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Abstract

Despite the recent success of genome-wide association studies (GWASs) in identifying loci
consistently associated with coronary artery disease (CAD), a large proportion of the genetic
components of CAD and its metabolic risk factors, including plasma lipids, type 2 diabetes and
body mass index, remain unattributed. Gene-gene and gene-environment interactions might
produce a meaningful improvement in quantification of the genetic determinants of CAD. Testing
for gene-gene and gene-environment interactions is thus a new frontier for large-scale GWASs of
CAD. There are several anecdotal examples of monogenic susceptibility to CAD in which the
phenotype was worsened by an adverse environment. In addition, small-scale candidate gene
association studies with functional hypotheses have identified gene-environment interactions. For
future evaluation of gene-gene and gene-environment interactions to achieve the same success as
the single gene associations reported in recent GWASs, it will be important to pre-specify agreed
standards of study design and statistical power, environmental exposure measurement, phenomic
characterization and analytical strategies. Here we discuss these issues, particularly in relation to the
investigation and potential clinical utility of gene-gene and gene-environment interactions in CAD.

Introduction

Genetic investigations of coronary artery disease (CAD) aim
to identify functional variants to assist with its diagnosis,
prognosis or treatment. The full spectrum of DNA variant
sizes and frequencies, ranging from single nucleotide
changes to large copy number variations and from rare
mutations to common polymorphisms, are components of a
comprehensive approach to identify genetic determinants of
CAD. However, CAD is the terminal manifestation of
multiple intermediate disease processes, which individually
have genetic and environmental determinants (Figure 1).
For genetic research into CAD to be truly comprehensive,
experimental methods must identify environmental and
genetic factors and their interactions [1,2].

It seems reasonable that the effect of a CAD susceptibility
allele could differ depending on the context of other genetic
or environmental factors. For instance, is it effective to search
for a gene underlying type 2 diabetes mellitus (T2DM) in high
performance athletes? Although such athletes may be
genetically predisposed to T2DM, their activity levels would
probably protect them from expressing the phenotype.
However, although gene-gene or gene-environment inter-
actions seem to be an obvious topic for consideration, the
analysis of such interactions is not yet routine in genetic
studies of CAD. Here, we will focus on interaction types,
strategies to detect interactions, potential biases and the
statistical issues involved in studying gene-gene and gene-
environment interactions in CAD.
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The pathophysiology of coronary artery disease (CAD) is affected by
environmental and genetic factors and their interactions. Pathogenic
mechanisms contributing to plaque development and subsequent CAD
can be affected both negatively and positively by environmental exposures
and genes. Environmental exposures can be either discrete (presence or
absence) or continuous. Typically, CAD associated mutations and
polymorphisms are found in genes encoding proteins that have key roles
in intermediate pathways. Neither the environmental nor genetic lists
shown here are comprehensive.

Types of interactions

Broadly defined, interactions are differences in the strength
of association between a gene and phenotype on the basis of
the presence of, absence of or quantitative differences in an
additional factor, which could be another genetic variant or
an environmental exposure. There are several putative models
for gene-environment interactions, including synergy, modi-
fication of effects and redundancy (Figure 2). For a gene-
gene interaction, the additional factor might be dichoto-
mous, such as carrier versus non-carrier status, or additive,
such as zero, one or two copies of the minor allele. For a
gene-environment interaction, the additional factor can
similarly be dichotomous, such as presence or absence of
smoking history, or it can be a continuous variable, such as
number of pack-years smoked.

Role of interactions in genetic association studies

Recent advances in cost-effective, array-based, high-
throughput genotyping platforms have led to a flood of
investigations of common single nucleotide polymorphisms
(SNPs) in various diseases. Genome-wide association studies
(GWASSs) have successfully identified genetic determinants
of CAD and its component risk factors [3-16]. For instance,
several investigations found a region of chromosome 9p21
that was associated with CAD independently of traditional
risk factors [3-6]. Furthermore, multiple genetic
associations for T2DM [7,17] and body mass index (BMI)
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Putative gene-environment interactions. For even the simplest case, a
dichotomous genetic risk factor (for example, carriers versus non-
carriers) and a dichotomous environmental risk factor (for example,
present versus absent), several types of interactions are possible. If both
the gene and environment have main effects (odds ratios >1), and thus
could be identified independently, a synergistic interaction would result in
an effect size larger than a simple additive effect. A second possibility is
that an environmental factor could have no main effect but could modify
the effect of a genetic factor that does have a main effect, creating a larger
than expected combined effect. The inverse is also possible, in which a
modifier gene with no main effect of its own increases the effect size of
an environmental risk factor. A fourth possibility is that neither the gene
nor the environment has a detectable main effect, and interaction is
required to produce a measurable effect. A fifth possibility is for a gene
and an environmental factor to have redundant effects, in which case the
combination of factors produces no increase in risk. These types of
interactions can be extended to include different effect sizes or gene-gene
interactions.

[18] have been discovered. However, most associated loci
from GWASs have been reported for lipoprotein traits,
including over 30 loci associated with plasma
concentrations of low-density lipoprotein (LDL)
cholesterol, high-density lipoprotein (HDL) cholesterol
and triglyceride [7-16]. The success in finding genetic
associations with lipoprotein phenotypes was due to
methodological standardization (accuracy and precision)
in trait measurement and to evaluation of large sample
sizes, allowing detection of relatively subtle effects. Meta-
analyses and collaborative consortia with large sample
sizes have allowed GWASs to detect risk variants with low
minor allele frequencies (<5%) and small effect sizes (odds
ratio of about 1.1 to 1.7) (Box 1); SNP association studies
may have already reached their limit to detect clinically or
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biologically relevant loci with such effect sizes

[8,11,13,17,18].

Despite recent success in identifying CAD-associated SNPs,
much of the genetic component of CAD and its risk factors
remains unattributed. Forcing additional genetic markers
with small effect sizes into predictive models only marginally
improves prediction over traditional risk factors [19].
However, accounting for gene-gene and gene-environment
interactions might produce a meaningful increase in the
combined effect of the genetic determinants [1,2]. To ensure
a valid assessment of gene-gene and gene-environment
interactions, standards are required for sample sizes,
accuracy and precision for continuous data, specificity and
sensitivity for discrete data and appropriate statistical
methods. Phenomics, defined as the comprehensive charac-
terization of phenotype and environmental exposure [20], is
also of key importance.

Identification of small effect genetic and environmental
factors

So far, most genetic association studies have evaluated
effects on intermediate phenotypes or pathogenic mecha-
nisms, which can themselves be considered disease processes.
For CAD, these intermediate phenotypes include blood
coagulability, hypertension, altered lipid metabolism, cell
proliferation and inflammation. When a new gene or locus is
discovered, such as the chromosome gp21 region associated
with early CAD [3-6], and its association is subsequently
replicated in multiple study samples [21-24], the basis of the
association with CAD is assumed to be mediated through a
pathogenic pathway [22]. This assumption will guide the
design of subsequent functional experiments. Similarly,
newly identified environmental determinants might exert
their influence through one or even several pathogenic
mechanisms and might even help identify previously
unappreciated pathways.

Although the effect sizes of SNP associations identified in
GWASs of CAD are modest, they are still important because:
(i) individual associations can be combined to obtain larger
cumulative effects; (ii) genes with small effects in GWASs
can point to targets for drug-based or other interventions;
(iii) genes with small effects in GWASs might contain rare,
large-effect mutations in more severely affected patients; (iv)
some GWAS loci with no previous CAD association might
unveil new pathways; and (v) the effects of a GWAS locus
could be amplified by gene-gene or gene-environment
interactions.

These principles can be extended to the study of gene-
environment interactions. For instance: (i) individual environ-
mental interactions could be combined to obtain a cumula-
tively larger effect; (ii) rare extreme environmental
exposures may display larger effects on the CAD phenotype
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than more common or typical environmental variation; (iii)
identification of gene-environment interactions might suggest
new hypotheses to evaluate disease-causing mechanisms.
These principles could direct the design of future studies of
gene-environment interactions in CAD.

Minor versus major alleles as a risk factor for CAD
How do alleles affecting CAD susceptibility arise? DNA
mutagenesis could provide a basis for understanding the
generation of risk alleles. Several mutagenic mechanisms
have been identified [25]. If a DNA error escapes repair and
becomes embedded in the genome, it could, by affecting the
expression or function of a protein, modify CAD risk either
positively or negatively. If the recently mutated allele increases
CAD risk, it is possible that genetic drift, inbreeding,
pleiotropy, heterozygote advantage or small effects on repro-
ductive fitness could be responsible for the allele reaching
appreciable frequencies in the population [26]. For CAD,
mortality typically occurs after the reproductive years, thus
reducing selection pressure against deleterious alleles.
Another possibility is that an environmental change might
cause an allele that once had a neutral or beneficial effect to
become deleterious.

Alternatively, if the mutated allele is beneficial, reducing
CAD risk, one would expect the allele to increase in
frequency to become the major allele. If the mutation
occurred relatively recently, it is possible the minor allele is
gradually becoming more prevalent. Such ‘protective’ minor
alleles, or conversely major alleles that increase CAD risk,
are possibly important from a public health perspective,
since defining a gene-environment interaction might suggest
an environmental intervention with a potentially large impact,
due to the high population prevalence of the risk allele.

Analytical detection strategies

Gene-gene and gene-environment investigations have
included family-based and population-based samples in
retrospective and prospective designs. Statistical methods
have included methods modifying regression and chi-
squared analyses, as well as statistical classification tech-
niques, such as neural networks, support vector machines or
Bayesian networks (Table 1). Although the statistical methods
used in GWASs are fairly consistent and include regression
and chi-squared analysis [3-8,10-18,27-30], the statistical
approaches to detect gene-gene and gene-environment
interactions are somewhat less standardized at present.

Investigators have tested for association between the
cumulative number of risk alleles at multiple independent
loci and disease [11,27,28]. Absolute allele counts [28] and
relative weighting of alleles on the basis of their effect size
[11,27] have both been reported. Although this showed that
the alleles were independent and their effects could be
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Summary of strategies to detect gene-gene and gene-environment interactions

Analytical strategy Advantages Disadvantages References
Examine the effect of the cumulative number of Simple; shows independence of loci No interaction measured [11,27,28]
risk alleles at multiple loci

Compare effect of risk allele in sample subgrouped Simple Substantial loss of power in [13,31,32]
by environmental exposure or additional genotype subgroups

Identify risk allele whose association with Easy to implement Multiple comparisons [11,33,34]

phenotype is modulated by inclusion of
environmental or genetic covariate

Inclusion of interaction term in regression model

Non-linear statistical classification techniques,
including Bayesian networks, neural networks
and support vector machines

model-free manner

Direct modeling of gene-gene or
gene-environment interaction

Large volumes of data in

Need to define multiple
terms in model; possibility of
over-fitting; multiple comparisons

[13,33,34,55,56]

Difficult to interpret; require
validation datasets

[29,30,34,35,57,58]

added, no interaction between the alleles was measured.
Subgroup analyses, in which the strength or effect size of the
association is compared between sample subgroups, have
substantially less power to detect an association than the
original intact sample, increasing the risk of false negative
results. For example, assuming 80% power to detect a
difference in allele frequencies between cases and controls
within one subgroup, the second equally sized subgroup will
yield disparate results about 30% of the time just by chance.
The clinical trial literature contains many examples of
inappropriate subgroup analyses [31], and one excellent
review examines the lack of consistency of sex-specific sub-
group genetic associations [32].

Regression techniques can be modified to test for gene-gene
or gene-environment interactions, either by including
additional interaction terms in the model or testing asso-
ciation with or without an additional covariate. Careful
reviews of regression approaches to study interactions show
the multitude and complexity of these techniques [33,34].
Finally, sophisticated statistical classification techniques,
including but not limited to neural networks [29], support
vector machines [35] and Bayesian networks [30], are being
updated to accommodate analysis of interactions.

Multiple comparisons

If N genetic variants are entered into an analysis, N*(N-1)/2
potentially interacting pairs can be constructed. Selecting a
priori known functional SNPs, or SNPs with coinciding
spatial or temporal expression patterns, is one approach to
reduce the number of tests. An alternative approach is first
to test for marginal main effects in a primary hypothesis-
generating analysis and then to test for interactions between
those significant effects in a second analysis in which the
nominal level of significance has not been substantially
adjusted [33]. In GWASSs, permutation testing, control of

false discovery rates and Bonferroni correction have been
used to determine appropriate significance thresholds.
Whatever approach is used, care will be required for
selecting the nominal level of significance in gene-gene and
gene-environment investigations.

Potential biases in gene-gene and

gene-environment investigations of CAD

Many types of biases can affect gene-gene and gene-environ-
ment interactions (Table 2). The accuracy and precision of
genotyping technologies render genetic investigations
relatively resistant to measurement bias, compared to other
sources of potential bias. Unequivocal disease phenotypes,
such as myocardial infarction or coronary bypass surgery,
are least susceptible to measurement bias. New imaging
techniques, such as ultrasound-based intima-media thick-
ness or magnetic resonance imaging (MRI)-based plaque
volume calculations, are more susceptible to systematic
errors of measurement. Self-reported measures of environ-
mental exposure, such as caloric intake, energy expenditure
or alcohol use, are most vulnerable to biases. Strategies to
maximize the sensitivity and specificity of environmental
factor measurement will improve the likelihood of detecting
a significant association signal for interactions with genetic
determinants [36].

Study design can affect bias, because prospective cohort
studies are generally more resistant to bias than retrospec-
tive case-control designs [1]. Survivorship bias and popula-
tion stratification are less common in prospective studies,
assuming a truly representative cross-sectional cohort.
Survivorship bias is a potential liability of retrospective
studies of CAD, because patients with a fatal first myocardial
infarction (up to 30% of cases) cannot be included in future
studies. Recall bias, in which the study participant is more
likely to remember an environmental exposure if it is
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Potential biases in gene-gene and gene-environment investigations of coronary artery disease (CAD)

Bias General description

Application to CAD

Selection bias Skew in the selection of study participants

Survivor bias
(prevalence-incidence
bias)

Selection of study participants may miss
mild disease or severe fatal cases

Recall bias Patients are more likely to recall an
environmental exposure if it was linked to a

negative outcome

Respondent bias Patients answer in the way they believe they

should answer, not the true answer

Family information Individuals become more aware of exposure if
bias it is prevalent in their family

Exposure suspicion Disease status can affect the amount of
bias environmental exposure history collected

Publication bias Statistically significant findings are more likely

to be published

Measurement bias Systematic errors of measurement

Population
stratification

Differences in allele frequencies between groups
resulting from ancestry not outcome status

Patients with strong family history may self-select for study participation;
patients with strong family history may be more likely to be referred to
tertiary care and research centers

Patients whose first myocardial infarction is fatal are less likely to be
studied

Patients with CAD may be more likely to remember an environmental
exposure because of its negative consequences

Patients with CAD and knowledge of potential CAD risk factors will be
more motivated to report those exposures

Many CAD risk factors and environmental exposures cluster in families

If data collection is not standardized, investigators may more thoroughly
query patients with CAD

Gene-gene and gene-environment interaction findings in CAD are more
likely to be published if significant

Platform- or laboratory-dependent genotyping errors; errors of laboratory
values; errors of environmental exposure measurement

CAD prevalence varies between ethnicities; but this can be tested and
corrected for using methodological and statistical techniques

associated with a negative outcome, respondent bias, in
which patients alter their answers to exposure questions
following a negative outcome, and exposure suspicion
biases, in which investigators query individuals who have a
negative outcome more thoroughly, are all reduced in
prospective designs, as long as environmental exposure
information is collected from all study participants
irrespective of CAD outcomes.

Statistical power

Statistical power is directly proportional to the number of
study participants and to the size of the effect under study.
Factors to be included in power calculations of all genetic
investigations include the minor allele frequency, the degree
of linkage disequilibrium between the queried marker and
the hypothetical disease locus, the genotype error rate and
the genetic or phenotypic heterogeneity (Box 2). Fortunately,
high-throughput genotyping platforms have a negligible
genotype error rate [37]. Correction for multiple comparisons
and the measurement error of environmental exposures also
influence study power [1,2]. As a result of the greater
accuracy of genotyping compared with the measurement or
report of environmental exposures, there is theoretically
more power to detect a gene-gene interaction than a gene-
environment interaction for the same sized sample. Studies
with inaccurate or imprecise measurement of phenotype or
environmental exposure may require up to 20 times larger

samples to detect an association signal above background
noise [36]. However, the power advantage of gene-gene
investigations resulting from their higher measurement
accuracy is diminished by the need to correct for multiple
comparisons and by the potentially increased complexity of
interactions compared with gene-environment investigations.

How large a sample is required for adequate power to find
gene-gene and gene-environment interactions? A rule of
thumb is that a four-fold increment in sample size is
required to test for a multiplicative interaction of two main
effects [2,38]. This may overestimate the sample size
requirement, especially if the effect of the interaction is
larger than the main effects, but it illustrates the general
requirement for a larger sample size when interactions are
introduced into hypothesis testing. Given that many
previous candidate gene studies, and even many GWASs,
were powered to detect only main effects, testing these
samples for gene-gene and gene-environment interactions
has the potential for false positive and false negative results
[2,3]. Higher-order interactions will require even larger
samples to attain suitable power and may not be possible
even among the largest current association studies [1].

Examples of interactions in monogenic CAD
Studies of monogenic susceptibility to CAD have revealed
several gene-gene and gene-environment interactions. For
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Box 1. Glossary of statistical terms

Bias: a tendency leading to conclusions that systematically differ from the truth, typically resulting from inadequate study
design or poor methodology.

Bonferroni correction: in multiple hypothesis testing, a conservative adjustment of the significance threshold achieved
by dividing the nominal significance threshold by the number of tests performed in order to control the number of false
positive (type 1) errors.

Effect size: the change in the dependent variable - typically the trait value or likelihood of disease phenotype - that is
associated with a given change of the independent variable - typically the number of minor alleles or risk allele carrier
status of an individual.

False discovery rate: in multiple hypothesis testing, a group of methods in which the primary goal is to control the
number of false negatives (type 2 error rate), as opposed to false positives (type 1 error rate).

Interaction effect: the effect size of the combination of two or more independent variables, when the main effect of the
variables individually is excluded.

Main effect: used in multivariate study designs, the effect size of the independent variable on the dependent variable,
excluding other possible independent variables.

Permutation testing: a computational technique to estimate statistical significance by comparing the actual observed
test result with the distribution of all possible test results that can be generated by swapping trait values or disease status
between study participants.

Population stratification: allele frequency differences that occur between sample subgroups because of differences in
genetic ancestry rather than a direct role of the alleles in disease susceptibility.

Regression: an encompassing term to denote a group of statistical methods that attempt to model the relationship
between a dependent variable using one or more independent variables. The model typically contains multiple terms, with
each term usually comprising a dependent variable or combination of dependent variables with weighting factors.

Significance threshold: the statistical significance, or the probability that the observation has occurred by chance, that
needs to be overcome before declaring an association as true.

Statistical classification: a group of non-linear statistical techniques that attempt to group or classify an individual on

the basis of patterns of descriptive variables derived from a previously examined pool of data.

Statistical power: the probability that a statistical test will correctly reject the null hypothesis.

instance, age at death from CAD was studied in large
Mormon families with familial hypercholesterolemia (FH)
attributable to rare heterozygous mutations in the LDLR
gene [39,40]. Carriers of LDLR mutations who lived in the
19th century had survived to the eighth and ninth decades of
life, whereas carriers of LDLR mutations who lived in the
20th century died early with CAD, often in the third and
fourth decades of life [39,40]. The most likely explanation
for this observation was a healthier environment in past
times, including higher physical activity and lower saturated
fat consumption compared with the contemporary environ-
ment [39,40]. Similar conclusions were reached with multi-
generational studies of FH patients in the Netherlands [41].
Other investigators found that Chinese FH heterozygotes
who had immigrated to North America had worsened bio-
chemical and clinical phenotypes than carriers of the same
LDLR mutations living in China [42]. The difference in
disease severity was ascribed to differences in dietary fat
consumption; these circumstantial observations strongly

suggested that environmental factors, such as diet and
activity level, modulated the phenotype of heterozygous FH.

From our personal experience, there are other examples of
monogenic illnesses whose severity can be significantly
modulated by the environment - mainly diet and activity.
For instance, we have seen the severity of expression of the
disease phenotype made worse by an adverse environment
in patients with hypertriglyceridemia due to apo CII-T [43],
with analphalipoproteinemia due to APOA1 Q[-2]X [44],
with T2DM due to HNF1A G319S [45] and with metabolic
complications and CAD in familial partial lipodystrophy due
to LMNA R482Q [46].

Examples of interactions with common SNPs

Although interactions between environment and disease
penetrance in rare monogenic disorders are instructive, a
much larger potential impact could be seen in common
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Examples of replicated gene-gene and gene-environment interactions in CAD

Independently associated

Gene Environment Interaction with CAD? References

LDLR Lifestyle Rare mutations have larger effect in less active people LDLR: yes; lifestyle: yes [40,42]
with high-fat diet

GSTMI, GSTTI  Smoking Elevated CAD risk in smokers with null mutations GSTMI, GSTTI: weak; [47,48]

smoking: yes

APOE Smoking Exaggerated smoking-associated CAD risk in carriers APOE: yes; smoking: yes [49,50]
of APOE ¢4

ADHIC Alcohol consumption  Slow-metabolizing 2 allele homozygotes have the ADH I C: weak; alcohol: yes [57,58]
greatest CAD protection

FGB Strenuous exercise Carriers of 455A allele have exaggerated increase in FGB: no; exercise: yes [51,52]
fibrinogen after exercise

FI3AI Plasma fibrinogen Leu34 is protective for CAD in people with high FI3Al: no; fibrinogen: yes [53,54]
fibrinogen levels

ACE, AGT Unclear multi-locus epistatic interactions ACE: no; AGT: no [59,60]

LPL, APOE Greater negative effect of rare LPL alleles in LPL: yes; APOE: yes [55,56]

APOE €4 carriers

Abbreviations: ACE, acetylcholine esterase; ADHIC, alcohol dehydrogenase |C; AGT, angiotensinogen; APOE, apolipoprotein E; FGB, fibrinogen beta
chain; FI3A1, coagulation factor XIII, subunit Al; GSTMI, glutathione S-transferase mu |; GSTT/, glutathione S-transferase theta |; LDLR, low-density

lipoprotein receptor; LPL, lipoprotein lipase.

complex CAD susceptibility because of small-effect common
SNPs. The effect of the environment might be even more
pronounced in patients whose phenotypes are caused by the
aggregation of small contributions from many genetic and
non-genetic factors. Examples of replicated gene-gene and
gene-environment interactions identified in investigations of
common SNPs in candidate genes are shown in Table 3. For
instance, increased CAD risk has been observed in smokers
with null genotypes for glutathione S-transferases, which are
involved in the detoxification of carcinogens and products of
oxidative stress [47,48]. Furthermore, smokers who are
carriers of at least one APOE E4 allele seem to have signifi-
cantly higher concentrations of oxidized LDL cholesterol
compared with non-carriers, potentially further increasing
CAD risk [49,50]. Humphries and colleagues report a robust
association between the -455G>A SNP of the fibrinogen beta
chain (FGB) gene and elevated post-exercise fibrinogen
levels [51,52]. Elevated fibrinogen levels may modulate the
myocardial infarction risk associated with the Leu34 allele of
blood coagulation factor XIII (F13A1), a tetrameric zymogen
that protects the fibrin clot from proteolytic degradation
[53,54]. These candidate gene-environment interactions
were examined because of plausible biological relationships,
but large-scale replications are still required, with careful
attention to the issues raised in this article.

Examples from GWASs
Gene-gene or gene-environment interactions are not yet
routinely evaluated in GWASs, but two recent reports

include exploratory examinations. Kathiresan and colleagues
performed a two-stage GWAS of plasma lipoproteins [11].
The first stage identified over 1,000 associated SNPs in 25
loci (p < 5 x 1078) [11]. The second stage analysis re-tested all
SNPs using 36 of the significantly associated SNPs from the
first stage as covariates in the regression. The number of
associated SNPs was reduced to 105 in 77 loci (p < 5 x 1078)
[11]. All loci identified in the second stage had been identi-
fied in the first stage of analysis, suggesting that additional
SNPs in known loci - that are not in linkage disequilibrium
with the SNPs used as covariates - are associated with
lipoprotein traits.

Sabatti and colleagues examined genome-wide gene-environ-
ment interactions, with the caveat that the work was under-
powered to confidently identify interactions [13]. They
examined four dichotomized environmental variables (sex,
use of oral contraceptives, BMI over 25 kg/m2 and gestational
age), comparing differences in effect size between the two
subgroups and two variables separated into quintiles (birth
BMI and early growth), which were tested by regression using
an interaction term [13]. At least one interaction SNP was
identified (p <5 x107) for five out of six environment
variables, although none of the SNPs were in genes with a
main effect or with known biological relevance [13].

These findings represent possible novel associations with
metabolic CAD risk factors, but replication in larger samples
is required. The issues discussed above in relation to study
design, power and analytic strategies to detect gene-gene
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« Number of study participants
« ratio of cases to controls
» Effect size of risk factor

» proportional to standard deviation of trait

« Genotyping error rate

« Minor allele frequency of genetic variant

» Significance threshold

gene-environment interactions

« Genetic heterogeneity

« Phenotypic heterogeneity

« Type of interaction and size of interaction effect

Box 2. Factors affecting the statistical power of a study of gene-gene or gene-environment interactions

« Measurement error of disease trait or environmental exposure
» accuracy and precision of quantitative trait measurement
« sensitivity and specificity for dichotomous measurements

» especially pertinent when examining copy number variation

« affected by disease model if grouped into carrier versus non-carrier

« Linkage disequilibrium between queried variant and ‘true’ functional variant

» needed to correct for multiple tests, to an even greater degree in multi-way tests for gene-gene or

« different variants in the same locus, or in multiple loci, lead to the same phenotype

« different phenotypes are produced as a result of the same genetic variation

and gene-environment interactions are relevant to these
large multi-center population studies, as these studies will
form the precedent for future investigations.

Clinical implications

Accounting for gene-gene and gene-environment interactions
will probably be important for future strategies of diagnosis,
prognosis and management of CAD. For instance, current
treatment guidelines for CAD prevention require risk
stratification of the patient. CAD risk strata in a currently
disease-free patient are calculated using traditional
epidemiological risk factors, such as older age, male sex, the
presence of cigarette smoking, diabetes, hypertension,
dyslipidemia and, in some models, a family history of early
CAD. Quantification of the patient’s CAD risk using these
variables guides the intensity of evidence-based drug
treatment of modifiable risk factors, such as hypertension
and dyslipidemia. It certainly seems feasible that reliable
molecular genetic information can be included in future risk
stratification models, improving precision over simply docu-

menting a family history of CAD. Furthermore, combina-
tions of specific genetic variables in the context of specific
environmental variables - reflecting both gene-gene and
gene-environment interactions - could help to re-stratify an
individual between risk strata derived using non-molecular
data. Also, given that such environmental factors as diet,
activity level, stress, smoking and air quality are known to be
important determinants of CAD risk, the first line of cost-
effective and safe intervention for an individual with a high
genetic risk burden would include modulation of such
environmental factors instead of more costly, high-tech
approaches, such as gene-based biological therapies.

Conclusions

In the context of GWAS datasets, gene-gene and gene-
environment interactions are a new frontier for CAD
association studies. GWASs have been extremely successful
in identifying individual loci for CAD susceptibility, but the
practical limits of sample size and array resolution for the
identification of biologically valid loci will soon be reached.
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As a result of the high prevalence of CAD and the presence of
large, multi-center prospective cohort initiatives with geno-
typing on high-density DNA genotyping arrays, gene-gene
and gene-environment interaction studies of CAD will be
possible in the future. Rigorous testing for gene-gene and
gene-environment interactions should be built into the
experimental study design. To ensure that testing for
interactions enjoys the same success as GWASs of CAD,
precise standards, including suitable sample sizes, reliable
methods for measurement of environmental exposures,
phenomic characterization and statistical analyses, will be
required to minimize both false negative and false positive
findings and to allow findings to be compared across
samples and reports. The increment in the understanding of
CAD susceptibility provided through systematic study and
replication of gene-gene and gene-environment interactions
will permit a more complete set of tools for diagnosis,
disease prediction and prognosis and tailored therapy,
perhaps using appropriate environment-based interventions.
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