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Genome-wide association studies are coming for human infectious diseases
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Abstract

A genetic contribution to infectious disease in human populations has long been suspected and is
now supported by more than 50 years of epidemiological evidence showing, for example, infection
rates to be much higher than disease rates. In successful family studies of high-penetrance effects,
single gene mutations have been identified that reveal a molecular mechanism leading to increased
risk of a specific infectious disease. However, in population-based studies, genetic variants
conferring host susceptibility to various infectious diseases have been difficult to uncover.
Although mutations such as that in the CCR5 gene, which confers protection against HIV
infection, have been reliably discovered, polymorphisms affecting larger proportions of a
population have been hard to prove definitively. The recent arrival of the genome-wide
association study format, currently being applied to Kawasaki disease, tuberculosis, malaria, HIV,
dengue and others, gives us hope that these challenges can finally be met, with implications for

population-based treatment and prognosis strategies.

Infectious agents continue to have a major influence on
human evolution as a result of the widespread nature of
these agents in the environment and the predominance of
infectious disease in children, resulting in a clear impact on
allele transmission depending on the outcome of this early
encounter. For example, in areas with endemic dengue
disease, such as Vietnam, seroprevalence studies show that
infection has occurred in over 88% of children by the age of
15 and yet disease that results in hospitalization occurs in
less than 0.1% [1]. Is this infectious disease distribution
predominantly due to widespread general resistance over
multiple genes or is susceptibility due to rare mutations in a
few specific genes? This question on the nature of the genetic
change, rare or common, has remained, despite numerous
population studies of infectious disease.

Candidate gene studies

Although family-specific mutations have been shown to have
indisputable consequences in infectious disease [2-5], their
effects in the general population are thought to be small [6].
There are also some very well established population-based
mutations with clear effects on disease, from sickle cell trait
protection against malaria [7] to CCR5, a known receptor of
HIV, defective alleles in which have been associated with
resistance to HIV infection [8]. Indeed, rare mutations
leading to increased susceptibility to infectious disease can
be identified in the general population, when looked for
carefully [9]. Interestingly, the evidence from this field of
work is currently pointing towards the concept of ‘one gene,
one infection’ [10]. The strong evidence that a mutation in a
single gene frequently leads to increased susceptibility to
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only one infection is also supported by animal studies, which
have used forward genetics to show that, although many
genes may be involved in recognizing a single pathogen,
mutations in only one or a few lead to increased suscep-
tibility to disease [11].

Despite the clear evidence identifying these so called ‘major
genes’, it is unlikely that mutations in single genes are the
only causes of genetic susceptibility in a population. So far,
the work done to extend this approach to a population basis
has used candidate gene studies and, in general, when they
harmonize with the major genes findings, significant
insights can be gained from them. For example, in
meningococcal disease the ‘major genes’ lie in the comple-
ment pathway, with mutations in many of these genes (each
restricted to just a few individuals) leading to greatly
increased risk of disease [12]. Using one of these genes (that
encoding mannose binding lectin) as a candidate gene in a
population-based study has supported and extended these
findings to the general population, revealing a polymor-
phism that can alter the initiation of this pathway, and thus
the susceptibility to disease, in a large number of
individuals [13]. However, candidate gene approaches are
ultimately restricted to those few genes that can be strongly
implicated by current knowledge, and there is little
understanding of their overall contribution to disease in
relation to other genes.

Moving towards genome-wide studies

Two of the first efforts to apply a genome-wide approach to
multi-factorial infectious diseases were done in schistoso-
miasis and tuberculosis, carried out in Brazilian and African
families, respectively [14,15]. The tools available at the time
only allowed linkage studies using a few hundred genetic
markers spread across the whole genome. Nowadays, data
generated after the sequencing of the human genome and
the HapMap project have identified millions of single
nucleotide polymorphisms facilitating the implementation
of genome-wide association studies (GWASs). The GWAS
approach, although new, is already well described and has
significant methodological improvements compared with
previous approaches; GWAS analysis has already enabled
the successful identification and replication of novel genes
for several complex disorders such as Crohn’s disease,
rheumatoid arthritis, type 1 and type 2 diabetes, macular
degeneration and prostate cancer [16-18].

The first GWAS in infectious disease was done in 2007,
when Fellay et al. [19] determined genetic components
influencing the viral load of HIV-positive patients during the
asymptomatic phase of the disease. However, this study did
not investigate host genetic susceptibility. The first GWAS of
infectious disease susceptibility was carried out in a group of
patients affected with Kawasaki disease [20], a self-limiting
acute vasculitis mostly affecting children below 5 years of
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age [21]. This study started by genotyping a small group of
European origin patients and controls with an Affymetrix
250K Nsp chip; a follow-up group comprising affected
children and parents was then used to confirm the initial
findings; and finally a third stage, including fine-mapping of
eight associated genes, further validated the genetic asso-
ciations. Interestingly, five of the eight fine-mapped genes
formed a connected network that also showed significant
differences in transcript levels between acute and conva-
lescent stages of the disease, suggesting that multiple genes
in a pathway may be involved in susceptibility to disease,
something that may turn out to be important for other
infectious diseases. However, in comparison with disorders
such as inflammatory bowel disease or macular degenera-
tion, for which the small number of genetic variants detected
were shown to confer a highly significant disease risk to
carriers [17,22], the study on Kawasaki disease [20] has not
found such a profound effect, hinting that infectious disease
may not yield easily to the GWAS approach. It is also interes-
ting to see that the HLA locus, such a clear candidate region
for infectious disease because its role in discriminating self
from non-self was thought to have evolved to protect from
infection, did not cause the dominant association seen in
many autoimmune diseases [23,24], and this may also turn
out to be true for many infectious disease studies.

Facing new challenges

There are several challenges for the application of GWAS to
determine genetic variants that confer susceptibility to
infectious diseases. First, the current design of commercially
available single nucleotide polymorphism chips is skewed
towards common variants, with at least 1% presence in the
population, following the ‘common variant, common disease’
hypothesis [25,26]. However, if susceptibility to an infec-
tious disease is caused by one or a combination of rare
variants, as previously reported for other disorders such as
autism [27], we would not be able to detect them using the
current technology. In that scenario, sequencing of the
candidate genes would be the most direct way to tackle the
problem. Second, structural variants, such as copy number
variants that were barely analyzed in the past, are currently
being investigated in more detail and have been successfully
linked to susceptibility to schizophrenia [28,29]. Recent
development of new technologies as well as analysis tools
will facilitate the study of copy number variants, which
might potentially be involved in host susceptibility to infec-
tious diseases. Third, a landmark paper by the Wellcome
Trust Case Control Consortium [16] introduced the concept
of using the same set of population controls, without
detailed phenotype information for different diseases, in
case-control studies. Although there is the possibility of
misclassification, meaning that a proportion of controls
might have the disease or might develop it in the future, this
could be a very useful approach for the many infectious
diseases for which the incidence rates in the general
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population are low (less than 1%), such as meningococcal
disease, severe dengue and others. It is worth noting,
however, that for infectious disease the environmental agent
(the pathogen) that triggers the disease is usually known and
past exposure to the agent is often easily measured (using
serology), criteria that are frequently not available in diseases
such as cancer or autoimmunity. This means that it is
possible in infectious disease to select controls with known
(antibody detected) exposure, but without disease. Finally,
another important aspect to take into account is the role of
the pathogen’s genetic variability and its interaction with
host genetics. An interesting study by Caws et al. [30] has
hinted at a relationship between host and pathogen geno-
types in the development of tuberculosis.

When these challenges are successfully addressed, a GWAS
will offer substantial insights into the role of common
variation in an infectious disease and, with its comprehen-
sive nature, will hopefully enable us to elucidate the involve-
ment of multiple genes or previously unsuspected pathways
in disease.

Clinical significance

Moving from genetic discovery to direct clinical relevance
has not been as difficult for infectious disease as it has been
for many other diseases, perhaps because there is a relatively
detailed understanding of the immune system. For instance,
patients with Mendelian diseases characterized by dimin-
ished production of interferon or interferon pathway activa-
tion could be treated with recombinant forms of interferon,
helping them to mount an immune response against various
pathogens. Although there is still no treatment using the
CCR5 gene, it has been a tempting target for therapies in the
HIV field and may yet prove to be effective. In another
example, a polymorphism associated with increased serum
concentrations of complement Factor H was revealed to be a
susceptibility factor for meningococcal disease, as Factor H
bound to and protected the causative bacteria from comple-
ment attack [31]. This is a finding with implications for the
vaccine community, which showed that antibodies that
prevent this binding enable complement-mediated killing of
the bacteria and, when incorporated into a vaccine, has been
the first successful strategy to prevent group B meningo-
coccal disease [32].

With the arrival of the GWAS approach to infectious disease,
we can expect many more genetic loci to be revealed,
molecular pathways to disease described and thus thera-
peutic targets identified, with the hope that these can be
quickly translated into treatments.

In conclusion, the first GWASs of infectious diseases have
been published [19,20], and more will come in the near
future, with important implications for our understanding of
these diseases. Although initial hints suggest that big hits
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will not lead the way, the unraveling of disease mechanisms
through networks of genes should reveal novel ways of
tackling infectious diseases in the clinic.
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