
Hypoxia is linked to poor cancer outcome
Abnormally low levels of oxygen in cells, known as 
hypoxia, characterize most solid tumors. Hypoxia is 
associated with malignant progression, invasion, angio-
genesis, changes in metabolism and increased risk of 
metastasis. It also severely affects treatment outcome 
because hypoxic tumors are usually resistant to radio-
therapy and chemotherapy [1-4]. Up to 60% of locally 
advanced solid tumors exhibit hypoxic (1% O2 or less, 
compared to 2 to 9% O2 in the adjacent tissue) and/or 
anoxic (that is, no measurable oxygen, <0.01% O2) areas 
throughout the tumor mass. Studies in breast, uterine 
cervix and head and neck cancers suggest that the extent 
of hypoxia is independent of tumor stage, size, histology 
or grade [5].

Hypoxia is caused by several factors: inadequate 
vascularization (tumor angiogenesis is often charac ter-
ized by aberrant vessels that have altered perfusion); an 
increase in diffusion distances that is associated with 
tumor expansion (oxygen has to travel further to oxy-
genate tumor cells because of uncontrolled tumor 
growth); and tumor or therapy-related anemia (caused by 
reduced oxygen transport capacity) [5]. Cancer cells can 
adapt to a hostile, low-oxygen environment and this 
contri butes to their malignancy and aggressive pheno-
type. �is adaptation is governed by many factors, in-
clud ing transcriptional and post-transcriptional changes 
in gene expression. In this respect, up to 1.5% of the 
human genome is estimated to be transcriptionally 
responsive to hypoxia [6].

Several studies have attempted to characterize the 
tumor response to hypoxia and its prognostic impli-
cations. In particular, recent studies have identified gene 
and microRNA (miRNA) expression signatures (that is, 
lists of regulated genes or miRNAs) that are characteristic 
of this response. Here, we discuss these studies and focus 
on breast cancer as a type of cancer in which hypoxia has 
been shown to have clinical implications [5]. We then 
discuss the use of these signatures in attempts to identify 
predictive markers of disease. We also review the current 
approaches for targeting the master regulator of the 
hypoxic response, HIF-1α, in cancer treatments and the 
potential use of miRNA and gene signatures in this 
context.

HIF, the hypoxia response and prognosis
�e master transcriptional regulators of the hypoxic 
response are represented by the family of hypoxia-
inducible factors. HIFs are heterodimers formed by an 
oxygen- and growth-factor-sensitive subunit α and a 
constitutively expressed subunit β [7,8]. In normoxic 
cells, the α subunit is recognized by and forms a complex 
with the von Hippel-Lindau protein (pVHL), which 
mediates its ubiquitination and degradation by the 
proteasome. In hypoxic cells, the α subunit is stabilized, 
it translocates to the nucleus where it dimerizes with the 
β subunit and activates the transcription of target genes 
by binding to the hypoxic-response elements (HREs) 
present in their promoter region [7,8]. �ere are three 
isoforms of the α subunit, HIF-1α, HIF-2α and HIF-3α, 
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and one β subunit, HIF‑1β. HIF‑1α is the isoform most 
ubiquitously expressed in cells, whereas HIF‑2α and 
HIF‑3α are expressed in a tissue-specific manner. HIF‑2α 
is found mainly in endothelium, liver, lung and kidney, 
where it acts like HIF‑1α on target genes. HIF‑3α is 
highly expressed in thymus, cerebellum and cornea, 
where it acts in a dominant-negative fashion to inhibit 
HIF‑1α and HIF‑2α (for a review, see [9]).

HIF‑1 regulates key aspects of cancer biology, including 
cell proliferation and survival - for example, through 
regulation of Cyclin-dependent kinase inhibitor 1A 
(CDKN1A) and B-cell lymphoma 2 (Bcl2)/adenovirus 
E1B 19 kDa protein-interacting protein 3 (BNIP3); 
metabolism - for example, through Glucose transporter1 
(GLUT1), GLUT3, Lactate dehydrogenase A (LDHA) 
and Pyruvate dehydrogenase kinase 1 (PDK1); pH regu­
lation, through Carbonic anhydrase 9 (CAIX); invasion 
and metastasis, through C-X-C chemokine receptor type 
4 (CXCR4) and Mesenchymal-epithelial transition factor 
(c-MET); angiogenesis, through Vascular endothelial 
growth factor A (VEGF-A); and stem cell maintenance, 
through Octamer-binding transcription factor 4 (OCT4) 
(Figure  1) [10]. In particular, GLUT1 and GLUT3 are 
transporters that are involved in the uptake of glucose, 
the main source of ATP generation through glycolysis in 
tumor cells. HIF‑1 can induce many of the enzymes in 
this metabolic pathway, which culminates with the 
conversion of pyruvate into lactate by LDHA [11]. CAIX 
is a carbonic anhydrase located on the plasma membrane 
that hydrates CO2 to form H+ and HCO3

- extracellularly 
[12]. The secretion of VEGF by hypoxic cells stimulates 
endothelial cell proliferation and leads to the formation 
of new vessels from pre-existing ones (that is, angio­
genesis), to provide additional perfusion [13].

Tumor type has an important bearing on hypoxia 
response; in breast cancer, evidence suggests that the 
expression of HIF‑1α and its targets are key determinants 
of prognosis. High HIF‑1α expression has been associated 
with poorer prognosis in several studies (Table 1) and a 
recent meta-analysis confirmed this [3]. CAIX upregula­
tion has also been associated with aggressive features and 
poor overall and relapse-free survival [14-16]. High 
expression of the HIF‑1α target gene VEGF has also been 
associated with poor prognosis [17-19]. GLUT1 upregu­
lation has been associated with increased risk of recur­
rence, higher-grade tumors and proliferation [20], and 
the expression of this gene is associated with perinecrotic 
(in close proximity to the necrotic core) HIF‑1α expres­
sion [21]. Increased expression of Lactate dehydrogenase-5 
(LDH‑5) has been associated with poor prognosis in 
endometrial, colorectal, head and neck and non-small-
cell lung cancer [22-26], and the expression of this gene 
in breast cancer has been linked to HIF‑1α expression 
[27]. Interestingly, Rademakers et al. [28] described a 

strictly cytoplasmic expression pattern for LDH‑5 in head 
and neck carcinomas, which showed a strong correlation 
with hypoxia. On the other hand, Koukourakis and 
colleagues [22-27] have repeatedly described a mixed 
cytoplasmic and nuclear expression pattern for LDH‑5 in 
different types of tumor, including head and neck cancer. 
Nuclear LDH‑5 reactivity was linked with high HIF‑1α 
expression, poorer survival and more aggressive tumors 
[23,24], but its biological significance is still unknown.

Other hypoxia signaling pathways have also been iden­
tified; examples are pathways activated by the mamma­
lian target of rapamycin (mTOR) kinase and independent 
signals regulated by the unfolded protein response (UPR) 
in the adaptive response to low O2 conditions. In 
particular, mTOR is a sensor of metabolic signals that can 
influence cell survival and growth through changes in 
several signaling pathways that are involved in protein 
synthesis, autophagy, apoptosis and metabolism [29]. 
Intriguingly, mTOR and HIF1 are reciprocally regulated, 
meaning that the deriving signaling pathways cannot be 
considered totally independent. Specifically, HIF1-α can 
inhibit mTOR through its targets Regulated in develop­
ment and DNA damage responses 1 (REDD1) and BNIP3 
[30,31], whereas mTOR inhibition can result in increased 
HIF1-α translation, resulting in a regulatory loop [32]. 
Hypoxia, as a negative regulator of mTOR signaling, 
could potentially act as a suppressor of tumor growth, 
but recent evidence suggests that this response to 
hypoxia is less pronounced in tumor cells than in normal 
cells, especially when the hypoxia is moderate (1% O2). 
Conversely, in the presence of more severe (≤0.1% O2) or 
prolonged hypoxia, protein synthesis and proliferation 
are inhibited in most cells as a possible way to preserve 
energy [29].

Hypoxia and treatment resistance
Although there is still a paucity of good-sized clinical 
studies and there have been discrepancies between 
findings, a tendency of hypoxic tumor cells to be drug- 
and radio-resistant has been identified [33]. Mechanisms 
of resistance include lack of oxidation of DNA free 
radicals by O2 (giving rise to resistance to ionizing radia­
tion and antibiotics that induce DNA breaks), cell cycle 
arrest (giving rise to drug resistance), compromised drug 
exposure because distance from vasculature is increased 
(causing drug resistance) and extracellular acidification 
(also leading to drug resistance) (reviewed in [34]). 
HIF‑1α activation has also been associated with resis­
tance to endocrine therapy and chemotherapy [35].

In a study involving 187 breast cancer patients treated 
with either neoadjuvant epirubicin chemotherapy or 
combined epirubicin and tamoxifen, both HIF‑1α and its 
target CAIX were associated with treatment resistance 
[36]. A further study of 114 breast cancers, which were 
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treated preoperatively with aromatase inhibitor, showed 
that HIF-1α expression was an independent factor that 
was associated with treatment resistance [37]. �is 
concurs with earlier evidence that tumors with low CAIX 
expression benefit from adjuvant endocrine or chemo-
therapy treatment [38]. In a study of 45 malignant 
astrocytomas, elevated CAIX was associated with poor 
response to combined treatment with bevacizumab and 
irinotecan [39]. Elevated serum CAIX has been asso-
ciated with reduced progression-free survival in meta-
static breast cancer patients treated with trastuzumab [40].

�e HIF target GLUT1 exerts a cytoprotective effect by 
allowing increased glucose transport into hypoxic cancer 
cells, and its overexpression is common in breast cancer 
[41]. In vitro studies with antibodies that block GLUT1 

function, in conjunction with cytotoxic agents commonly 
used in breast cancer treatment, abolish proliferation in 
cancer cell lines, indicating a role for GLUT1 in treatment 
resistance [42].�e HIF target gene VEGF has been 
associated with resistance to both hormonal and chemo-
therapies for breast cancer [43]. �ere is a lack of general 
agreement on the effect of antiangiogenic therapy on 
tumor perfusion and hypoxia (reviewed in [44]), but 
some evidence suggests that antiangiogenic agents might 
reduce tumor oxygenation, inducing the activation of 
HIF-1 and its downstream targets and subsequently lead-
ing to tumor escape [45,46].

�ese studies highlight the importance of assessing 
hypoxia. Although several studies have been performed 
on single genes, we could identify only one study that 

Figure 1. HIF-1α regulation in normoxic and hypoxic conditions and a selection of the genes, grouped by biological function, that are 
directly regulated by HIF-1α. Under normoxic conditions, the subunit HIF-1α is hydroxylized and rapidly degraded by ubiquitin-proteasome 
degradation. Under hypoxic conditions, HIF-1α is stabilized and is translocated to the nucleus. There, it binds to the subunit HIF-1β and the 
co-activator p300 and activates the transcription of target genes that are involved in several cellular processes, including proliferation, survival, 
metabolism, angiogenesis, invasion and metastasis, pH regulation and stem cell maintenance. Abbreviations: ANG-1, Angiopoietin-1; CA9, Carbonic 
anhydrase 9; CBP, CREB binding protein; CCND1, cyclin D1; CKCR4, C-X-C chemokine receptor type 4; c-MET, Mesenchymal-epithelial transition factor; 
ENOI, Enolase I; EPO, Erythropoietin; FLK-1, Fetal liver kinase-1; FLT-1, FMS-like tyrosine kinase-1; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; 
GYS1,Glycogen synthase 1; HK1, Hexokinase 1; HRE, hypoxic-response element; IGF2, Insulin-like growth factor 2; IGF-BP2, IGF-binding protein 2; JARID1B, 
Jumonji AT-rich interactive domain 1B; LOX, Lysyl oxidase; MMP-2, Matrix metalloproteinase 2; OCT4, Octamer-binding transcription factor 4; PAI-1, 
Plasminogen activator inhibitor-1; PDGF-B, Platelet-derived growth factor-B; PDK1, Pyruvate dehydrogenase kinase 1; PFKFB3, 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3; PGK1, Phosphoglycerate kinase 1; PKM2, Pyruvate kinase M2; SDF-1, Stromal-derived factor 1; TGF-α, Transforming growth 
factor α; TIE-2, Tie-like receptor tyrosine kinase 2; Ub, Ubiquitin; UPAR, Urokinase plasminogen activator receptor.
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looked at the role of a hypoxia gene-expression signature 
in treatment response [47]. This highlights the need for 
more comprehensive studies to investigate the expression 
of multiple hypoxia markers and of gene and miRNA 
signatures before and after treatment. Careful pharmaco­
kinetic and pharmacodynamic analyses are also needed 
to derive markers of treatment efficacy or resistance. The 
finding of such research could not only allow the selec­
tion of patients who would benefit most from treatments, 
but could also avoid the use of specific treatments in 
cases where they might be detrimental [45].

Targeting hypoxia in cancer treatment
Given the role of HIF‑1 in resistance to cancer treat­
ments, the inhibition of this protein is an attractive 
therapeutic approach (Table 2). In vitro data suggest that 
small molecule inhibitors of HIF‑1α in combination with 
adenovirus-delivered gene therapy might reverse the 
hypoxic chemo-resistance of cancer cells [48]. Concerted 
attempts have thus been made to identify HIF‑1 inhibi­
tors using high-throughput screens. A better understand­
ing of the HIF activation pathway could inform the choice 
of therapy, the individualization of treatments and the 
development of novel agents. Several of the cancer treat­
ments already licensed for use, including the Topoiso­
merase 1 inhibitor topotecan, have been shown to inhibit 

HIF‑1α protein accumulation in cell lines and xenograft 
studies [49,50]. It may be that, in the clinical setting, such 
agents will have synergy with drugs such as bevacizumab, 
which is thought to cause treatment-induced hypoxia 
and subsequent HIF‑1α activation that lead to drug 
resistance [46].

Several novel compounds are under investigation. 
Bortezomib is a proteasome inhibitor already approved 
for the treatment of hematological malignancies. A 
pharmacodynamic study in a metastatic colorectal cancer 
phase II trial observed downregulation of CAIX in 
response to bortezomib, suggesting a disrupted hypoxia 
response to this compound [51]. Another novel com­
pound, PX-478, inhibits HIF‑1α transcription and HIF‑1α 
protein levels in a p53- and pVHL-independent manner 
[52]. YC-1, a synthetic compound, has been widely used 
in the laboratory setting to investigate the physiological 
and pathological role of HIF. In cancer cell lines, YC-1 
inhibits HIF through factor inhibiting HIF (FIH)-depen­
dent inactivation of the carboxy-terminal transactivation 
domain (CAD) of HIF‑1α [53].

A high-throughput cell-based screen has shown that 
another compound, DJ12, inhibits HIF‑inducible trans­
cription [54]. Another approach demonstrated that 
ascorbate increases the activity of prolyl hydroxylase 
enzymes, leading to HIF downregulation, in cells treated 

Table 1. Prognostic studies in breast cancer looking at HIF‑1α and HIF‑2α overexpression detected via 
immunohistochemistry

		  Number		  Association of marker on 
Group	 Tumor type	 of cases	 Overall outcome	 multivariate analysis 

Schindl et al. [90]	 LN+ early BC 	 206	 Unfavorable prognosis for HIF‑1α. HIF‑2α not assessed	 DFS HR = 1.4; P = 0.001

Trastour et al. [91]	 Early BC	 132	 Unfavorable prognosis for HIF‑1α. HIF‑2α not assessed	 DFS HR = 4.2; P < 0.001

Bos et al. [92]	 Stage 1-2 early BC	 150	 Trend toward unfavorable prognosis for HIF‑1α 	 OS HR = 2.16; P = 0.12
			   (significant for LN- patients).	 DFS HR = 1.67; P = 0.12
			   HIF‑2α not assessed

Generali et al. [36]	 T2-4 N0-1 early BC	 187	 Unfavorable prognosis for CAIX. Treatment response for 	 DFS (CAIX) HR = NR; P = 0.02
			   HIF‑1α. HIF‑2α not assessed	 Clinical response to treatment 
				    (HIF‑1α): P < 0.05 

Gruber et al. [93]	 LN+ early BC	 77	 Trend toward unfavorable prognosis for HIF‑1α. 	 OS HR = 2.66; P = 0.09
			   HIF‑2α not assessed	 DFS HR = 1.68; P = 0.30

Yamamoto et al. [94]	 Early BC	 171	 Unfavorable prognosis for HIF‑1α. HIF‑2α not assessed	 OS HR = 2.15; P = 0.02
				    DFS HR = 1.59; P = 0.02

Jubb et al. [3]	 Meta-analysis 	 923	 Trend toward unfavorable prognosis for HIF‑1α. 	 OS HR = 1.80
			   HIF‑2α not assessed	 (95% CI 1.32 to 2.47)

Schoppmann et al. [95]	 LN+ early BC	 119	 Unfavorable prognosis for HIF‑1α	 OS HR = NR; P = 0.03
				    DFS HR = NR; P = 0.04

Vleugel et al. [21]	 Early BC	 166	 Unfavorable prognosis for HIF‑1α	 DFS HR = 2.23; P = 0.01

Dales et al. [96]	 Early BC	 745	 Unfavorable prognosis for HIF‑1α	 OS HR = NR; P = 0.030
				    DFS HR = NR; P = 0.158

Helczynska et al. [97]	 Early BC	 512	 Unfavorable prognosis for HIF‑2α. 	 BCSS (HIF‑2α) HR = 2.3; P = 0.003
			   No significant association for HIF‑1α	 DFS (HIF‑2α) HR = 1.6; P = 0.03

BC, breast cancer; BCSS, breast cancer-specific survival; CI, confidence interval; LN+, lymph node positive; LN-, lymph node negative; DFS, disease free survival; HR, 
hazard ratio; NR, not reported; OS, overall survival.
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with anti-surface transferrin receptor (TFR) antibody 
[55]. The anti-HIF activity of two other novel anticancer 
drugs, AJM290 and AW464, has also been examined; 
both compounds inhibit HIF‑1α transcription at the 
CAD and DNA-binding domains, although they also 
inhibit HIF degradation [56].

Gene therapy that utilizes HIF‑1α expression and the 
promoter regions of its downstream target genes (that is, 
HREs) would be an attractive approach. This might allow 
the targeted delivery of anticancer agents to tumor tissue. 
For example, it has been shown that hypoxic cells can be 
targeted by combining a HIF‑responsive promoter with 
an oncovirus that is armed with the interleukin-4 gene. 
Treatment of xenografts using this technique led to 
maintained tumor regression [57]. One group demon­
strated that HIF‑1α-based gene therapy can eradicate 
small EL-4 xenografts and also that this therapy augments 
the efficacy of the antiangiogenic agent angiostatin [58]. 
Nevertheless, the great variability in the level of hypoxia, 
and hence HIF‑1α expression, within a single tumor 
presents a challenge to such approaches.

Methods for detecting hypoxia
Methods that can reliably detect hypoxic tumors are 
crucial because of the roles of hypoxia in tumor prognosis 

and in resistance to specific treatments. Various methods 
are used to detect hypoxia in solid cancer tumors, but 
contrasting results have been reported [5]. O2 measure­
ment with a polarographic O2 needle electrode is the 
most direct method, but it has limitations, including its 
invasiveness, its inability to represent the whole tumor, 
and the possibility that it can generate false positive 
determinations as a result of oxygen consumption by the 
electrodes. In the clinic, the assessment of hypoxia is 
moving towards the evaluation of endogenous and exo­
genous markers. Immunohistochemistry is widely used 
in patient biopsies, and this method can detect both 
endogenous and exogenous markers of hypoxia. Among 
the endogenous markers, particular interest has been 
paid to HIF‑1α and some of its target genes, including 
GLUT1, CAIX and VEGF. One limitation that is asso­
ciated with these markers is their potential regulation by 
non-hypoxia-related factors (for example, pH or the 
concentrations of metabolites such as glucose and gluta­
mine). Exogenous markers of hypoxia include nitroimi­
dazole compounds derived from imidazole (for example, 
pimonidazole, 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-
pentafluoropropyl)-acetamide (EF5)). These compounds 
need to be systemically administered to patients and 
generate stable adducts with proteins in hypoxic 

Table 2. HIF‑1α inhibitors and proposed mechanisms of action

Name	 Class of drug	 Mechanism of action 	 Current status as a cancer therapy

Digoxin	 Cardiac glycoside	 Inhibits HIF‑1-dependent gene transcription 	 Under evaluation in early phase trials in lung and 
		  but precise mechanism unclear	 prostate cancer (www.clinicaltrials.gov)

AFP464	 Aminoflavine prodrug 	 Inhibition of HIF‑1α mRNA expression but	 Early evidence of clinical activity in heavily pre-treated
	 (DNA-damaging agent)	 precise mechanism unclear	 advanced solid tumors in phase 1 trials [98]

Topotecan and 	 Topoisomerase-1	 Inhibition of HIF‑1α-mediated protein	 Topotecan licensed for treatment of advanced lung,  
EZN-2208	 inhibitors and cytotoxic	 translation by a Top1-dependent but 	 cervical and ovarian cancer. 
	 agents	 DNA damage-independent mechanism	 EZN-2208 undergoing evaluation in phase 2 trials for  
			   treatment of metastatic breast and colorectal cancer  
			   (www.clinicaltrials.gov)

Doxorubicin and 	 Anthracyclines	 Inhibits binding of HIF‑1α to the HRE sequence	 Anthracyclines licensed to treat breast, bladder and lung 
daunorubicin			   cancer, several hematological malignancies and sarcoma

Echinomycin	 Quinoxaline antibiotic 	 Inhibits HIF‑1 binding to DNA	 Minimal evidence of efficacy in the treatment of solid  
			   tumors in phase 2 trials [99]

Everolimus	 mTOR inhibitor	 Inhibits HIF‑1α target protein translation	 Licensed for treatment of advanced renal cancer

Bortezomib	 Proteasome inhibitor	 Repression of HIF‑1α transcriptional activity 	 Licensed for treatment of multiple myeloma. Under 
		  by inhibiting recruitment of the p300 	 evaluation in early-phase trials in solid tumors 
		  co-activator by FIH	

Geldanamycin or 	 HSP-90 inhibitor	 Failure to recruit HIF‑1α cofactors for	 Early evidence of clinical activity in advanced solid and 
tanespimycin		  downstream protein transcription	 hematological malignancies in early phase trials  
			   [100,101] 

PX-478	 Melphalan derivative	 Inhibits HIF‑1α protein levels and HIF‑1 	 Early evidence of clinical activity in advanced solid 
		  transcriptional activity in a p53- and pVHL-	 tumors in a phase 1 trial [102] 
		  independent manner	

Compound DJ12		  Downregulates the mRNA of downstream 	 Preclinical 
		  targets of HIF‑α, inhibits HIF‑1α transactivation  
		  activity by blocking HIF‑1α HRE-DNA binding

YC-1	 Synthetic 	 FIH-dependent inactivation of the CAD of HIF‑1α	 Pre-clinical 
	 benzylindazole derivative
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conditions; these can be detected by the use of specific 
antibodies on tumor biopsies. The main limitations of 
these methods are their invasiveness (they are performed 
on tumor biopsies), non-representative sampling (the 
tumor can be very heterogeneous and biopsies can be 
non-representative of the whole tumor), and the inability 
to perform multiple evaluations so as to follow changes 
in tumor oxygenation after treatment [59].

A more recently developed technique for imaging 
hypoxic tumors that is now being implemented in the 
clinic is the use of nitroimidazole derivatives in combi­
nation with positron emission tomography (PET). Several 
derivatives of nitroimidazole are now being studied in 
order to identify the best tracer with high uptake and low 
toxicity [60,61]. Among these, 18F-fluoromisonidazole 
(18F-MISO) is the most extensively studied, and it has an 
investigational new drug (IND) authorization from the 
Food and Drug Administration (FDA) as an investiga­
tional product for use in humans. Although the 18F-
MISO-PET technique is non-invasive and allows the 
serial imaging of hypoxia, the accumulation of 18F-MISO 
in hypoxic tumors is relatively low. This results in a low 
signal-to-noise ratio and hence a poor contrast between 
hypoxic tumors and surrounding normal tissues (for a 
detailed review, see [62]).

The imaging of tumor hypoxia by blood oxygen level-
dependent magnetic resonance imaging (BOLD MRI) is 
also being investigated. This modality relies on the 
detection of paramagnetic deoxyhemoglobin within red 
blood cells, and does not require administration of exoge­
nous tracers. The main limitations of this technique are 
the fact that it does not measure tissue pO2 directly and 
could be influenced by blood flow, tumor perfusion and 
other vascular parameters.

In addition to these difficulties, it is becoming clear 
that assessing one single factor, such as HIF1, does not 
reflect the complexity of a tumor response to hypoxia, 
and hence is unlikely to be a reliable marker [3,5]. More 
comprehensive approaches for the detection and selec­
tion of hypoxic tumors for therapy have therefore been 
investigated.

Gene signatures of hypoxia
The identification by global expression analysis of multi­
ple genes (that is, gene signatures) and pathways that are 
responsive to hypoxia might overcome most of the 
limitations of current markers and other detection 
methods. Such gene expression signatures also have the 
potential to reflect the complexity of the tumor hypoxia 
response. They could, therefore, be used to reveal the 
nature of the hypoxic response to a specific therapy in 
terms of gene networks and hence improve our under­
standing of mechanisms of resistance. This would enable 
not only the identification of prognostic and predictive 

markers but also the selection of novel targets for 
therapeutics.

Several groups have derived hypoxia gene expression 
profiles that have prognostic significance in breast cancer 
[47,63-67] (Table 3). For example, Winter et al. [47] 
defined an in vivo hypoxia ‘metagene’ (signature) in head 
and neck squamous cell carcinomas (HNSCCs) by 
clustering (that is, by finding) genes whose expression 
pattern was similar to that of a set of well-known 
hypoxia-regulated genes, including CAIX, GLUT1 and 
VEGF. The metagene contained 99 genes, several of 
which were previously described as hypoxia-responsive 
in vitro. These genes included Aldolase A (ALDOA), 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 
Placental growth factor (PGF) and BNIP3 as well as some 
new genes that could play an important role in the 
hypoxic response in vivo, such as Metaxin 1 (MTX1), 
Breast cancer anti-estrogen resistance 1 (BCAR1), 
Proteasome subunit α type-7 (PSMA7) and Solute carrier 
organic anion transporter family member 1B3 (SLCO1B3). 
This signature proved to be prognostic in independent 
HNSCC and breast cancer series [47]. Some of these 
genes are being studied in ongoing follow-up studies. An 
example is Iron sulfur cluster scaffold homolog (ISCU), a 
gene that was downregulated in the hypoxia signature; 
this gene was subsequently found to be a target of the 
hypoxia-regulated hsa-miR-210 and a good prognostic 
factor [68].Chi et al. [65] analyzed the gene expression 
profiles of mammary and renal tubular epithelial cells 
that were exposed to low O2 levels. They derived a signa­
ture called ‘epithelial hypoxia signature’ that presented 
coordinated variation in several human cancers. Of 
particular note, they found that a set of renal tumors 
could be stratified into two groups, one with high and 
one with low expression of the hypoxia-response genes. 
The high-hypoxia-response group included clear-cell 
renal cell carcinomas, which frequently present high 
levels of HIF‑1α and/or HIF‑2α because of the loss of 
functional pVHL. The signature could also differentiate 
between low- and high-signature-expression groups in a 
set of ovarian cancer samples and two different sets of 
breast cancer samples. In one of the breast cancer sets, 
Chi et al. [65] found a significant association between 
high expression of the hypoxia signature and mutation in 
p53, negative estrogen receptor status and high grade 
tumors. In all of these sample sets, those patients 
assigned to the high-expression group had the worse 
prognosis. Finally, Chi et al. [65] also showed that the 
generated signature was an independent predictor of 
poor prognosis, proving its potential in clinical decision-
making. Seigneuric et al. [67] used the data from Chi et 
al.’s study [65] to distinguish gene signatures in human 
mammary epithelial cells that are associated with early 
(1, 3 and 6 hours) hypoxic exposure rather than late (after 
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12 and 24 hours) hypoxic exposure. They showed that 
only the early-exposure gene signature had significant 
prognostic power, allowing the stratification of a cohort 
of patients with breast cancer into two groups: those with 
low expression of the early hypoxic response signature 
(better prognosis) and those with high expression of this 
signature (worse prognosis).

More recently, Buffa et al. [63] derived a hypoxia 
signature that is common to HNSCC and breast cancers. 
They used a meta-analysis approach to generate a more 
general and robust signature that might better reflect 
tumor response to hypoxia in vivo and be better suited 
for clinical use. They showed that a reduced metagene 
including as few as three genes (VEGFA, Solute carrier 
family 2 member 1 (SLC2A1; also known as GLUT1) and 
Phosphoglycerate mutase 1 (PGAM1)) had prognostic 
power similar to that of a large signature in independent 
breast cancer, HNSCC and lung cancer series. But they 
also validated a network-based approach that considers 
multiple hypoxia prototype genes, builds a co-expression 
network of hypoxia-related genes across clinical series, 
and then uses the network to generate biologically and 
clinically relevant hypotheses. For example, Buffa et al. 
[63] showed that genes involved in angiogenesis (VEGFA), 
glucose metabolism (SLC2A1, PGAM1, Enolase I (ENOI), 
LDHA, Triosephosphate isomerase II (TPII) and ALDOA) 
and cell cycling (CDKN3) were among those most likely 
to be over-expressed both in hypoxic HNSCC and 
hypoxic breast cancers. These genes could all contribute 
to global survival pathways triggered by hypoxia in vivo.

Despite cell-line diversity, the derivation of gene signa­
tures using in vitro model systems can be powerful 
because some of the fundamental processes are con­
served and clean experimental design can be easily 

applied. Conversely, the in vivo tumor system requires 
consideration of multiple cell types, microenvironmental 
changes and three-dimensional complexity. Approaches 
that integrate knowledge of gene function garnered from 
in vitro experiments with the analysis of expression in 
vivo might deliver signatures that better represent the 
hypoxia response that occurs in cancer.

Gene signatures reflect the hypoxic response at the 
transcriptional level, which is only part of the story of the 
overall effect of hypoxia. miRNA signatures are therefore 
under investigation as post-transcriptional regulators of 
the hypoxic response.

miRNA signatures of hypoxia
miRNAs are small non-coding RNAs that control gene 
expression post-transcriptionally by regulating mRNA 
translation and stability [69,70]. The expression of 
miRNAs in tumors and normal tissues has been com­
pared, and the differences have been found to affect 
cellular processes, including proliferation, apoptosis and 
metabolism, with the miRNAs acting as either oncogenes 
or tumor suppressors [71,72]. Furthermore, changes in 
miRNA expression have been associated with clinico-
pathological features and disease outcome in different 
tumor types, including breast cancer [73-76].

Several hypoxia-inducible miRNAs have been identi­
fied and two studies have focused their attention on 
breast cancer [77,78]. Kulshreshtha et al. [78] compiled a 
list of miRNAs that were consistently upregulated across 
a panel of breast and colon cancer cell lines exposed to 
hypoxia. Moreover, several of the miRNAs that were 
included in this signature were also overexpressed in 
breast cancer and other solid tumors, suggesting that 
hypoxia could be a key factor in miRNA modulation in 

Table 3. Prognostic hypoxia gene expression signatures in breast cancer

Study	 Description and size of gene signature	 Hazard ratio (HR)	 P-value

Chi et al. [65] 	 Signature of hypoxia upregulated genes in epithelial cells in vitro: 253 genes	 MFS HR = 2.164	 0.004
		  Death HR = 2.387 	 0.003

Seigneuric et al. [67] 	 Early signature of hypoxia: 15 genes	 DSS HR = NR	 <0.05

Winter et al. [47]	 Signature of hypoxia-related genes in HNSCC: 99 genes	 NKI data set:
		  MFS HR = 2.83	 <0.001

Buffa et al. [63] 	 Common signature of hypoxia-related genes in HNSCC and breast cancer 	 NKI data set:	
	 in vivo: 51 genes	 MSF HR = 4.15	 0.002
		  GSE2034 data set:	  
		  RFS HR = 3.22	 0.001 
		  GSE3494 data set:	  
		  DSS HR = 3.16	 0.042

Buffa et al. [103] 	 Reduced common signature of hypoxia-related genes in HNSCC and breast 	 NKI data set:
	 cancer: NK genes	 MSF HR = 5.58 (NK = 3)	 <0.001 
		  GSE2034 data set: 
		  RFS HR = 4.15 (NK = 10)	 <0.001 
		  GSE3494 data set: 
		  DSS HR = 4.27 (NK = 2)	 0.006

DSS, disease-specific survival; GSE, genomic special event; MSF, metastasis-free survival; NK, number of genes; NKI, Netherlands Cancer Institute; NR, not reported; 
RFS, recurrence-free survival.
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cancer [78]. �e study by Camps et al. [77] generated a 
short list of miRNAs that were induced by hypoxia in a 
breast cancer cell line. �e cells were grown under 
conditions of either normoxia (21% O2) or hypoxia (1% 
O2) for 16 hours. Among the list of 377 miRNAs 
analyzed, they found that only four were significantly 
upregulated in hypoxia, with only three showing a greater 
than two-fold induction. Among these, hsa-miR-210 
appeared to be the most robustly and consistently up-
regulated. �is miRNA has been validated as a HIF-1 
target [77,78] and its expression levels significantly corre-
lated with a hypoxia gene expression signature in breast 
cancer [47], suggesting that it is also regulated by hypoxia 
in vivo. Furthermore, hsa-miR-210 expression was prog-
nostic in a study of 210 breast cancers [77].

Great effort is now being directed towards unveiling 
targets that contribute to tumor aggressiveness. Com-
parative analysis of hypoxia-regulated miRNAs using 
gene expression profiles might add valuable information 
to the interrogation of target-prediction algorithms. 
Several targets have been investigated to date (Figure  2 
and Table 4) showing roles for hsa-miR-210 in cell-cycle 
regulation, apoptosis, iron accumulation, the production 
of reactive oxygen species, cell metabolism, DNA repair, 
tumor initiation, and the survival, migration and differen-
tiation of endothelial cells (Figure 2) [68,79-87]. Of parti-
cular note, our group recently showed the major 
biological effects of miR-210 in targeting ISCU, all of 
which are likely to contribute to important phenotypes in 
cancer. By downregulating ISCU, miR-210 decreases the 
activity of Kreb’s cycle enzymes and mitochondrial 
function, contributes to an increase in free radical 
generation in hypoxia, increases cell survival under 
hypoxia, induces a switch to glycolysis in both normoxia 

and hypoxia, and upregulates the iron uptake required 
for cell growth. Importantly, analysis of more than 900 
patients with different tumor types, including breast 
cancer, showed that the suppression of ISCU was corre-
lated with a worse prognosis [68].

Although most studies on miRNAs have focused their 
attention on miR-210, other miRNAs could contribute to 
the hypoxic response. For example, experimental evidence 
suggests that miR-26 and miR-107 might have roles in cell 
survival in a low-oxygen environment [78]. A recent study 
has shown that miR-495 is robustly up regulated in a subset 
of a breast cancer stem cell population, both in stabilized 
cancer cell lines and in primary cells [88], where it 
promotes colony formation and tumorigenesis. Moreover, 
miR-495 is involved in main tenance of the cancer stem cell 
phenotype, in invasion by suppression of E-cadherin, and 
in hypoxia resistance through modulation of the REDD1-
mTOR pathway.

Finally, the ability to detect miRNAs (for example, hsa-
miR-210) in plasma and urine, as well as in tumor tissues, 
further increases the clinical potential of these small 
molecules [89].

Although this young field is undergoing rapid 
development, there are as yet no signatures that can be 
used in the clinical setting, but the results show that this 
area of research has great potential.

Conclusions
Hypoxia occurs in most solid tumors, and has been 
associated not only with malignant progression and poor 

Figure 2. Cell functions modulated by hsa-miR-210 in hypoxia. 
See Table 4 for a full list of targets, full names and related references.
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Table 4. hsa-miR-210 validated targets

Gene Gene 
symbol name Reference(s)

EFNA3 Ephrin-A3 [81,104]

NPTX1 Neuronal pentraxin 1 [104]

E2F3 E2F transcription factor 3 [82]

RAD52 Rad52 homolog [80]

MNT MAX-binding protein [87]

HOXA1 Homeobox A1 [83]

HOXA9 Homeobox A9 [83]

FGFRL1 Fibroblast growth factor-like 1 [83,86]

CASP8P Caspase8-associated protein 2 [84]

ACVR1B Activin receptor 1B [105]

BDNF Brain-derived neurotrophic factor [106]

PTPN1 Tyrosine-protein phosphatase non-receptor type 1 [106]

P4HB Protein disulphide isomerase [106]

GPD1L Glycerol-3-phosphatase dehydrogenase 1-like [106]

ISCU Iron sulfur cluster sca�old homolog [68,107]

COX10 Cytochrome c oxidase assembly protein [108]

SDHD Succinate dehydrogenase complex subunit D [85]
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prognosis but also with specific resistance to anti-cancer 
therapies. Many biomarkers have been suggested for 
hypoxia, but they all have limitations. Furthermore, it is 
unlikely that a single-gene biomarker will be sufficient to 
characterize the complexity of a tumor’s response to 
hypoxia.

Several gene and miRNA expression signatures have 
also been suggested, and these have revealed common­
alities and specificities of the hypoxia response in 
different experimental cancer systems both in vitro and 
in vivo. These signatures promise greater prognostic and 
therapeutic potential than single-gene markers, but the 
specific interactions between these signatures, the HIF 
response and responses to treatments remain unclear. A 
full understanding of these interactions is of paramount 
importance both when assigning the most beneficial 
treatment to patients and when designing new thera­
peutic strategies, such as combined modality treatments 
and multi-target or multiple-hit strategies. In this 
respect, the validation, optimization and assessment of 
these potential biomarkers in prospective clinical studies 
and randomized trials are increasingly needed to trans­
form them into useful clinical tools.
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