
Epidemiology of early-onset obesity
Childhood obesity is one of the most serious public 
health challenges of the 21st century. �is global health 
problem is gradually affecting both developed and 
develop ing countries, particularly in urban settings. In 
the United States, childhood overweight and childhood 
obesity are defined as a body mass index (BMI; (Weight 
in kg)/(Height in m)²) greater than or equal to the 85th 
and 95th percentile for gender and age, respectively [1]. 

In Europe, the European Children Obesity Group defined 
childhood overweight and childhood obesity as a BMI 
greater than or equal to 90th percentile to 97th percentile 
for gender and age [2]. A reference population has been 
established to propose an international standard defini-
tion for childhood overweight and childhood obesity [3]. 
�e prevalence of overweight and obesity in childhood is 
increasing worldwide at an alarming rate: today, about 
one in three children and adolescents is overweight or 
obese in the United States; over the past three decades, 
the prevalence of obesity has tripled for children 2 to 
5  years old and youths 12 to 19 years old, and has 
quadrupled for children 6 to 11 years old [4]. According 
to the World Health Organization and to the Inter-
national Obesity Task Force, more than 155 million 
children and adolescents worldwide are overweight and 
40 million are clearly obese.

Early-onset obesity is associated with an increased 
incidence of adult obesity [5], type 2 diabetes [6], non-
alcoholic fatty liver disease [7] and cardiovascular risk 
factors [8]. Obese children have an increased risk of 
develop ing obesity-related co-morbidities, such as ortho-
pedic, ophthalmologic and renal complications [9], 
respira tory diseases such as obstructive sleep apnea [10], 
and psychosocial impairment [11]. Obesity-associated 
complications are now believed to be leading, for the first 
time in modern history, to a decrease in life expectancy 
of 2 to 5 years for the US generation that is currently 
young [12].

Today, medical and behavioral interventions as 
treatment for obesity in childhood remain scarce and 
largely ineffective. �ere are currently three main treat-
ment modalities for obesity: lifestyle modifications, 
pharmacotherapy and bariatric surgery. �e cornerstone 
of lifestyle modifications includes changes to dietary and 
exercise habits [13]. However, less than 5% of the obese 
people who follow these recommendations effectively 
lose weight and maintain that weight loss [14]. �e long-
term safety and efficacy of the anti-obesity drugs (orlistat 
and sibutramine) have not been determined in children 
or adolescents, mainly because pharmacotherapy is not 
routinely proposed as a treatment for childhood obesity 
[15]. Bariatric surgery is a new treatment for morbid 
obesity in children but the relevance of an invasive 
surgery procedure in childhood or adolescence is still 
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under debate [16]. A recent study [17] reported the first 
case of laparoscopic sleeve gastrectomy successfully 
performed in a 6yearold morbidly obese child. Because 
of the lack of efficiency of the current approaches to 
reverse childhood obesity, prevention was proposed as 
the first line of treatment in 2003 by the American 
Academy of Pediatrics [18]. In its policy statement, the 
Academy promoted breastfeeding, healthy eating habits 
and physical activity and encouraged limitation of 
television viewing. However, current prevention pro
grams have had little success and have proven ineffective 
in reversing the rising rates of childhood obesity [19]. 
These disappointing observations reveal the urgent need 
to better understand the complex molecular and 
physiologic mechanisms involved in human obesity in 
order to propose better disease prevention and care.

Early-onset obesity is a heritable disorder
The epidemic of obesity is attributed to recent environ
mental changes. Easy access to highenergy palatable 
food, combined with decreased physical activity levels, 
have undoubtedly had a major role in the global increase 
in the prevalence of earlyonset obesity [20]. Beyond ‘the 
big two’, other putative environmental contributors to the 
recent obesity epidemic have been proposed, such as an 
obesityprone intrauterine environment, assortative 
mating among obese individuals, decreasing sleep dura
tion, infections and lowgrade inflammation or the 
increasingly controlled ambient temperature [21]. How
ever, if these factors are responsible for the global shift in 
BMI distribution, genetic factors must explain most of 
the interindividual differences in obesity risk observed 
in populations (in other words, where each individual sits 
on the BMI distribution) [22]. In fact, the risk of obesity 
in a child is ten times higher if both parents are obese 
than if both parents are of normal weight [23].

Heritability represents the proportion of phenotypic 
variation in a population that is attributable to genetic 
variation among individuals. According to twin and 
family studies, heritability estimates for BMI during 
childhood or adolescence are between 0.20 and 0.86 
[22,2429]. Longitudinal studies have demonstrated that 
heritability estimates tend to increase from childhood to 
preadolescence [26,29] and from preadolescence to 
adolescence [27], probably because individuals at genetic 
risk for obesity increasingly select ‘obesogenic’ environ
ments (environments that promote gaining weight) 
correlated with their genetic propensities. In addition, 
physical activity reduces the influence of genetic factors 
on BMI in young adults, and it is likely that these results 
are transposable to children or adolescents [30]. Even if 
heritability estimations of BMI are similar in boys and 
girls, some sets of genes explaining the BMI variation 
may, at least in part, be different in males and females 

[24]. The values of heritability for BMI in childhood 
remain high even in the obesogenic environment currently 
present in developed countries such as the US [22,28].

Monogenic forms of early-onset obesity
Several singlegene disorders result in severe, earlyonset 
obesity. These monogenic forms of earlyonset obesity 
show the biological importance of the mutant gene in 
bodyweight control. The main genes affected in these 
monogenic disorders (leptin (LEP), leptin receptor 
(LEPR), proopiomelanocortin (POMC), prohormone 
conver tase 1 (PCSK1), melanocortin 4 receptor (MC4R), 
brainderived neurotrophic factor (BDNF) and neuro
trophic tyrosine kinase receptor type 2 (NTRK2)) encode 
hormones or neurotransmitters and their hypothalamic 
receptors of the highly conserved leptinmelanocortin 
pathway, which is critical for the regulation of food intake 
and body weight [31]. A case of Singleminded homolog 1 
(SIM1) haploinsufficiency has been reported in one 
patient with earlyonset obesity [32]. The SIM1 gene 
encodes a transcription factor essential for formation of 
the supraoptic and paraventricular (PVN) nuclei of the 
hypothalamus. Additional evidence of a role of SIM1 
haploinsufficiency in human obesity was provided by the 
finding of rare nonsynonymous SIM1 mutations en
riched in severely obese patients in comparison with lean 
individuals [33]. Recent data have linked SIM1 haplo
insufficiency with Mendelian obesity and a PraderWilli
like syndrome (F Stutzmann et al., personal communi
cation). The loss of function C256Y mutation in the 
winglesstype MMTV integration site family, member 
10B (WNT10B) gene, which encodes a signaling protein 
that negatively regulates adipocyte differentiation as part 
of the Wnt signaling pathway, was shown to cosegregate 
with overweight or obesity in one pedigree, but further 
studies are needed to confirm the link between this gene 
and monogenic earlyonset obesity [34].

The majority of genes involved in monogenic forms of 
earlyonset obesity were identified as candidate genes on 
the basis of previous evidence from physiological studies 
and animal models. Children with a strong family history 
of obesity and issued from consanguineous families are of 
particular interest for genetic diagnosis of earlyonset 
obesity. Monogenic obesity forms are frequently accom
panied by additional clinical features (for example, severe 
hyperphagia, intestinal troubles) and normal develop
ment, except for BDNF, SIM1 and NTRK2 deficiencies, 
which are associated with cognitive impairment, 
behavioral problems or syndromic features [35,36].

The focus on the leptinmelanocortin pathway as a 
target for pharmacological intervention in patients with 
severe obesity turned out to be effective. The best 
illustration is certainly the case of a child with congenital 
leptin deficiency who was treated with subcutaneous 
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injections of recombinant human leptin, leading to the 
correction of all the phenotypic abnormalities seen in 
this patient [37].

Syndromes that include early-onset obesity
Complex obesity syndromes are defined as Mendelian 
disorders with obesity as a clinical feature that are also 
associated with mental retardation, dysmorphic features 
and organspecific developmental abnormalities. Over 30 
syndromes that include obesity have been identified but 
only some of them, such as the WAGR (Wilm’s tumor, 
aniridia, genitourinary anomalies and mental retardation) 
[38], PraderWilli [39], BardetBiedl [40], Alström [41] 
and Cohen [42] syndromes, have been associated with 
earlyonset obesity.

The genetic basis for these syndromic forms of early
onset obesity has been elucidated, revealing an important 
genetic heterogeneity. Molecular genetic analyses of 
individuals with WAGR syndrome have revealed that the 
Wilm’s tumor 1 (WT1) and Paired box 6 (PAX6) genes 
are involved with this syndrome, but deletions in the 
BDNF gene were recently shown to explain the pheno
type of obesity found in a subgroup of patients with the 
WAGR syndrome [38]. PraderWilli syndrome (PWS) 
can have several etiologies but it is always associated with 
loss of expression of paternally transmitted genes on 
15q1113. A microdeletion of the HBII85 small nucleo
lar RNAs (snoRNAs) caused the PWS phenotype in a 
child [43] and recently another de novo microdeletion at 
chromosome 15q1113 that encompasses noncoding 
snoRNAs was identified in a patient affected with hyper
phagia, earlyonset obesity, hypogonadism and mild 
learn ing difficulties but diagnosed negative for PWS [44]. 
BardetBiedl syndrome (BBS) has extensive genetic 
hetero geneity and so far 14 genes have been associated 
with it [40]. The BBS proteins are implicated in the func
tion of primary cilia and intraflagellar transport [45]. 
Finally, Alström and Cohen syndromes [41,42] are asso
ciated with childhood truncal obesity and have a unique 
genetic cause. For Alström syndrome, children usually 
have normal birth weight but become obese during their 
first year, resulting in childhood truncal obesity [41]. 
ALMS1, the only gene currently known to be associated 
with Alström syndrome [41], codes for a protein involved 
in the normal functioning of primary cilia. The only gene 
so far involved in Cohen syndrome is COH1, which encodes 
a transmembrane protein of unknown function [42].

Polygenic forms of early-onset obesity: early 
studies
Linkage studies
Genomewide linkage scans involve the genotyping of 
families using highly polymorphic markers that are 
positioned across the whole genome, followed by a 

calculation of the degree of linkage of the marker to a 
disease trait. Genomewide linkage approaches led to the 
successful identification of numerous genes involved in 
Mendelian human diseases, but their relevance in the 
identification of genes contributing to complex diseases 
has been more controversial [46]. More than 60 linkage 
studies for obesityrelated traits were published in the 
2006 update of the Obesity Map [47], but only three 
studies involved pedigrees with children or adolescents 
[4850].

The only significant evidence of linkage for childhood 
obesity was obtained on chromosome 6q22.31q23.2 in 
115 French pedigrees [49]. Subsequent positional cloning 
led to the identification of a threeallele risk haplotype 
(K121Q, IVS20delT11, A→G +1044TGA; abbreviated to 
QdelTG) in the ectonucleotide pyrophosphatase/phos
pho diesterase 1 (ENPP1) gene that showed association 
with childhood obesity and contributed in part to the 
observed linkage of chromosome 6q with childhood 
obesity [51]. The haplotype was associated with increased 
serum levels of soluble ENPP1 protein in children. The 
function of the gene can be directly related to obesity: 
ENPP1 inhibits insulin receptor activity [52], and up or 
downregulation of ENPP1 expression in liver is asso
ciated with decreased or enhanced insulin sensitivity, 
respec tively, in rodents [53,54]. Insulin resistance in 
children is a strong predictor of future weight gain 
[55,56]. The association of the ENPP1 risk haplotype with 
childhood obesity has so far been replicated in only one 
(Bottcher et al.) of two studies [57,58], and further 
replication studies followed by a large metaanalysis are 
needed to provide an unequivocal confirmation. As 
observed for other complex diseases, linkage approaches 
have been mostly unsuccessful in identifying new obesity 
genes. Statistical simulations predict that odds ratios 
(ORs) must be high (more than 2) to induce significant 
peaks of linkage in modest family sample sets, making 
genomewide linkage scans more relevant to identifying 
gene variants with high ORs [59].

Candidate gene association studies
Candidate gene approaches have been performed for 
hundreds of genes, and genetic variations in at least 127 
candidates have been associated with obesity in at least 
one study according to the 2006 update of the Human 
Obesity Map [47]. However, the risk of reporting a false 
positive result is extremely high in single underpowered 
studies as a result of the ‘winner’s curse’ effect (the 
‘winner’s curse’ effect leads to an overrepresentation of 
genetic studies with positive results in the literature), and 
only three genes have reached a convincing level of 
association with childhood and adult obesity using meta
analytic strategies. Two coding nonsynonymous gainof
function polymorphisms (V103I and I251L) in MC4R 
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have been reproducibly associated with protection from 
obesity onset in both children and adults. A meta
analysis of 15 independent studies was performed for the 
I251L polymorphism (OR = 0.38 to 0.71, P = 3 × 105), 
and 37 independent studies were collected for the study 
of the V103I polymorphism (OR = 0.71 to 0.88, 
P < 0.0001) [60,61]. More recently, the nonsynonymous 
variants N221D and the Q665ES690T cluster in the 
PCSK1 gene were consistently associated with obesity in 
adults and children in eight independent casecontrol or 
familybased cohorts of European ancestry (Poverall = 7 × 108 
and Poverall = 2 × 1012, respectively) [62]. Functional 
analysis showed a 10.4% reduction of the N221Dmutant 
PC1/3 protein catalytic activity [62]. The association of 
the N221D variant with BMI and obesity was confirmed 
in two large adult European populations [63,64]. MC4R 
and PCSK1 can be considered as relevant candidate 
genes for polygenic studies because these two genes 
contribute to monogenic forms of earlyonset obesity 
[6567]. As the endocannabinoid receptor 1 (CNR1) is 
the target of the antiobesity drug Accomplia, a candidate 
gene approach was performed with the CNR1 gene and 
led to the identification of two intronic polymorphisms 
(rs806381 and rs2023239) that were consistently 
associated with BMI level and childhood or adult obesity 
risk in a metaanalysis of 5,750 people [68]. Five indepen
dent studies in adults confirmed the potential role of 
poly morphisms at the CNR1 locus in bodyweight 
control [6973].

Recent genomic research
The genome-wide association study revolution
The dramatic progress in the human genome single 
nucleo tide polymorphism (SNP) map through the 
International HapMap Consortium [74], combined with 
the development of new methods for highthroughput 
genotyping using SNP microarrays, have made compre
hen sive genomewide association studies (GWASs) 
possible [75]. In the past 3 years, genomewide asso
ciation studies have led to the identification of more than 
250 genetic loci that are reproducibly associated with 
complex diseaserelated traits [76], including several loci 
associated with obesity risk and BMI variation [77].

The first GWAS for earlyonset obesity was published 
in 2007 [78]. DNA array information was available for 
487 extremely obese young German people and 442 
healthy lean German controls, and replication studies 
were performed with 644 independent families with at 
least one offspring and both parents obese [78]. This 
modestly powered but pioneering study identified 
variation in the Fat mass and obesity associated (FTO) 
gene as consistently associated with earlyonset obesity 
and confirmed FTO as a major contributor to polygenic 
obesity  FTO had previously been linked by GWAS or 

population structure approaches to type 2 diabetes and 
obesity susceptibility [7981].

In 2009, a GWAS was published for earlyonset and 
morbid adult obesity in a French population. DNA arrays 
were genotyped in 685 obese children, 695 morbidly 
obese adults (obese patients were from families with a 
high recurrence of obesity), 685 lean children and 731 
lean adults. The best association signals were further 
investigated in 14,186 European adults or children [82]. 
This study independently confirmed at the genomewide 
level of significance the association of variants in FTO 
and near MC4R with obesity risk and BMI variation 
(Poverall for obesity risk and BMI variation = 1 × 1028 and 5 × 1015, 
respectively). The association signal near MC4R has been 
previously identified in a GWAS metaanalysis for BMI 
in European adults [83] and in a GWAS for waist circum
ference in Asian Indians [84]. Three new obesitypredis
posing loci (NiemannPick disease, type C1 (NPC1), the 
transcription factor cMAF (MAF) and phospho tri
esteraserelated (PTER)) were identified at the genome
wide level of significance in the whole sample [82].

Very recently, a joint analysis of GWAS for earlyonset 
extreme obesity in French and German study groups 
identified gene variants in or near FTO, MC4R, trans
membrane protein 18 (TMEM18), serologically defined 
colon cancer antigen 8 (SDCCAG8) and TRF1interacting 
ankyrinrelated ADPribose polymerase/methionine 
sulfoxide reductase A (the TNKS/MSRA gene cluster) 
[85]. The TMEM18 locus was previously identified as 
associated with adult BMI in the international GIANT 
consortium [64], and the TNKS/MSRA gene cluster had 
previously been linked to waist circumference in adults 
[86]. Interestingly, some of the new loci associated with 
BMI in adults and identified by GWAS approaches 
[64,80,83,87] have also been associated with childhood 
extreme obesity (TMEM18, Glucosamine6phosphate 
deaminase 2 (GNPDA2) and Neuronal growth regulator 1 
(NEGR1)) or BMI in children (Insulin induced gene 2 
(INSIG2), FTO, MC4R, TMEM18, GNPDA2, NEGR1, 
BDNF, and Potassium channel tetramerization domain 
containing 15 (KCTD15)) [64,88]. Several of the likely 
causal obesitypredisposing genes are highly expressed or 
known to act in the central nervous system, emphasizing, 
as with Mendelian forms of obesity, a key role for central 
regulation of food intake in predisposition to obesity 
[64].

Genome structural variation and early-onset obesity
Humans are usually diploid and they have two copies of 
each autosomal region, one per chromosome. This may 
differ for particular genetic regions as a result of 
structural variation, such as copy number variation 
(CNV), which includes deletion, duplication, transloca
tion and inversion of chromosomes. CNVs are either 
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inherited or caused by de novo mutation. It has recently 
been suggested that common CNVs could explain a 
substantial part of heritability in complex diseases [89]. A 
common 45kb deletion upstream of the NEGR1 gene 
tagged by the polymorphism rs2815752 has been identi
fied as associated with BMI variation in adults by a 
GWAS approach [64]. This deletion was consistently 
associated with BMI variation and risk for extreme 
obesity in children [64,88].

Two reports have recently highlighted the contribution 
of rare CNVs to the genetic architecture of earlyonset 
obesity [90,91]. A recent study including 300 Caucasians 
with severe earlyonset obesity (143 of whom also had 
developmental delay) and 7,366 controls showed that 
large, rare chromosomal deletions (located on chromo
somes 3, 6, 8, 10, 11, 15, 16, 17 and 22) were twice as 
frequent in patients as in controls [90]. A 16p11.2 dele
tion previously associated with autism [92,93], schizo
phrenia [94] or mental retardation [95] was carried by 
five patients with severe earlyonset obesity and develop
mental delays and was the commonest CNV associated 
with obesity [90]. The association between deletions on 
chromosome 16p11.2 and obesity and developmental 
delays was confirmed in a second study involving more 
than 16,000 people [91]. The presence of deletions at 
16p11.2 led to an incomplete penetrance of obesity in 
childhood but to a fully penetrant phenotype of severe 
obesity in adulthood in this study [91]. In the two studies 
[90,91], 16p11.2 deletions arose de novo in some patients 
whereas they were inherited in others. The 16p11.2 dele
tions accounted for 0.7% of morbid obesity cases without 
developmental features and were the second most 
frequent genetic cause of obesity after point mutations in 
MC4R [91]. An inverse phenotype of underweight has 
been observed in carriers of duplications on chromosome 
16p11.2, confirming a key role of this region in body 
weight regulation [96].

CNV analysis has enabled detection of chromosomal 
regions (including a single gene or a contiguous set of 
genes) associated with obesity and thus the identification 
of new candidate genes implicated in disease suscepti
bility. The 16p11.2 deletion interval identified in these 
studies encompasses about 30 genes. SH2B adapter 
protein 1 (SH2B1) is one of these genes and is an excellent 
candidate gene to link the 16p11.2 deletion to obesity 
because its encodes a Janus kinase 2 (JAK2)interacting 
protein that has been recently proposed as an endoge
nous enhancer of leptin sensitivity [97]. Disruption of 
SH2B1 in mice induces severe hyperphagia, obesity, 
severe insulin resistance and hyperleptinemia [97]. Inver
sely, neuronspecific overexpression of SH2B1 in mice 
protects against the leptin resistance and obesity that are 
induced by a highfat diet [98]. In accordance with the 
phenotype observed in SH2B1deficient mice, Bochukova 

and colleagues observed that carriers of the 16p11.2 
deletion, in addition to obesity, exhibited hyperphagia 
and severe insulin resistance disproportionate to the 
degree of obesity [90]. Several GWASs have reproducibly 
identified SH2B1 as a risk locus for common obesity 
[64,87]. These data suggest a key role of the SH2B1 gene 
in the 16p11.2 deletionrelated obesity phenotype, even if 
we cannot exclude a role for additional genes in the 
deleted interval.

Gene-environment interactions
Environmental factors, such as diet, physical activity, age, 
gender, socioeconomic status and ethnicity, among 
others, have been shown to modulate the risk for obesity 
[20]. As obesity genetics makes further progress, con
sider able interest has recently been turned to the 
potential interactions between obesitypredisposing gene 
variants and specific environmental situations. A signifi
cant interaction between the effects of highfat diet and 
FTO genotype on BMI has been reported recently, the 
observed increase in BMI across FTO genotypes being 
restricted to people who reported a highfat diet [99]. An 
interaction between the Apolipoprotein AII (APOA2) 
265T>C SNP and high saturated fat in relation to BMI 
and obesity has been observed in three independent 
populations [100]. This SNP was not identified by recent 
GWAS approaches, suggesting that some associations 
restricted to specific environments can be missed in 
analyses that do not take into account the modifying 
effect of environmental covariables.

An interaction between the FTO obesity risk genotype 
and physical activity on BMI variation or obesity risk has 
been consistently reported in nine independent studies 
including adults and adolescents [99,101108]. These 
results strongly suggest that the increased risk of obesity 
provided by FTO variants can be attenuated through 
physical activity.

Age and gender can be viewed as specific environ
mental conditions. Agedependent associations of gene 
variants have been reported: the genetic influence of 
obesity risk common variants in FTO was shown to 
become progressively stronger across lifespan [26,109], 
whereas gene variation in PCSK1 had more pronounced 
effects on BMI level and obesity risk in young than in late 
adulthood [63]. An agedependent penetrance of MC4R 
pathogenic mutations on obesity has been found in 
multigenerational pedigrees, the effect of mutations on 
the obesity phenotype being amplified by the develop
ment of an ‘obesogenic’ environment [110].

Females are at higher risk of developing extreme forms 
of obesity than males. These discrepancies could be 
explained, at least in part, by femalespecific genetic 
asso ciations or by stronger effect sizes of genetic variants 
in females. This was observed for the functional 
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polymorphism R125W in the TBC1 domain family 
member 1 (TBC1D1) gene. The effect of this variant on 
severe obesity risk was restricted to females in two 
independent populations [111,112]. The observed effect 
of MC4R pathogenic mutations on BMI was about twice 
as strong in females as in males in two independent 
populations [110,113].

The wellestablished negative association between BMI 
and educational status was not found in MC4R lossof 
function mutation carriers, although a significant relation
ship was seen in MC4R nonmutation carriers of the 
corresponding pedigrees [110]. These results suggest that a 
high level of education has no protective effect on obesity 
risk in the presence of MC4R pathogenic mutations.

Recently, the first evidence of ethnicgroupspecific 
association with obesity has been reported. Variants in 
intronic regions of SIM1 were strongly associated with 
BMI and obesity risk (P = 4 × 107) in Pima Indians. The 
SNPs showing strongest association were genotyped in 
French individuals but no association with obesity was 
found [114]. As linkage disequilibrium blocks (linkage 
disequilibrium is the nonrandom association between 
alleles at different loci) can vary according to the ethnic 
background, an approach involving tagging of the SIM1 
locus was applied in French Europeans and excluded a 
major contribution of SIM1 common variants in poly
genic obesity susceptibility, a result confirmed by the 
absence of genomewide significant association in the 
SIM1 gene region in recent GWASs [115]. Together, the 
studies reviewed in this section highlight the complex 
interplay between genetic susceptibility to obesity and 
the experienced environment.

Genomics of early-onset obesity
The transcriptome
Differences in the adipose tissue transcriptome have been 
observed depending on obesity status [116]. A 28day 
very low calorie diet in obese patients induced changes in 
the adipose tissue transcriptome that render their 
expression pattern closer to the profile of lean people 
[117]. A 7day hypercaloric diet induced significant 
differ ences in the adipose tissue expression pattern in 
both lean and obese people. However, six genes were 
differently expressed in response to overfeeding only in 
lean people, suggesting that there is a protective 
mechanism at the molecular level in response to an 
energy surplus that is lacking in obese patients [118].

A recent study [119] assessed the impact of food intake 
on gene expression in human peripheral blood. Leonard
son and colleagues [119] found that geneexpression 
variations are strongly connected to clinical traits related 
to obesity, such as hip circumference, but depend on the 
nutritional state (fasted or fed). The response to food 
intake has a significant genetic component and could 

facilitate the dissection of the underlying causes of 
obesity. The composition of the diet can also modulate 
gene expression. Highfat versus lowfat diets have been 
associated with changes in the hypothalamic transcrip
tome of mice [120]. Beyond the simple observation of 
changes in transcriptome according to disease status or 
diet interventions, adipose gene expression signatures 
may help differentiate responders from nonresponders 
to lowfat hypocaloric diet and pave the way for future 
personalized nutritional approaches [121].

Testing DNA markers for association with complex 
traits at the genomewide scale is now a reality. However, 
more information on how variations in DNA affect 
complex physiological processes may come from trans
criptome studies [122]. Gene expression can be used as 
an intermediary phenotype for complex traits in order to 
refine the disease phenotype and identify pathways and 
genes associated with that disease phenotype [123]. By 
integrating DNA variation and gene expression data in 
liver (an important tissue involved in metabolic diseases) 
with the complex trait obesity in segregating mouse 
populations, and by validating the best candidate genes 
in knockout or transgenic mice, Eric Schadt and 
colleagues [123126] identified ten causal genes involved 
in variation of obesityassociated traits. An integrative 
approach combining gene expression adipose data in 
humans and mice, genomewide linkage and association 
mapping and a gene network approach [127] identified a 
core network module of genes involved in the inflamma
tory and immune response as causally associated with 
obesityrelated traits. Although this study [127] did not 
provide further functional support for candidate obesity
susceptibility genes, the expression quantitative trait 
locus approach in well targeted tissues is promising and 
may contribute to increasing the list of causal genes 
involved in human obesity in the near future.

The gut microbiome
The gut microbiota can be considered as an environ
mental factor that regulates fat storage [128]. Significant 
alterations in the composition of the intestinal microbiota 
have been identified in obese mice, suggesting that 
differences in intestinal flora may explain some of the risk 
for obesity [129]. The proportion of beneficial Bacter
oidetes bacteria is lower in obese adult patients than in 
lean counterparts, and this proportion increases with 
weight loss induced by a low calorie diet [130]. Whereas 
individuals from the same families had a closer bacterial 
community structure than unrelated individuals, a 
comparable degree of covariation was found between 
adult monozygotic and dizygotic twin pairs, suggesting 
that the gut microbiome does not have a heritable 
component but is strongly influenced by the environment 
[131]. A casecontrol study in Indian children [132] 
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showed quantitative differences in intestinal Faecali
bacterium prausnitzii in obese versus lean children. 
Another study conducted with children [133] found that 
aberrant intestinal flora enriched in Staphylococcus 
aureus precedes the development of overweight later in 
childhood and could be used as a biomarker for the early 
evaluation of the predisposition to obesity. A recently 
published human gut microbial catalog of 3.3 million 
nonredundant microbial genes [134] will help assess 
with greater accuracy the impact of metagenome 
diversity on obesity in humans.

Prospects for prediction, prevention and 
personalized medicine
Agnostic genomewide approaches have illuminated un
expected biological pathways and provided a useful list of 
new candidate genes for further exploration [76]. 
However, the use of genetic information to predict 
individual risk of disease in clinical practice remains the 
‘Holy Grail’ for many geneticists [135]. Common variants 
recently identified by GWASs have a limited predictive 
value for obesity risk [136,137]. International consortia 
are currently working to increase the list of validated 

obesitypredisposing SNPs, and sophisticated method
olo gies (such as machinelearning approaches) are emerg
ing to make better use of SNP information con tained in 
DNA arrays for disease prediction [138]. However, it is 
likely that common variation will explain only a modest 
fraction of heritability for earlyonset obesity (for example 
FTO, the strongest predictor of obesity, is responsible for 
only 1% of the total heritability) [139].

These results reemphasize the importance of mono
genic obesity in elucidating the heritability of obesity 
because rare deleterious mutations in the eight well
established monogenic obesity genes (LEP, LEPR, POMC, 
PCSK1, MC4R, BDNF, SIM1 and NTRK2) could explain 
up to 10% of cases with earlyonset extreme obesity. 
Mutations in these single genes are sufficient by them
selves to cause a strong effect on phenotype. People 
carrying these mutations have severe hyperphagia and 
earlyonset obesity but also some other specific features 
(such as a low level of circulating leptin despite severe 
obesity, a susceptibility to infections, intestinal dysfunc
tion, reactive hypoglycemia, red hair and pale skin and 
adrenal insufficiency) that can guide gene sequencing 
approaches (Figure 1).

Figure 1. Monogenic gene screening prioritization during clinical examination. Early-onset obesity and hyperphagia are general features of 
monogenic obesity. Additional and more specific features can be useful to prioritize which gene should be sequenced first.
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Early diagnosis is fundamental for personalized preven
tion and effective therapeutic management. The most 
effective preventive strategy for these monogenic muta
tion carriers may be stringent restriction of food access. 
This will require the training and active participation of 
the parents. Beyond the eight currently known genes, the 
high occurrence of Mendelian patterns of inheritance 
observed in multigenerational pedigrees with extreme 
obesity together with the large fraction of unexplained 
‘missing’ heritability [139] suggests that the causes of 
many monogenic cases remain to be elucidated [140].

Several innovative strategies may soon lead to a more 
exhaustive picture of monogenic obesity. Highresolution 
homozygosity mapping in large consanguineous 
pedigrees is a powerful approach to discovering new 
obesity loci with a recessive mode of inheritance, as 
recently exemplified by syndromic forms of obesity [141]. 
Full exome capture (an efficient strategy to selectively 
sequence the coding regions of the human genome) and 
parallel sequencing strategies in carefully selected 
unrelated cases and controls have proven successful for 
gene identification [142], and this approach should be 
successfully extended in the future to pedigrees with 
extreme obesity and a Mendelian pattern of inheritance. 
Genomewide studies of structural variation in pedigrees 
or large casecontrol series followed by a systematic 
resequencing approach for genes located in genome 
structural variation intervals may help to identify 
additional Mendelian obesity genes.

Apart from Mendelian forms of obesity, the use of 
genetic information alone will provide only limited 

predictive value in classifying young people at high risk 
for the development of childhood obesity. As summar
ized here, additional factors, such as environmental 
conditions, the transcriptome, the epigenome and the gut 
metagenome, can affect future obesity or response to 
dietary interventions. Further work is now needed to 
achieve a successful integration of all these sources of data 
to enable us to identify young people at risk for obesity and 
personalize preventive strategies (Figure 2) [143].
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