-associated changes in DNAm (aCpGs)
showed specific directional changes associated with the
future development of CIN2+ even though these
changes were not individually significant (Additional
file 9). Specifically, those CpGs undergoing significant
hypermethylation with age were generally also hyper-
methylated in future CIN2+ cases (Additional file 9).
To test further if age-hypermethylated aCpGs are
indeed associated with CIN2+, we compared their
methylation levels in an independent data set (also
generated with the Illumina 27 k platform) consisting
of 30 normal and 18 age-matched CIN2+ samples (Set
1, Methods) [7]. The mean methylation level of these
aCpGs was also significantly higher in the CIN2+ sam-
ples of this set (Additional file 10).

Significant overlap of hypervariable DVCs and age-
hypermethylated aCpGs
Next, we explored the relationship between DVCs and
aCpGs. Many CpGs showing age-associated hyper-
methylation also showed significant increases in (age-
adjusted) variability within the normal tissues of future
CIN2+ cases, while age hypomethylated aCpGs did not
(Figures 2a-c). Thus, CpGs that are more variable in
prospective CIN2+ cases independently of age over-
lapped significantly with CpGs that undergo age-asso-
ciated hypermethylation in normal tissue
independently of prospective disease status. This could
mean that detecting DNAm changes across a group of
individuals of the same age but who may have had
variable lifetime exposures to environmental risk fac-
tors (and therefore be at variable disease risk) is simi-
lar to detecting age-associated changes in a population
of differently aged individuals (since lifetime exposures
accumulate with age). Because PCGTs were enriched
in both hypermethylated (hyperM) aCpGs and hyper-
variable (hyperV) DVCs (Figure 2c), it was natural to
ask if aCpGs mapping to PCGTs and that had been
identified from other tissues (for example, whole
blood) [7] would also exhibit a preferential skew
towards hypervariability. Remarkably, out of the 69
PCGT CpGs identified as hypermethylated with age in
whole blood [7], the overwhelming majority were more
variable in the epithelial cells of future CIN2+ cases
(Figure 2d). In contrast, the 20 PCGT CpGs under-
going age-associated hypomethylation in blood showed
no skew towards either increased or decreased variabil-
ity (Figure 2d). Thus, we can conclude that genes
prone to epigenetic variation are also prone to undergo
age-associated hypermethylation and that PCGTs
define a significant subset of these genes.

Differentially hypervariable CpGs predict risk of
intraepithelial cervical neoplasia
Based on these results, we proposed the following model
in which epigenetic variance may be used to predict the
risk of neoplastic transformation. Since the typical DVC
methylation profile (Figure 1d) is one in which a small
number of samples exhibit increased outlier methylation
(≥ 20% methylation change), we hypothesized that can-
cer-risk in a given sample may be associated with the
number of such risk CpGs (hypervariable DVCs/hyper-
methylated aCpGs) becoming ‘methylation hits’ (Figure
3a). To test this idea, we applied a novel statistical algo-
rithm called EVORA (Methods; Figure 3a), which aims
to assess the risk of neoplastic transformation from the
number of methylation outliers. Using multiple training/
test set partitions, we found that EVORA could predict
the future risk of CIN2+ in blind test sets (area under
the curve (AUC) = 0.66 (0.58 to 0.75), P < 0.05; Figure
3b), while an analogous classifier based on differences in
mean methylation levels could not (AUC = 0.51 (0.30 to
0.72), P = 0.46; Figure 3c).

Risk CpGs identified in normal cells can detect
intraepithelial neoplasia and cervical cancer
EVORA identified a total of 140 risk CpGs (hypervari-
able DVCs and hypermethylated aCpGs; Figure 4a;
Additional file 11), of which 69 mapped to PCGTs. We
postulated that this pool of 140 risk CpGs would also
necessarily diagnose CIN2+ status, since for established
neoplastic cells we would expect an even higher fraction
of these CpGs to be hypermethylated. Indeed, in an
independent Illumina Infinium 27 K methylation data
set of normal cervical smears and age-matched CIN2+
samples (set 1; Methods), EVORA was able to predict
CIN2+ status with very high accuracy (Figures 3d and
4b). Importantly, while the risk scores of the normal
samples in ARTISTIC and set 1 were comparable to
each other, the scores of the CIN2+ samples were signif-
icantly higher than those of normal cells that only
become CIN2+ within 3 years (Figure 5), reflecting a
progressive increase from normal cells at low risk, to
normal cells at high risk, and finally to cells in a pre-
invasive neoplastic state. Importantly, risk CpGs (that is,
differentially variable CpGs) identified from the ARTIS-
TIC cohort predicted CIN2+ status better than CpGs
that were not differentially variable, even if they mapped
to PCGTs (Figure 6). Since risk CpGs performed simi-
larly irrespective of PCGT status (Figure 6), this indi-
cates that differential variability is the key feature of
cells at risk of morphological transformation and not
PCGT status.
Next, we explored the methylation profiles of the 140

risk CpGs in an independent set of cervical cancers and
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corresponding age-matched normal tissue (set 2; Meth-
ods). The outlier risk scores were significantly reduced
(Figure 4c) owing to the fact that risk CpGs exhibited
much more of a bi-modal methylation pattern between

cancer and normal tissue; that is, risk CpGs were invari-
ably either hemi- or fully methylated across a high pro-
portion of the cancers (Figure 4d). Nevertheless, a small
subset of risk CpGs retained their outlier profiles in

(d)

(a) (b)

(c)

Figure 2 Relation between differentially variable and age-associated CpGs. (a) Bartlett test P-values (on -log10 scale) of CpGs indicating
significance of differential variability (between prospective CIN2+ and controls) (y-axis) versus their average b-value across all samples (x-axis).
CpGs undergoing age-associated (aCpG) hypermethylation (hyperM) or hypomethylation (hypoM) are colored as indicated. (b) The ratio (on log
scale) of variability in prospective CIN2+ to variability in controls (y-axis) versus significance level (x-axis). Skyblue (orange) denotes CpGs
significantly hypermethylated (hypomethylated) with age (aCpGs) in normal cells from uterine cervix. The green dashed line represents the FDR
cutoff value of 0.05 for calling DVCs. (c) Venn diagram illustrating overlaps of age-hypermethylated CpGs with DVCs that are hypervariable
(hyperV) in prospective CIN2+, and with PCGT CpGs. A total of 41 CpGs overlapped between all three categories and 20,917 CpGs were in none
of the three categories. The P-value (estimated from a multiple binomial test) indicates the random chance of observing 41 or more overlapping
CpGs. (d) As (b) but now highlighting the 68 and 20 CpGs that map to PCGTs and undergo age-associated hyper- (blue) and hypomethylation
(red) in whole blood samples [7]. Among these CpGs, we give the number that are significantly differentially variable (FDR < 0.05, green dashed
line) and their distribution in terms of increased or decreased variance in future CIN2+ cases. P-value is from a binomial test.
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fold internal cross-validation on COPA-transformed (Methods) methylation profiles is used to optimize the COPA threshold and the set of risk
CpGs. (iii) Risk prediction using EVORA: for an independent sample its risk score is estimated as the fraction of risk CpGs with a b-value larger
than the optimal threshold, as evaluated in the COPA-basis. (b) EVORA receiver operating characteristic (ROC) curve, AUC and its 95% confidence
interval in the ARTISTIC cohort (152 normal samples: 75 future CIN2+, 77 normals). (c) Comparison of C-index (AUC) values obtained using
EVORA with a classification algorithm based on detecting differences in mean methylation levels (mean) in the ARTISTIC cohort. Boxplots are
over 100 distinct training-test set partitions and P-values are from a Wilcoxon test detecting deviation from the expected null (C-index = 0.5) as
well as between the two classification algorithms. (d) EVORA ROC curve in set 1 (48 liquid-based cytology samples: 18 CIN2+, 30 normals). (e)
EVORA ROC curve in set 2 (63 cervical tissue samples: 48 cancers, 15 normals). In all ROC curves, AUC values and 95% confidence intervals
shown. FPR: false positive rate; Se: sensitivity.
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cervical cancer and EVORA was therefore still highly
predictive of cancer status (Figure 4c). Adapting
EVORA to the original beta methylation scale to better
capture the observed bi-modal methylation profiles
yielded a perfect discrimination of normal and cancer
tissue (Figures 3e and 4d).

Risk genes are underexpressed in cervical cancer
To evaluate if the genes associated with the identified
risk CpGs show expression changes in cervical cancer,
we built an integrated data set of mRNA expression
profiles over 13,213 genes and encompassing 42 normal
cervical epithelial and 74 cervical cancer (squamous cell
carcinoma) specimens (Methods). The integration was

done using a renormalization procedure that we have
validated previously [12-14]. Of the 140 risk genes, 86
could be mapped to this merged data set. Comparison
of average mRNA levels of our 86 risk genes between
normal and cancer tissue confirmed that risk genes
showed lower average expression levels in cervical can-
cer (Additional file 12). Analysis of individual gene sta-
tistics further showed that 46 were differentially
expressed and that there was a significant skew towards
underexpression in cancer (Additional file 12). More-
over, in only 13 of 1,000 random selections of 86 gene
sets (Monte Carlo analysis described in Methods) did
we observe a skew as significant as the one observed for
the risk genes (Additional file 12).
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Figure 4 Heatmaps over risk CpGs. (a-c) Heatmaps of COPA-transformed methylation values for the top 140 risk CpGs that are (i) significantly
hypermethylated with age and (ii) show significant increased variability in future CIN2+ cases, as determined in the ARTISTIC cohort. Color codes
for COPA scores: yellow = COPA score < 1 (no methylation); skyblue = COPA score < 5. Outliers denoted by blue = methylation COPA score > 5
and black = methylation COPA score > 10. CpGs have been hierarchically clustered using a Manhattan distance metric. Those mapping to PCGTs
are labeled with their associated gene. Samples have been ordered according to their EVORA risk score as shown in the panels above heatmaps.
(a) ARTISTIC cohort: 152 samples (75 prospective CIN2+ (red), 77 no CIN2+ at last follow-up (green). (b) Set 1: 48 samples (18 CIN2+ (red), 30
normals (green)). (c) Set 2: 63 cervical tissue samples (48 cancers (red), 15 normals (green)). (d) Heatmap depicts the same data matrix as in (c)
but with the methylation values on the b-value scale where CpG b-values have been median normalized to zero. The corresponding scores now
depict the percentage of methylation hits as measured on the beta-scale.
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Discussion
In this work we have addressed two fundamental ques-
tions. First, do DNAm changes precede the morpholo-
gical signs of neoplastic transformation? And second,
can these epigenetic changes (a) predict the risk of
neoplastic development, and (b) allow detection of

early (non-invasive) cancers? We have addressed these
questions in the context of the uterine cervix, currently
the only human organ allowing relatively easy access to
the cell of origin of the associated cancer well in
advance of the first morphological signs of neoplastic
transformation.
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Figure 5 Cross-comparison of EVORA risk scores. Boxplots of EVORA risk scores (y-axis) of the 77 normal LBC samples in ARTISTIC (N(ART)),
the 30 normal LBC samples of set 1 (N(Set1)), the 75 prospective CIN2+ LBC samples in ARTISTIC (preCIN2+(ART)), and the 18 CIN2+ samples of
set 1 (CIN2+ (Set1)). Wilcox-test P-values between N(ART) and N(Set1), and between preCIN2+(ART) and CIN2+(Set1) are given.
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Figure 6 EVORA AUC values as a function of differential variability and PCGT status. (a, b) Comparison of EVORA AUC measures for four
different CpG classes in (a) set 1 consisting of 18 CIN2+ LBC samples and 30 normal LBC samples, and in (b) set 2 consisting of 48 cervical
cancers and 15 cervical normal tissues. Of the 140 risk CpGs, 69 mapped to PCGTs (risk-PCGT class) and 71 did not (risk-nonPCGT class). In
addition, we randomly selected 70 non-differentially variable, non-age-associated CpGs (nonrisk) that mapped and that did not map to PCGTs.
The random selection was done 100 times and AUC values averaged. Also provided are 95% confidence intervals.
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Based on the hypothesis that epigenetic variability may
reflect exposure to various genetic and non-genetic risk
factors (including age), and that differential epigenetic
variability may reflect underlying differential exposure to
these factors [1,3], we posited that differentially variable
methylated CpGs (DVCs) might be potential risk indica-
tors of neoplastic transformation. Our prediction algo-
rithm based on epigenetic variance (EVORA; Figure 3A)
could predict, with low but statistically significant accu-
racy (AUC = 0.66, P < 0.05), prospective CIN2+ status
in blind test sets (Figure 3b). In contrast, an analogous
classifier that uses differential methylation instead of dif-
ferential variability statistics could not predict prospec-
tive CIN2+ status (Figure 3c). Using EVORA, the set of
risk CpGs could also accurately identify independent
CIN2+ and cervical cancer samples (AUC > 0.9; Figures
3d, e and 4). Using these additional data sets, we also
showed that differential variability is a more important
characteristic of risk CpGs (supporting the findings in
[3]) than PCGT status (Figure 6). Thus, these results
support the view that differential variability is a key
characteristic of cells predisposed to morphological
transformation.
We have obtained these results in the context of cervi-

cal cancer using a study design that was matched for
age and HPV status. Since HPV infection is a well-
known necessary causal factor for cervical cancer [26], it
is thus reasonable to assume that those HPV-negative
samples that later developed a CIN2+ will have done so
only by acquiring an HPV infection after sample collec-
tion [27]. It is important, therefore, to point out that the
increased DNAm variability at the identified loci only
increases the risk of CIN2+ in the background of an
existing HPV infection. Given that HPV infection is a
necessary but not sufficient factor to cause cervical car-
cinogenesis (most HPV-infected women do not develop
cervical cancer), it is indeed very likely that unknown
‘tumor-suppressor’ factors play a role in determining
which HPV-infected women develop a CIN2+. Thus,
our data support a model in which increased DNAm
variability at the identified loci may compromise specific
tumor suppressor functions, predisposing HPV-infected
women to develop a CIN2+. In this context, it is also
important to note that we did not observe HPV infec-
tion to have a major effect on DNAm patterns and the
EVORA risk score itself was not correlated with HPV
status (Additional file 13). Nevertheless, we did observe
a very weak marginal association of DNAm with HPV
status within only the prospective CIN2+ sample sub-
group (Additional file 13). Thus, while increased DNAm
variability may synergize with a background HPV infec-
tion to increase the risk of CIN2+, HPV infection itself
only appears to have a minor effect on DNAm patterns
in the earliest stages of cervical carcinogenesis. It is

possible, however, that HPV infection may cause signifi-
cant DNAm and mRNA changes during the latter stages
of carcinogenesis, as reported, for instance, in the case
of head and neck cancers [11,28,29].
In line with our hypothesis that epigenetic variable

CpGs are involved in carcinogenesis, we find that they
become more homogeneously methylated (that is, either
hemi- or fully methylated) across cancers (Figure 4d), in
stark contrast to their heterogeneous (that is, unmethy-
lated versus hemi- or fully methylated) outlier profiles
in potent CIN2+ and established CIN2+ cells (Figure 4a,
b). This transition from heterogeneous outlier profiles in
the earliest stages of cervical carcinogenesis to more
homogeneous methylation profiles in the more advanced
cancer stage points towards a dynamic process in which
DNAm is initially acquired in a largely stochastic man-
ner, as hypothesized in [1], but that later becomes more
homogeneous and deterministic. However, we should
point out that risk CpGs remain highly variably methy-
lated across the invasive cancers, as previously reported
in [3].
Interestingly, the heatmaps of the prospective and pre-

invasive cancer series (Figures 4a, b) also revealed the
existence of a striking bi-modality within the cases only,
with a small subset of cases exhibiting a highly corre-
lated pattern of CpG methylation, in contrast to the
more stochastic pattern of methylation seen in the
majority of samples. It is particularly interesting that the
risk CpGs identified in ARTISTIC generated this same
characteristic stochastic versus correlated bi-modal pat-
tern in the CIN2+ samples of set 1. To investigate this
further, we used an unsupervised clustering algorithm to
divide up the CIN2+ samples (of set 1) and the cervical
cancers (of set 2) each into two clusters according to
the average level of methylation over all CpGs mapping
to CpG islands excluding the 140 risk CpGs (Additional
file 14). Interestingly, in both sets, the EVORA risk
scores obtained from the 140 riskCpGs were signifi-
cantly higher for the cases exhibiting the higher global
levels of CpG island methylation (Additional file 14).
Thus, the risk CpGs appear to correlate particularly
strongly with CIN2+ samples and cervical cancers of
overall higher CpG island methylation levels. It will be
interesting, therefore, to explore the relationship, if any,
of the identified risk CpGs to a potential CpG island
methylator phenotype (CIMP) [30,31] in cervical cancer.
Using an unsupervised consensus clustering over the
1,000 most variable CpGs in the ARTISTIC set - that is,
the unsupervised procedure used in [31,32] to define a
CIMP, did not yield a clear CIMP, nor did the clusters
correlate with the EVORA risk scores, suggesting that
there is no CIMP (in the sense defined in [31,32]) pre-
sent three years in advance of morphological transfor-
mation (Additional file 15).
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Over the years extensive evidence has accumulated to
demonstrate that PCGT methylation is crucially
involved in carcinogenesis [33-37]. Although we have
here provided substantial evidence that differential varia-
bility is a more fundamental characteristic of transfor-
mation than PCGT status (Figure 6), our analyses
nevertheless implicate a subset of PCGTs in the earliest
stages of carcinogenesis (69 out of the 140 risk CpGs
mapped to PCGTs). Numerous risk CpGs were also
annotated to genes that have been previously demon-
strated to be linked to cervical cancer, including CALCA
[38], CXCR4 [39], DCC [40], HOXC10 [10], MYOD1
[41], SFRP4 [42], SOX1 [43], TWIST1 [44] and WT1
[45]. However, we note that only HOXC10 had its risk
CpG site located within 200 bp upstream of the tran-
scription start site. In fact, of the 140 risk CpG sites,
only 64 were within 200 bp of the start site, and of
these only 24 were upstream. Thus, even though we
observed the genes associated with our risk CpGs to be
frequently underexpressed in cervical cancer, it remains
to be seen if methylation of the identified risk CpG sites
plays a part in the underlying regulatory mechanism.
Our data also revealed a remarkably strong overlap

between CpGs undergoing age-associated hypermethyla-
tion in normal tissue and CpGs that were hypervariable
in prospective CIN2+ cases. PCGTs made a large com-
ponent of this overlap and age-associated hypermethy-
lated CpGs also correlated significantly with CIN2+
status, further strengthening our previous findings [7].
We stress that even those PCGT CpGs that were identi-
fied as undergoing age-associated hypermethylation in
other tissues (for example, whole blood) [7] were also
more hypervariable in prospective CIN2+ samples and
could indicate the risk of neoplastic transformation.
This strong overlap between hypermethylated aCpGs
and hypervariable DVCs is consistent with a model in
which differential exposure to risk factors accumulates
with age, thus generating the observed stochastic epige-
netic variability. That these methylation changes and
overlaps are not due to changes in cell-type composition
is supported by many studies [7,46-48]. We also
observed here that changes in cell-type composition
were more likely to be captured by age-independent
variable CpGs (vCpGs), defined as CpGs that showed
the largest (age-adjusted) variation across all normal
samples. Specifically, these maximally varying vCpGs
exhibited fairly large (> 80%) changes in methylation,
did not overlap with DVCs, and accordingly were
neither enriched for PCGTs nor discriminatory of pro-
spective CIN2+ status (Additional file 9). In fact, vCpGs
were enriched for Gene Ontology terms related to extra-
cellular space and mesenchymal features, including also
many cell differentiation markers (Additional file 16),
and thus it is possible that methylation variation in

these CpGs reflects variations in the epithelial to
mesenchymal and stromal cell ratio. Since risk CpGs
were not enriched for these stromal and mesenchymal
features, it supports the view that their observed methy-
lation changes reflect clonal heterogeneity within the
epithelial cell population only.
The reliability of the methylation data generated from

the ARTISTIC cohort is strongly supported by emerging
biology and successful validations in two independent
data sets. Nevertheless, to further check the reliability of
the Infinium methylation data, we compared the b-
values to those obtained using Methylight. Matched Infi-
nium-Methylight data were available for SOX1 and WT1
in 48 LBC samples (set 1) [49]. We found statistically
significant agreement between the two data types for
both SOX1 and WT1 (Additional file 17).
Unfortunately, the limited coverage of the Infinium 27

K array (only 0.1% of the CpGs present in the human
genome [50]) means that we could not fully explore the
spatial methylation patterns around the identified risk
CpG sites. As shown in Hansen et al. [3] in the context
of cancer, differential variability is associated with
increased spatial variability and loss of stability of the
sharp methylation boundaries. Thus, it will be interest-
ing to explore the spatial variability around the identi-
fied CpG risk sites with a more comprehensive and
unbiased technology such as the Infinium 450 K methy-
lation beadarray [51], as this may reveal a similar loss of
methylation boundaries surrounding these sites.

Conclusions
We have demonstrated that variability in DNAm, which
is associated with age and other factors, and which
occurs well in advance (at least 3 years) of the first mor-
phological neoplastic changes, is associated with the risk
of neoplastic transformation. More generally, we have
demonstrated that inter-individual epigenetic variance is
an intrinsic characteristic of cells that become
neoplastic.

Additional material

Additional file 1: Supplementary information with further details of
Materials and methods.

Additional file 2: The top 500 differentially variable CpGs (DVCs).
We provide the Illumina probe ID, Entrez ID, gene symbol, the ratio of
age-adjusted variance of future CIN2+ cases to controls, P-value from
Bartlett’s test, corresponding q-value, and for comparison also the
difference in mean methylation levels, t-statistic and corresponding t-test
P-values.

Additional file 3: Scatterplots of the Bartlett test b-statistics.
Scatterplots of the Bartlett test b-statistics (that is, log2(ratio of variances
of prospective CIN2+ to normal)) obtained without adjustment of age or
HPV status (b), against the corresponding ones obtained after adjustment
for age (b(adj.Age)), after adjustment for HPV status (b(adj.HPV)), and after
adjustment for both age and HPV status(b(Adj.Age+HPV)).
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Additional file 4: Methylation profiles of 10 of the top
hypervariable DVCs in the ARTISTIC cohort (all 10 shown are also
among the 140 risk CpGs). Green denotes normal samples and blue
denotes prospective CIN2+ cases.

Additional file 5: PCGT enrichment odds ratio (OR) among the top
500 DVCs and the corresponding relative odds ratio (ROR) of PCGT
enrichment (ROR = OR(more variable in future CIN2+)/OR(less
variable in future CIN2+)). Also shown is the expected ROR for the null
case where the top 500 CpGs were selected after a random permutation
of sample labels. The P-value reflects the significance of the difference
between the observed and null ROR.

Additional file 6: Gene Set Enrichment Analysis using a one-tailed
Fisher’s exact test of the top 500 differentially variable CpGs
(DVCs), done separately for those with increased variance in future
CIN2+ cases, and those with decreased variance in future CIN2+
cases. The Molecular Signatures Database (MSigDB, Broad Institute) [25]
was used. The columns label the gene list, the number of genes in the
list, the number represented on the 27 K array, the corresponding
fraction, the number that overlap with the top 500 vCpGs, the P-value of
enrichment, the adjusted P-value, and the gene symbols for the enriched
genes.

Additional file 7: The 644 age-associated CpGs (FDR < 0.05). We
provide the Illumina probe ID, Entrez ID, gene symbol, t-statistic and P-
value from linear regression against age, and estimated q-value (FDR).

Additional file 8: Heatmap of P-values of association between the
singular vectors of a singular value decomposition on the inter-
array normalized adjusted data, with experimental (Bisulfite
conversion efficiency controls (BSCE) 1 and 2, beadchip) and
phenotypic factors (CIN2+ status, HPV status and age). P-values were
estimated using t-tests (CIN2+ and HPV status), linear regression (age and
BSCE BSCE: bi-sulfite conversion efficiency) and ANOVA (beadchip). Color
codes: P < 1e-10 (dark red), P < 1e-5 (red), P < 0.001 (orange), P < 0.05
(pink), P > 0.05 (white).

Additional file 9: Age-associated CpGs and variable CpGs and their
relation to CIN2+ status. (a) Scatterplot of t-statistics of the 644 age-
associated CpGs (FDR < 0.05). Their t-statistics relative to CIN2+ status (y-
axis) are plotted against their age associated t-statistics (x-axis). Colored
CpGs denote the 175 age-PCGT CpGs (skyblue = age-hypermethylated;
orange = age-hypomethylated). The number of CpGs in each quadrant is
given and the associated P-value is from a Fisher-exact test. (b) Example
methylation (beta) profile of a CpG (cg00059225) undergoing age-
associated hypermethylation and of one (cg07408456) undergoing
hypomethylation. Red lines denote linear regression fits with associated
P-values. (c) PCGT enrichment odds ratios (OR) for the top 500 age-
hypermethylated (up) CpGs, the top 500 age-hypomethylated (dn) CpGs
and the top 500 vCpGs. The green line denotes the null OR = 1, and
95% confidence intervals are shown. (d) Example methylation profile of
an age-independent variable CpG (vCpG). (e) Scatterplot of all 24,039
CpG t-statistics (CIN2+ status; y-axis) against the corresponding estimated
false discovery rate (FDR; x-axis). Red points indicate the top 500 vCpGs.
The green line indicates FDR = 0.05.

Additional file 10: Comparison of mean methylation levels of the
age-hypermethylated CpGs identified in ARTISTIC in set 1. Set 1
consists of 30 normal LBC samples and 18 LBC samples exhibiting
dysplasia (CIN2+). The P-value is from a Wilcoxon rank sum test.

Additional file 11: The 140 risk CpGs as identified using EVORA in
the ARTISTIC cohort. We provide the Illumina probe ID, Entrez ID, gene
symbol, the ratio of age-adjusted variance in future CIN2+ cases relative
to controls, the statistic of age-associated differential methylation change,
and finally the t-statistic of differential methylation change between
prospective CIN2+ and controls.

Additional file 12: Independent gene expression analysis of risk
genes. (a) Average relative mRNA expression levels of 86 risk genes that
could be mapped to the expression arrays of the integrated mRNA data
set, comparing levels across 42 normal cervical samples (green) and 74
cervical cancers (red). The P-value is from a one-sided Wilcoxon rank sum
test. (b) Corresponding t-statistics of differential expression (y-axis) of the
86 genes against -log10(P-value). The number of genes passing P = 0.05

threshold and that are over-/underexpressed in cancer are given. The P-
value is from a binomial test assuming (32 + 14 = 46 trials) and under
the null that there is an equal chance of under- or overexpression. (c)
Comparison of the observed binomial test P-value in (b) (vertical red line)
to those binomial test P-values obtained from 1,000 Monte Carlo runs
(green histogram), in which 86 genes were selected at random from the
integrated expression set. The P-value shows the fraction of runs which
more extreme P-values than the observed one. This Monte Carlo analysis
therefore corrects for any bias in assuming that there is an equal null
probability of under- or overexpression.

Additional file 13: DNA methylation and HPV status. (a) Expected
number of false positives (NFP, y-axis) is plotted against the number of
positives (NP, x-axis) for CpGs associated with HPV status using surrogate
variable analysis (SVA) and all 152 samples in the ARTISTIC cohort. (b)
Boxplot comparing the EVORA risk scores of the 152 samples against
HPV status. The P-value is from a Wilcoxon rank sum test. (c) As (a), using
SVA with HPV status as the phenotype but now only using the 77
samples that remained disease-free. (d) As (a), using SVA with HPV status
as the phenotype but now only using the 75 samples that developed a
CIN2+. In (a, c, d), the green dashed line indicates the null-line of no
association. We note that even in (d) the association is very marginal
since the FDR for the top 100 CpGs is over 50%.

Additional file 14: Correlation of EVORA risk scores with CpG island
methylation. (a) Left panel: average beta methylation level over all CpGs
mapping to CpG islands (excluding the 140 risk CpGs) on the y-axis
versus the CIN2+ sample index. A partitioning around medoids algorithm
(pam from package cluster) was used to cluster the samples into two
clusters of relative high and low methylation, and the samples have
been ordered and colored accordingly. Right panel: boxplot of the
EVORA risk scores defined over the 140 risk CpGs in the same set of CIN2
+ samples, grouped according to the clustering in (a). The P-value is
from a Wilcoxon rank sum test. (b) Exactly as (a), but now for the
cervical cancer samples of set 2.

Additional file 15: Consensus clustering heatmap of the 152
ARTISTIC samples over the top 1,000 most variable CpGs (vCpGs).
Color codes in the heatmap: yellow, beta < 0.3; skyblue, 0.3 < beta < 0.7;
blue, beta > 0.7. The bars above the heatmap indicate the consensus
cluster (three clusters were optimal), HPV status (black = HPV-positive,
grey = HPV-negative), prospective CIN2+ status (black = prospective CIN2
+, grey = control) and EVORA risk score (green = risk score < 0.1, red =
risk score > 0.1).

Additional file 16: Gene Set Enrichment Analysis using a one-tailed
Fisher’s exact test of the top 500 variable CpGs (vCpGs) against the
Molecular Signatures Database (MSigDB, Broad Institute) [25]. The
columns label the gene list, the number of genes in the list, the number
represented on the 27 K array, the corresponding fraction, the number
that overlap with the top 500 vCpGs, the P-value of enrichment, the
adjusted P-value, and the gene symbols for the enriched genes.

Additional file 17: Comparison of Methylight (PMR-value) based
quantification of methylation (y-axis) with Infinium 27 K b-value (x-
axis) for two of the identified risk genes (SOX1 and WT1) across the
48 LBC samples (set 1). The CpG on the 27 K array closest to the
transcription start site and to the Methylight CpGs was used. The P-value
is from a correlation test, testing the significance of the Spearman rank
correlation. Red denotes the 18 CIN2+ samples, green denotes the 30
CIN2- samples.

Abbreviations
aCpG: age-associated CpG; ARTISTIC: A Randomised Trial of HPV Testing in
Primary Cervical Screening; AUC: area under the curve; bp: base pair; CIMP:
CpG island methylator phenotype; CIN2+: cervical intraepithelial neoplasia of
grade 2 or higher; COPA: Cancer Outlier Profile Analysis; DMC: differentially
methylated CpG; DNAm: DNA methylation; DVC: differentially variable CpG;
EVORA: Epigenetic Variable Outliers for Risk Prediction Analysis; FDR: false
discovery rate; HPV: human papilloma virus; LBC: liquid-based cytology;
PCGT: polycomb group target; vCpG: variable CpG.
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