
Background
Tumors are characterized by uncontrolled proliferation 
of abnormal cells that frequently display morphological 
and functional heterogeneity [1]. Two models have been 
proposed to explain the heterogeneity of tumors, namely 
the stochastic [2] and hierarchical models [3]. �e 
stochastic model suggests that all cells within a tumor are 
biologically homogenous and, therefore, have equal 
capacity to regenerate the tumor. �e hierarchical model, 
also known as the cancer stem cell model, proposes that 
only a small subset of tumor cells, designated cancer stem 
cells (CSCs) or tumor-initiating cells, within a tumor 
exhibit the capacity to initiate and sustain tumor growth. 
CSCs possess two important properties similar to those 
of normal stem cells, namely self-renewal and 

differentiation capacity [4]. Although CSCs were first 
identified 26 years ago in acute myelogenous leukemia 
with the cell surface marker CD34+CD38- [5], the isola-
tion of these cells from solid tumors was accomplished 
only in 2003 [6]. �is study showed that CD44+CD24- 
cells from breast cancer specimens are able to generate 
xenografts that phenotypically resemble the initial tumor. 
Furthermore, the xenografts could be serially passed to 
generate similar tumors, indicating the self-renewal 
ability of these cells. Following this seminal study, CSCs 
were isolated from various solid tumors such as brain, 
colon, pancreas, lung and liver. �e isolation of CSCs was 
based on a series of cell surface markers, including CD133 
[7,8], CD44 [6,9], CD90 [10], CD24 [11] and EpCAM 
[12,13], as well as functional markers such as ALDH1 [14] 
and ABCB5 [15], and side population (SP) cells [16].

Hepatocellular carcinoma (HCC) is a deadly disease 
with no promising therapeutic options. It is the fifth most 
prevalent cancer in the world, and the third leading cause 
of cancer-related death, with an annual death rate 
exceeding 500,000. �e incidence of HCC among the 
population between the ages of 45 and 60 years is rising 
dramatically, particularly in the western world, due to an 
increase in hepatitis C virus infection, and alcoholic and 
non-alcoholic fatty liver disease. While surgical resection/
ablation and liver transplantation are poten tially curative, 
the high mortality is due to diagnosis at an advanced 
stage [17,18]. Although the multikinase inhibitor sorafenib 
has recently been approved for treatment of HCC, poor 
response of the late-stage cancer to this and almost all 
other available chemotherapeutic agents continues to be 
a major obstacle to successful HCC therapy. �e 5-year 
survival rate for this cancer is only 5%, and the death rate 
is expected to rise in the next 20 years. Primary HCC, the 
most common malignant tumor, accounts for >90% of all 
primary liver cancer. Its development is a complex, 
multistep process. Elucidation of the molecular mecha-
nisms of liver carcinogenesis is critical to determine the 
specific pathways involved in the initiation and progres-
sion of HCC that will eventually lead to identification of 
novel molecular targets for therapy. As observed in other 
solid tumors, recent studies suggested that CSCs may be 
involved in the development of liver cancer [10,13,19-21]. 
�is review will summarize recent progress in the 
potential role of CSCs in hepatocarcinogenesis.
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CSCs in hepatocellular carcinoma
In an early attempt to isolate liver-cancer-specific CSCs, 
SP cells with CSC characteristics were separated from a 
total population of HCC cells [19]. SP sorting was initially 
used to detect hematopoietic stem cells exploiting the 
ability of these cells to efflux Hoechst 33342 through an 
ATP-binding cassette membrane transporter. This 
property contributes to multidrug resistance of these 
cells, and this is a key feature of CSCs. Only a very small 
proportion of HCC cells (0.25% in Huh7 and 0.8% in 
PLC/RPL5 cells) possess a SP phenotype; these show 
higher proliferative and tumorigenic potential compared 
with non-SP cells. Indeed, 1 × 103 SP cells were sufficient 
for tumor formation in xenograft transplantation while at 
least 1 × 106 unsorted HCC cells were required to form a 
tumor, indicating enrichment of CSCs in SP cells. Despite 
these key observations, it remains uncertain whether SP 
cells are authentic CSCs, since Hoechst 33342 is cyto
toxic, and non-SP cells are unable to grow in the presence 
of this dye. Consequently, differential resistance to 
Hoechst 33342 rather than the intrinsic difference in the 
stem cell properties between SP and non-SP cells could 
contribute to the difference in tumor formation between 
these cell types.

In the ensuing several years, significant efforts were 
made to identify CSCs in HCC cell lines, mouse models 
and primary HCC (Table 1). CD133, also known as 
prominin-1 (Prom1), encoding a pentaspan transmem
brane glycoprotein [22,23], has been used as a marker for 
both somatic stem cells [24-26] and CSCs in different 
tissues, including brain [7], colon [8], pancreas [27] and 
skin [28]. Recently, several studies have shown that 
CD133+ cells isolated from various liver cancer cell lines 
[20,21,29] exhibit the properties of CSCs and only a small 
fraction of CD133+ cells produce hepatocellular carci
noma in severe combined immunodeficiency mice. 
Although CD133 has been used to identify CSCs from 
HCC cell lines and mouse models, some studies have 
suggested that CD133- cells can form tumors in immuno
deficient mice at higher cell number [21], indicating that 
CD133 may not be an effective CSC marker in HCC. To 
identify CSCs in human primary HCC specimens, Yang 
et al. [10] used CD90 cell surface markers and found that, 
unlike CD90- cells, CD90+ cells from HCC specimens as 
well as patient blood samples exhibited tumorigenic 
potential. This study suggested that CD90 is a potent 
marker of liver CSCs and that circulating CSCs probably 
contributed to tumor metastasis.

Since CSCs share key features with normal stem cells, 
including self-renewal and differentiation, it is conceivable 
that these cells may possess similar cell surface markers. 
Indeed, some markers, such as EpCAM [13] and OV6 [30], 
that were used to isolate hepatic stem cells have also been 
shown to function as specific markers for CSCs in HCC.

Cellular origin of liver CSCs
It has been proposed that CSCs may arise through 
mutations accrued in normal tissue stem cells or more 
differentiated tissue progenitor cells [31]. Recently, crypt 
cells expressing Lgr5 in small intestine and colon tissues 
have been identified as long-lived stem cells [32]. Apc 
deletion in these cells was necessary and sufficient to 
produce tumors in vivo [32]. Another study showed that 
CD133 marks the intestinal stem cells, and over
production of β-catenin can transform CD133+ cells into 
CSCs and generate tumors [33]. Those studies suggested 
that normal stem cells may be the origin of CSCs. In 
contrast, introduction of MLL-AF9 into committed 
granulocyte macrophage progenitors produced leukemia 
stem cells [34], suggesting that CSCs could also be 
derived from committed progenitors.

The existence of stem cells in adult liver has been 
debated for many years. Recent studies have suggested 
that hepatic progenitor cells (HPCs) or oval cells, a subset 
of small epithelial cells with an oval nucleus located in 
the bile ductules and canals of Hering in adult liver [35], 
may function as stem cells in adult liver. HPCs can be 
activated to proliferate and differentiate into hepatocytes 
and biliary lineage in response to severe liver damage 
[36-41], such as that induced by treatment of rats with 
2-acetylaminofluorene after partial hepatectomy (AAF/
PH model) [42]. Under this condition, hepatocytes were 
unable to proliferate to replace the lost tissues. HPCs are, 
therefore, considered to be the bipotent liver stem cells.

HPCs play an important role in carcinogenesis in at 
least some subtypes of HCC. The number of HPCs in 
human chronic liver diseases, such as hepatitis B and C 
infection and alcoholic liver disease, are directly related 
to disease severity, suggesting that oval cell proliferation 
is associated with increased risk of development of HCC 

Table 1. Cell surface markers of liver cancer stem cells

Marker	 Cell line/primary tumor	 Reference

Side 	 Huh7 and PLC/PRF/5 cell lines	 Chiba et al. 
population		  (2006) [19]

CD133+	 SMMC-7721 cell line, human primary 	 Yin et al. (2007) 
	 HCC	 [20]

CD133+	 Huh7, PLC8024, Hep3B cell lines, human 	 Ma et al. (2007) 
	 primary HCC 	 [21]

CD133+ CD44+	 SMMC-7721, MHCC-LM3 and MHCC-97L 	 Zhu et al. (2010) 
	 cell lines	 [29]

CD90	 HepG2, Hep3B, PLC, Huh7, MHCC97L, 	 Yang et al. 
	 and MHCC97H cell lines, human primary 	 (2008) [10] 
	 HCC	

EpCAM	 HuH1, HuH7, and Hep3B cell lines, 	 Yamashita et al. 
	 human primary HCC 	 (2009) [13]

OV6	 Huh7, PLC, SMMC7721, Hep3B, and 	 Yang et al. 
	 HepG2 cell lines	 (2008) [30]

HCC, hepatocellular carcinoma.
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in chronic liver disease [41]. A recent study has shown 
that certain subtypes of primary human HCCs with poor 
prognosis may be derived from HPCs [43], based on the 
identification of human HCCs that exhibited gene 
expression profiles identical to that of hepatoblasts. 
Further, this subtype of HCC can be distinguished from 
other types by the markers of HPCs. HPCs are also 
activated in several mouse models of hepatocarcino
genesis, suggesting their potential role in the initiation 
and progression of liver cancer [44-48]. Fang et al. [44] 
found that oval cell proliferation was prominent from the 
initial liver injury stage to the occurrence and develop
ment of HCC in a HCC model fed 3,3’-diaminobenzidine. 
More importantly, blocking the expansion of oval cells by 
targeting c-Kit with imatinib mesylate significantly 
reduced liver tumor formation in mice fed a choline-
deficient, ethionine-supplemented diet [49]. Similarly, 
TNF was upregulated during oval cell proliferation 
induced by a choline-deficient, ethionine-supplemented 
diet, and was produced by oval cells [50]. Oval cell 
proliferation and tumorigenesis were substantially im
paired in TNF receptor type 1 knockout mice. These two 
studies suggested that oval cells may be directly involved 
in the initiation and progression of liver cancer in this 
mouse model. More direct evidence for the involvement 
of oval cells in hepatocarcinogenesis was revealed in a 
study that demonstrated tumor formation in nude mice 
upon subcutaneous injection of p53 null oval cells [46]. 
Further studies showed that CD133+CD45- oval cells 
isolated from Mat1a (methionine adenosyltransferase 1a) 
[51] and Pten (phosphatase and tensin homolog deleted 
on chromosome 10) [52] knockout mice exhibited greater 
tumorigenic capacity. Furthermore, these oval cells 
exhibited high levels of resistance to chemotherapeutic 
agents, consistent with cancer stem cell characteristics. 
These findings, together with the notion that CSCs may 

arise from adult stem cells or progenitor cells, suggest 
that liver CSCs are probably derived from HPCs.

However, it should be noted that not all HCCs arise 
from HPCs, since oval cell proliferation is very rare in 
diethylnitrosamine-induced HCC. It is widely accepted 
that the HCC induced by this carcinogen develops from 
hepatocytes [53]. Based on these observations, the exact 
origin of CSCs in the liver appears to depend on the 
etiology of the cancer.

Signaling pathways involved in maintaining the 
characteristics of liver CSCs
The maintenance of self-renewal and tumorigenic capacity 
of CSCs involves several cancer-related signaling path
ways, including Bmi-1 [54], Wnt/β-catenin [55], Notch 
[56], and Sonic Hedgehog [55,57] (Figure 1). Bmi-1, a 
polycomb group (PcG) gene, has previously been shown 
to regulate the self-renewal of hematopoietic stem cells 
[58]. Overexpression of Bmi-1 enhanced self-renewal of 
both hematopoietic stem cells and neural stem cells, 
indicating that Bmi-1 may function as a universal deter
minant of stem cell self-renewal. Overexpression of 
Bmi-1 in HPCs dramatically promoted the self-renewal 
of these cells, and transplantation of Bmi-1-transduced 
HPCs produced tumors in vivo, indicating the important 
role of Bmi-1 in regulating the self-renewal of normal or 
cancer stem cells in the liver [54]. Notably, upregulation 
of Bmi-1 has also frequently been observed in human 
primary HCC [59].

The Wnt/β-catenin signaling pathway can play a critical 
role in stem cell proliferation and potency maintenance 
[60], as well as differentiation of stem cells in a variety of 
tissues [61]. The activation of Wnt/β-catenin has been 
shown to be associated with hepatocyte proliferation in 
liver development, regeneration and tumor growth [62]. 
As observed in Bmi-1, mutation in β-catenin and 

Figure 1. Proposed model for the cell origin and transformation of liver cancer stem cells. Dysregulation of signaling pathways involved in 
self-renewal and proliferation of normal stem cells (hepatic progenitor cells, HPCs) is likely to cause uncontrolled proliferation and increased self-
renewal capacity of HPCs, resulting in the transformation of HPCs into cancer stem cells (CSCs). HCC, hepatocellular carcinoma.
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consistent activation of this signaling pathway signifi
cantly enhanced the self-renewal of HPCs and promoted 
cancer initiation [54].

Although the Notch signaling pathway plays an 
important role in regulating stem cell self-renewal and 
differentiation [3], it may function as a tumor suppressor 
or oncogene in different tissues depending on other 
signaling pathways [63]. In breast tissue, the Notch 
signaling pathway was shown to be upregulated, and 
inhibition of the Notch pathway reduced the formation 
of mammosphere, an indicator of stem-like cells [56]. 
Similarly, inhibition of the Notch pathway selectively 
depleted glioblastoma CSCs [64]. The role of the Notch 
signaling pathway in HCC is controversial. One study 
found that activation of Notch1 signaling inhibits growth 
of human HCC [65], suggesting that it may function as a 
tumor suppressor. In contrast, another study showed that 
the Notch1 signaling pathway is constitutively activated 
in HCC [66], indicating a potential oncogenic role of this 
pathway in HCC.

A variety of tumors exhibit activating mutations or up
regulation of Sonic Hedgehog (HH) pathway compo
nents, such as PTCH1, SMO and GLI1[67]. Recent 
studies showed that the HH pathway also regulates the 
self-renewal ability of CSCs in breast cancer [68], glioma 
[69] and multiple myeloma [70]. Although the role of the 
HH pathway in liver CSCs has not been well charac
terized, this pathway is known to be activated in HCC 
[71]. It would be of interest to investigate its potential 
role in regulating the self-renewal ability of liver CSCs.

Therapeutic implications of liver CSCs
Recent studies have shown that CSCs are more resistant 
to chemotherapy [11,72] and radiotherapy [73] compared 
with non-CSCs within the same tumor, indicating that 
CSCs may be responsible for the recurrence and eventual 
metastasis of these tumors. It is conceivable that targeting 
liver CSCs would provide new alternatives to treat HCC, 
since HCC is more resistant to traditional therapies. 
Drugs targeting signaling pathways involved in regulating 
the self-renewal ability of CSCs may prove to be effective 
in HCC therapy. For example, cyclopamine, which targets 
the HH pathway, significantly reduces the self-renewal of 
glioma [74], whereas gamma secretase inhibitor, which 
targets the Notch pathway, decreases self-renewal of 
breast CSCs [75]. It is worth investigating whether such 
drugs can also effectively eliminate liver CSCs. Another 
strategy to target CSCs is to induce differentiation of liver 
CSCs. In this context, Yin et al. [76] have shown that the 
forced expression of HNF4α, a central regulator of the 
differentiated hepatocyte phenotype, in CSCs can induce 
the differentiation of CSCs into mature hepatocytes and 
abolish their tumorigenesis in mice, implicating a novel 
strategy for HCC therapy.

Conclusions
Although significant progress has been made in liver 
cancer stem cell research in HCC, many issues remain to 
be resolved, such as the identity and origin of liver CSCs. 
Several markers are currently used to isolate CSCs. 
Although CSCs thus identified are known to form tumors 
in a xenograft model, it is not known whether these 
markers coexist or whether they are present in different 
cells. Additionally, the origin of liver CSCs needs to be 
studied by a lineage tracing study. The development of 
single cell sorting and in vivo imaging technology, as well 
as the use of mouse HCC models and syngeneic trans
plantation, will facilitate the identification of unique and 
specific liver CSC markers. It is critical to elucidate the 
detailed mechanisms underlying the transformation of 
liver CSCs. Comparing the gene expression profiles 
between normal stem cells (HPCs) and CSCs by micro
array analysis or next-generation sequencing may prove 
to be useful to identify the dysregulated oncogenes or 
tumor suppressors and signaling pathways that are 
involved in the transformation of liver CSCs. Finally, 
these findings are likely to lead to the development of 
new diagnostic markers and therapeutic targets for HCC.
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