
Background

Autism spectrum disorders (ASD) is a collective term 

used to describe neurodevelopmental disorders with a 

pattern of qualitative abnormalities in three functional 

domains: reciprocal social interactions, communication, 

and restrictive interests and/or repetitive behaviors [1]. 

Th ere is strong evidence that 10 to 15% of ASD cases may 

be etiologically related to known genetic disorders, such 

as fragile X syndrome, tuberous sclerosis complex, and 

Rett syndrome [2,3]. However, the etiology of ASD in 
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most cases remains unknown, as is the explanation for 

the strong male:female gender bias (at least 4:1) [4]. With 

regard to identifying genes associated with idiopathic 

autism, which represents 80 to 90% of ASD cases, a 

number of previous studies have conducted genome-

wide scans to ascertain genetic linkage to, or association 

with, ASD. To date, autism susceptibility loci have been 

identifi ed on almost every chromosome, especially 

chromo somes 2q [5], 3q [6], 5p [7], 6q [8], 7q [5,9], 11p 

[7], 16p [5], and 17q [7,10]. No single chromosomal 

location, however, has been found to be highly signifi cant, 

and no genetic variation or mutation within these regions 

has been found to account for more than 1% of ASD 

cases. Copy number variation has also been associated 

with ASD, and the most recent whole genome scan 

performed by Th e Autism Consortium (2008) revealed a 

recurrent microdeletion and a reciprocal microdupli-

cation on chromosome 16p11.2 [11]. Moreover, a number 

of publications have demonstrated the relevance of 

particular genes to ASD, and numerous candidate genes 

for autism have been identifi ed, including NLGN3/4 

[12,13], SHANK3 [14], NRXN1 [15], and CNTNAP2 

(Contactin associated protein-like 2) [16-18]. Interest-

ingly, all of these genes function at the synapse, thereby 

focusing attention on dysregulation of synapse formation 

as a neuropathological mechanism in ASD [19,20]. 

However, studying a single ASD candidate gene at a time 

is not likely to provide a comprehensive explanation of all 

pathophysiological conditions associated with these 

disorders, which are believed to result from dysregulation 

of multiple genes.

To examine global transcriptional changes associated 

with ASD, Hu and colleagues [21] examined diff erential 

gene expression with DNA microarrays using lympho-

blastoid cell lines (LCLs) from discordant monozygotic 

twins, one co-twin of which was diagnosed with autism 

while the other was not. Th ey found that a number of 

genes important to nervous system development and 

function were among the most diff erentially expressed 

genes. Furthermore, these genes could be placed in a rela-

tional gene network centered on infl ammatory mediators, 

some of which were increased in the autopsied brain tissue 

of autistic patients relative to non-autistic controls (for 

example, IL6) [22]. Inasmuch as mono zygotic twins share 

the same genotype, the results of this study further 

suggested a role for epigenetic factors in ASD.

MicroRNAs (miRNAs) as well as other factors such as 

DNA methylation and chromatin remodeling are thus 

likely candidates in the epigenetic regulation of gene 

expression. miRNAs are endogenous, single-stranded, 

non-coding RNA molecules of approximately 22 nucleo-

tides in length that negatively and post-trans crip tionally 

regulate gene expression. Th e biogenesis and suppressive 

mechanisms of miRNAs have been comprehensively 

described in many studies [23-27], and include miRNA-

mediated translational repression that may also ulti-

mately lead to degradation of the transcript. miRNAs are 

involved in nervous system development and function 

[28-31]. In addition, disrupted miRNA function has been 

proposed to be associated with a number of neurological 

diseases, such as fragile X syndrome [32-35], schizo-

phrenia [36], and spinal muscular atrophy [37]. Recently, 

two studies have reported diff erential expression of 

miRNA in ASD, one using LCLs as an experimental 

model [38], and the other interrogating miRNA expres-

sion directly in autistic and nonautistic brain tissues [39]. 

However, neither of these studies demonstrated corre-

lation between the diff erentially expressed miRNA and 

diff erential expression of the putative target genes or 

gene products.

We postulated that altered miRNA expression would 

result, in part, in altered expression of its target genes. 

Th erefore, we employed miRNA microarrays to study the 

miRNA expression profi les of LCL from male autistic 

case-controls, which included monozygotic twins 

discordant for ASD and their nonautistic siblings as well 

as autistic and unaff ected siblings. miRNA expression 

profi ling revealed signifi cantly diff erentially expressed 

miRNAs whose putative target genes are associated with 

neurological diseases, nervous system development and 

function, as well as other co-morbid disorders associated 

with ASD, such as gastrointestinal, muscular, and infl am-

matory disorders. Th e goal of this study was to reveal 

dysregulation in miRNA levels that are inversely 

correlated with altered levels of target genes that, in turn, 

may be associated with the underlying pathophysiology 

of ASD, and to provide a better understanding of the role 

of miRNAs as a post-transcriptional gene regulatory 

mechanism associated with ASD.

Methods

Experimental model and cell culture

LCL derived from peripheral lymphocytes of 14 male 

subjects were obtained from the Autism Genetic Resource 

Exchange (AGRE, Los Angeles, CA, USA). Th e subjects 

included three pairs of monozygotic twins discordant for 

diagnosis of autism, a normal sibling for two of the twin 

pairs, two pairs of autistic and unaff ected siblings, and a 

pair of normal monozygotic twins. Th ese cell lines had all 

been used previously for gene expression profi ling [21,40] 

and thus allowed us to compare miRNA expression 

profi les with mRNA expression levels across the aff ected 

and control samples from both studies. Th e frozen cells 

were cultured in L-Glutamine-added RPMI 1640 

(Mediatech Inc., Herndon, VA, USA) with 15% triple-0.1 

m-fi ltered fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA, USA) and 1% penicillin-streptomycin-

amphotericin (Mediatech Inc.).
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According to the protocol from the Rutgers University 

Cell and DNA Repository (which contains the AGRE 

samples), cultures were split 1:2 every 3 to 4 days, and cells 

were harvested for miRNA isolation 3 days after a split, 

while the cell lines were in logarithmic growth phase. All 

cell lines were cultured and harvested at the same time 

with the same procedures and reagents to minimize the 

diff erences in miRNA expression that might occur as a 

result of diff erent cell and miRNA preparations.

miRNA isolation

LCLs were disrupted in TRIzol Reagent (Invitrogen, 

Carlsbad, CA, USA) and miRNAs were then extracted 

from the TRIzol lysate using the mirVana miRNA 

Isolation Kit (Ambion, Austin, TX, USA) according to the 

manufacturers’ protocols. Briefl y, ethanol (100%) was 

added to TRIzol-extracted, purifi ed RNA in water to 

bring the samples to 25% ethanol and the mixture was 

then passed through the mirVana glass-fi ber fi lter, which 

allowed passage of small RNA in the fi ltrate. Ethanol was 

added to the fi ltrate to increase the ethanol concentration 

to 55%, and the mixture was passed through the second 

glass-fi ber fi lter, which immobilized the small RNAs. 

After washing, the immobilized small RNAs were eluted 

in DNase-RNase-free water (Invitrogen), yielding an 

RNA fraction highly enriched in small RNA species 

(≤200 nucleotides). Th e concentration of the small RNAs 

in the fi nal fraction was then measured with a NanoDrop 

1000 spectrophotometer (Th ermo Fisher Scientifi c, 

Wilmington, DE, USA). To enable comparison of miRNA 

expression patterns across all of the samples, equal 

amounts of miRNAs from unaff ected siblings and normal 

control individuals were pooled to make a common 

reference miRNA that was co-hybridized with each 

sample on the miRNA microarray.

miRNA microarray analysis

Custom-printed miRNA microarrays were used to screen 

miRNA expression profi les of LCLs from autistic and 

normal or undiagnosed individuals. Th e array slides were 

printed in the Microarray CORE Facility of the National 

Human Genome Research Institute (NHGRI, NIH, 

Bethesda, MD, USA). Th e complete set of non-coding 

RNAs printed in triplicate on Corning epoxide-coated 

slides (Corning Inc., Corning, NY, USA) is shown in 

Additional fi le 1, with the subset of human miRNAs 

shown on the second sheet of the Excel workbook. 

Although the printed arrays also included miRNA from 

rat and mouse species as well as some small nucleolar 

RNAs, these were not considered in our analyses. miRNA 

labeling and microarray hybridization were performed 

using Ambion’s miRNA Labeling Kit and Bioarray 

Essential Kit, respectively, according to the manufacturer’s 

instructions. Briefl y, a 20- to 50-nucleotide tail was added 

to the 3’ end of each miRNA in the sample using 

Escherichia coli Poly (A) polymerase. Th e amine-

modifi ed miRNAs were then purifi ed and coupled to 

amine-reactive NHS-ester CyDye fl uors (Amersham 

Biosciences, Piscataway, NJ, USA). A reference design 

was used for microarray hybridization in this study. Th e 

sample miRNAs were coupled with Cy3, whereas the 

common reference miRNA was coupled with Cy5, and 

two-colored miRNA microarray analyses were carried 

out by co-hybridizing an equal amount of both miRNA 

samples onto one slide.

After hybridization and washing, the microarrays were 

scanned with a ScanArray 5000 fl uorescence scanner 

(PerkinElmer, Waltham, MA, USA) and the raw pixel 

intensity images were analyzed using IPLab image process-

ing software package (Scanalytics, Fairfax, VA, USA). Th e 

program performs statistical methods that have been 

previously described [41] to locate specifi c miRNAs on the 

array, measure local background for each of them, and 

subtract the respective background from the spot intensity 

value (average of triplicate spots). Besides the background 

subtraction, the IPLab program was also used for within-

array normalization and data fi ltering. Fluorescence ratios 

within the array were normalized according to a ratio 

distribution method at confi dence level = 99.00. Th e 

fi ltered data from the IPLab program were then uploaded 

into R version 2.6.1 software package to perform array 

normalization across all of the samples based upon 

quantile-quantile (Q-Q) plots, using a procedure known as 

quantile normalization [42]. After normalization, 1,237 

miRNAs were detectable above background.

Assessing signifi cance of miRNA expression

To identify signifi cantly diff erentially expressed miRNA, 

the normalized data were uploaded into the TIGR 

Multiexperiment Viewer (TMeV) 3.1 software package 

[43,44] to perform statistical analyses on the microarray 

data as well as cluster analyses of the diff erentially 

expressed genes. Pavlidis template matching analyses 

[45] were carried out to identify signifi cantly diff erentially 

expressed probes between autistic and control groups (P 

≤0.05). Cluster analyses were performed with the 

signifi cantly diff erentially expressed miRNAs using the 

hierarchical cluster analysis program within TMeV, based 

on Euclidean distance using average linkage clustering 

methods. Principal component analysis was further 

employed to reduce the dimensionality of the microarray 

data and display the overall separation of samples from 

autistic and control groups.

Prediction of the potential target genes

Th e lists of the potential target genes of the diff erentially 

expressed miRNAs were generated using miRBase [46] 

where the miRanda algorithm is used to scan all available 
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mRNA sequences to search for maximal local comple-

mentarity alignment between the miRNA and the 3’ UTR 

sequences of putative predicted mRNA targets. Th e 

benefi t of using this program is that it also provides P-

orthologous-group (P-org) values, which represent 

estimated probability values of the same miRNA family 

binding to multiple transcripts for diff erent species in an 

orthologous group. Th e values are calculated from the 

level of sequence conservation between all of the 3’ UTRs 

according to the statistical model previously described 

[47]. Only target sites for which the P-org value was <0.05 

were included to minimize false positive predictions. Th e 

number of target genes was diff erent for each miRNA, 

but the range of targets per miRNA was between 600 and 

1,200 protein-coding genes.

Preliminary functional analyses of the potential target genes

Ingenuity Pathway Analysis (IPA) version 6.0 (Ingenuity 

Systems, Redwood City, CA, USA) and Pathway Studio 

version 5 (Ariadne Genomics, Rockville, MD, USA) 

network prediction software were used to identify gene 

networks, biological functions, and canonical pathways 

that might be impacted by dysregulation of the diff er-

entially expressed miRNAs, using the lists of predicted 

target genes of each diff erentially expressed miRNA to 

interrogate the gene databases. Th e Fisher exact test was 

used to identify signifi cant pathways and functions 

associated with the gene datasets.

miRNA TaqMan qRT-PCR analysis

Among the diff erentially expressed miRNAs, four brain-

specifi c or brain-related miRNAs (hsa-miR-219, hsa-

miR-29, hsa-miR-139-5p, and hsa-miR-103) were selected 

for confi rmation analysis by miRNA TaqMan quantitative 

reverse-transcription PCR (qRT-PCR) assays (Applied 

Biosystems, Foster City, CA, USA). Small nucleolar RNA, 

C/D box 24 (RNU24) was used as an endogenous control 

in all qRT-PCR experiments. According to the Applied 

Biosystems TaqMan MicroRNA Assay protocol, cDNA 

was reverse transcribed from 10 ng of total RNA using 

specifi c looped miRNA RT primers, which allow for 

specifi c RT reactions for mature miRNAs only. Th e 

cDNA was then amplifi ed by PCR, which uses TaqMan 

minor groove binder probes containing a reporter dye 

(FAM dye) linked to the 5’ end of the probe, a minor 

groove binder at the 3’ end of the probe, and a non-

fl uorescence quencher at the 3’ end of the probe. Th e 

design of these probes allows for more accurate measure-

ment of reporter dye contributions than possible with 

conventional fl uorescence quenchers.

Meta-analysis of gene expression data for these same samples

A meta-analysis was performed to correlate diff erential 

miRNA expression with gene expression data that had 

previously been obtained by our laboratory using the 

same samples. However, because the discordant twin 

study [21] and that involving aff ected-unaff ected sib pairs 

[40] were performed using a diff erent experimental 

design for microarray hybridization (that is, direct 

sample comparison on the same array for the twin 

samples and a reference design for the sib-pair analysis 

that involved co-hybridization of each sibling sample 

with Stratagene Universal human reference RNA), the 

expression data from the sib-pair study was reanalyzed in 

order to report diff erences as log
2
 expression ratios 

between the aff ected and unaff ected siblings, which is the 

expression format used in the twin study. Data fi ltration 

was performed using TMeV version 3.1 software [43] to 

extract only genes for which expression values were 

present in at least four out of seven comparisons. Th e 

fi ltered data were then uploaded into the R statistical 

software package [48] to carry out quantile normali-

zation. After global data distribution and normalization 

of data to the same level to enable comparison of gene 

expression data across the combined set of samples, a 

one-class t-test analysis was conducted across all log
2
 

ratios using TMeV, and signifi cantly diff erentially 

expressed genes were identifi ed as those with P-values 

<0.05. In order to capture the largest number of putative 

target genes of the diff erentially expressed miRNAs for 

our correlation analysis, we performed the t-test without 

multiple sample correction. Th e complete list of 

diff erentially expressed genes is provided in Additional 

fi le 2.

Correlation between the expression of the target genes 

and the candidate miRNAs

To identify the diff erentially expressed genes potentially 

regulated by the diff erentially expressed miRNAs in 

autistic individuals, the overlapping genes between the 

signifi cant gene list from the one-class t-test (P < 0.05) 

and the list of the potential target genes of all the diff er-

entially regulated miRNAs were identifi ed. Figure  1 

shows a schematic of the procedure used to correlate 

miRNA and putative target genes. To correlate miRNA 

expression with putative target gene expression, the 

average log
2
 expression ratios of miRNA for autistic 

versus unaff ected groups were calculated and then 

compared against the average log
2
 mRNA expression 

ratios for these same groups. Only the target genes that 

were expressed in the opposite direction from that of the 

pertinent miRNAs were extracted for functional analyses. 

Although miRNA often acts as a translational repressor 

in mammalian cells, the targeted mRNA species is often 

delivered to P-bodies, where it is eventually degraded 

[49]. Th us, we decided to perform pathway analyses only 

on those genes whose mRNA changes were directionally 

opposite to the change in miRNA expression, while 
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acknowledging that other mRNA species may also be 

potential targets of the diff erentially expressed miRNA.

Identifi cation of biological functions disrupted by 

dysregulated target genes

To gain insight into biological functions that may be 

disrupted in ASD as a consequence of altered miRNA 

expression, the diff erentially expressed genes whose 

transcript levels were inversely correlated with those of 

the diff erentially expressed miRNAs were uploaded into 

IPA and Pathway Studio network prediction programs 

and the target gene networks were generated. For these 

analyses, a relatively stringent expression level cutoff  of 

log
2
(ratio) ≥ ±0.4 was used inasmuch as we are typically 

able to confi rm genes with a log
2
(ratio) ≥ ±0.3 by qRT-

PCR. Signifi cant biological functions, canonical path-

ways, and diseases highly represented in the networks 

were identifi ed using Fisher’s exact test (P < 0.05).

Transfection of pre-miRs and anti-miRs

All transfections were performed using siPORT NeoFX 

Transfection Agent (Applied Biosystems) according to 

the manufacturer’s protocol. Briefl y, LCLs were counted 

and diluted into 2 × 105 cells/2.3 ml and incubated at 

37°C. A total of 5 μl siPORT NeoFX Transfection Agent 

per transfection condition was diluted and incubated for 

10 minutes at room temperature with 95 μl of the pre-

warmed complete growth media (without antibiotics). 

Hsa-miR-29b pre-miR precursor, hsa-miR-219b anti-miR 

inhibitor, Cy3-labeled pre-miR negative control and the 

Cy3-labeled anti-miR negative control (Applied Bio-

systems, Foster City, CA, USA) were separately diluted to 

a fi nal small RNA concentration of 30 nM in 100 μl of 

complete growth media. Cell suspensions were overlaid 

onto each of the transfection solutions and mixed gently 

before incubation at 37°C with 5% CO
2
 for 72 hours. 

Under these conditions, most cells were observed by 

fl uores cence microscopy to be transfected with Cy3-

labeled pre-miR and anti-miR negative controls (Addi-

tional fi le 3), while cytotoxicity, monitored by the MTS 

cell proliferation assay (Promega, Madison, WI, USA) 

was determined to be negligible (Additional fi le 4). 

Follow ing the 72-hour incubation, the cells were 

harvested for subsequent analyses.

Microarray data deposition

All data from the DNA microarray and miRNA micro-

array analyses have been deposited in the Gene 

Expression Omnibus (GEO) data repository. Th e GEO 

accession number for the miRNA data from this study is 

[GEO:GSE21086]. Th e GEO accession numbers for gene 

expression data for the twin and sib-pair studies are 

[GEO:GSE4187] and [GEO:GSE15451], respectively.

Results

Signifi cantly diff erentially expressed miRNAs diff erentiate 

clinical from non-clinical samples

To identify signifi cantly diff erentially expressed miRNAs 

that diff erentiate clinically discordant individuals, 

normalized miRNA microarray data were uploaded into 

the TMeV program for statistical analysis. Pavlidis tem-

plate matching analysis revealed 43 human miRNAs that 

were signifi cantly diff erentially regulated (P < 0.05) 

between autistic and nonautistic individuals. Th ese 

miRNAs and their corresponding log
2
 ratios for autistic 

versus control samples are shown in Table  1. Cluster 

analyses were performed to further determine whether or 

not the expression levels of these miRNAs could 

distinguish between the autistic and control groups. Both 

un supervised, hierarchical cluster analysis (Figure 2a) and 

supervised, 2-cluster K-means analysis (data not shown) 

revealed complete separation of the autistic and control 

groups based on expression profi les of the diff erentially 

expressed miRNAs. Principal component analysis 

(Figure 2b), which was employed to reduce the dimen sion-

ality of the microarray data, also revealed clear separa tion 

between autistic individuals and controls based on the 43 

signifi cant probes, which was also validated by support 

vector machine analysis that demonstrated 100% accuracy 

of class prediction (data not shown).

Biological network prediction of the potential targets 

revealed a strong association with neurological functions 

and other biological pathways involved in ASD

Potential target genes for each of the diff erentially 

expressed miRNAs were identifi ed using miRBase 

Figure 1. Schematic fl ow diagram describing procedures 

used to identify inversely correlated diff erentially expressed 

putatitve target genes of the diff erentially expressed miRNAs. 

Tens of thousands of putative target genes are associated with the 

43 diff erentially expressed miRNAs, some of which are overlapping 

between diff erent miRNAs. For the correlation analyses, we used all of 

the putative target genes.

41,472 genes

3,905 genes; P-value < 0.05

t-test

1,406 overlapping genes

TIGR40K cDNA Microarray

Potential targets of the 
miRNAs

1,053 genes

Custom MicroRNA Microarray

716 unique human miRNAs

43 miRNA; P-value < 0.05

All putative targets

PTM

miRBase

inverse expression

Putative targets of inversely correlated 
differentially expressed miRNA
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Targets software [46]. To further identify the biological 

networks and functions in which these target genes are 

involved, the target gene list for each miRNA was 

analyzed using IPA (Table 2). Interestingly, the target 

genes of 35 out of the 43 human miRNA probes (more 

than 80% of the signifi cantly diff erentially expressed 

miRNAs) were found to be signifi cantly associated with 

‘neurological functions’ or ‘nervous system development 

and function’ (Fisher’s exact test, P < 0.05).

In addition to gene targets associated with neurological 

functions, it is noteworthy that a number of the 

Table 1. Signifi cantly diff erentially expressed human 

miRNAs

Clone ID miRNA log2 ratio P-value

Down-regulated

 SM10801 hsa-miR-182-AS -1.54 1.44E-03

 hSQ018350 hsa-miR-136 -1.50 2.28E-03

 SM10637 hsa-miR-518a -1.45 3.52E-03

 hSQ045460 hsa-miR-153-1 -1.41 5.07E-03

 SM11115 hsa-miR-520b -1.38 6.71E-03

 SM10529 hsa-miR-455 -1.30 1.25E-02

 hHM044864 hsa-miR-326 -1.24 1.95E-02

 SM10553 hsa-miR-199b -1.23 1.96E-02

 miR211 hsa-miR-211 -1.23 2.04E-02

 hSQ016068 hsa-miR-132 -1.22 2.20E-02

 SM10792 hsa-miR-495 -1.20 2.43E-02

 hSQ025962 hsa-miR-16-2 -1.19 2.54E-02

 hHM044822 hsa-miR-190 -1.18 2.69E-02

 hHM044960 hsa-miR-219 -1.17 2.98E-02

 hHM045056 hsa-miR-148b -1.16 3.01E-02

 hHM044897 hsa-miR-189 -1.16 3.06E-02

 hHM045063 hsa-miR-133b -1.13 3.59E-02

 hSQ018899 hsa-miR-106b -1.11 4.11E-02

 hHM044849 hsa-miR-367 -1.10 4.21E-02

 SM10740 hsa-miR-139 -1.10 4.32E-02

Up-regulated

 hHM044819 hsa-miR-185 1.44 4.04E-03

 hHM044919 hsa-miR-103 1.31 1.20E-02

 hHM044733 hsa-miR-107 1.26 1.68E-02

 hHM044918 hsa-miR-29b 1.24 1.88E-02

 hHM045013 hsa-miR-194 1.22 2.11E-02

 SM10729 hsa-miR-524 1.22 2.21E-02

 hHM044804 hsa-miR-191 1.21 2.23E-02

 SM11334 hsa-miR-376a-AS 1.19 2.53E-02

 SM10789 hsa-miR-451 1.19 2.64E-02

 hHM044971 hsa-miR-23b 1.17 2.95E-02

 miR195 hsa-miR-195 1.16 3.02E-02

 SM10711 hsa-miR-23b 1.16 3.03E-02

 SM10310 hsa-miR-342 1.15 3.24E-02

 SM10644 hsa-miR-23a 1.14 3.36E-02

 hSQ001775 hsa-miR-186 1.14 3.43E-02

 miR25 hsa-miR-25 1.14 3.55E-02

 SM10575 hsa-miR-519c 1.13 3.71E-02

 SM10238 hsa-miR-346 1.12 3.80E-02

 hHM044950 hsa-miR-205 1.12 3.80E-02

 hHM044743 hsa-miR-30c 1.11 3.98E-02

 hSQ027766 hsa-miR-93 1.10 4.18E-02

 hHM045009 hsa-miR-186 1.08 4.67E-02

 hHM044831 hsa-miR-106b 1.08 4.86E-02

Forty-three signifi cantly diff erentially expressed human miRNAs were identifi ed 
by Pavlidis Template Matching (PTM) analysis (P < 0.05). The log2 ratios for all 
miRNAs were calculated from the average of the log2 ratio across all autistic 
samples over the average of the log2 ratio across all control samples.

Figure 2. Hierarchical cluster analysis and principal component 

analysis of signifi cantly diff erentially expressed miRNAs from 

the Pavlidis template matching analysis. (a) Unsupervised 

hierarchical cluster analysis of 43 signifi cantly diff erentially expressed 

miRNAs between all autistic individuals (red bar) and controls 

(turquoise bar) shows the distinct miRNA expression pattern of the 

two groups (P < 0.05). The individual samples are coded as follows: 

AT, autistic twin; AS, autistic sibling; CT, control, undiagnosed twin; 

CS, control, nonautistic sibling; C_6a/b, nonautistic, monozygotic 

twins a and b. The same numbers following the sample descriptors 

indicate members of the same family. (b) Principal component 

analysis of the samples based on the same set of miRNAs reduces the 

dimensionality of the data and shows the clear separation between 

the autistic individuals (red) and the controls (turquoise).
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Table 2. Ingenuity Pathways Analysis biological functions and pathways associated with potential targets for 

signifi cantly diff erentially expressed miRNAs

miRNA Biological functions/pathways of the miRNA targets (P-value) [number of genes]*

hsa-miR-182 N (1.18E-03 to 3.86E-02) [59], E (1.49E-03 to 3.70E-02) [14]

hsa-mir-136 G (1.60E-04 to 3.46E-02) [10], A (6.33E-03) [8], E (3.50E-03 to 3.46E-02) [21]

hsa-miR-518a N (7.24E-03 to 4.89E-02) [50], E (8.57E-05 to 4.44E-02) [20]

hsa-mir-153-1 N (1.02E-05 to 2.24E-02) [28], G (6.37E-04 to 1.53E-02) [13]

hsa-miR-520b N (2.66E-03 to 4.44E-02) [15], E (8.13E-04 to 4.44E-02) [28]

hsa-miR-455 N (2.03E-03 to 4.51E-02) [83], E (1.06E-03 to 4.51E-02) [42]

hsa-miR-326 S (6.24E-04 to 3.99E-02) [28]

hsa-miR-199b N (8.24E-04 to 4.23E-02) [31], E (6.04E-03 to 4.23E-02) [21], S (5.23E-03 to 4.23E-02) [11]

hsa-miR-211 N (7.78E-05 to 2.99E-02) [15], I (6.23E-04 to 2.99E-02) [19]

hsa-mir-132 N (2.01E-03 to 4.48E-02) [19], G (2.01E-03 to 4.48E-02) [23], E (2.01E-03 to 4.48E-02) [28]

hsa-miR-495 N (6.09E-04 to 4.02E-02) [48], G (1.62E-03 to 4.02E-02) [10], E (2.51E-04 to 4.02E-02) [24]

hsa-mir-16-2 N (8.75E-05 to 4.45E-02) [13], E (1.06E-03 to 4.45E-02) [24], S (1.58E-03 to 4.45E-02) [17], Es (4.86E-02) [9]

hsa-miR-190 N (6.63E-04 to 3.86E-02) [39], G (2.15E-03 to 3.86E-02) [12], E (3.83E-04 to 4.15E-02) [25]

hsa-miR-219 N (1.08E-03 to 4.34E-02) [87], E (1.88E-03 to 4.34E-02) [11]

hsa-miR-148b N (6.54E-04 to 4.63E-02) [27], G (3.81E-04 to 4.63E-02) [27]

hsa-miR-189 N (1.57E-03 to 3.76E-02) [23}, E (1.57E-03 to 3.76E-02) [19]

hsa-miR-133b E (7.84E-04 to 2.56E-02) [17]

hsa-mir-106b N (1.37E-03 to 4.41E-02) [21], G (1.01E-02 to 4.23E-02) [33], I (1.54E-03 to 4.38E-02) [18]

hsa-miR-367 N (1.35E-03 to 4.37E-02) [20], G (1.33E-03 to 4.37E-02) [11] 

hsa-miR-139 G (1.37E-03 to 4.02E-02) [19], E (1.61E-03 to 4.02E-02) [21]

hsa-miR-186 N (9.62E-04 to 3.11E-02) [27], E (2.83E-03 to 3.11E-02) [14], S (9.62E-04 to 3.11E-02) [17], Es (1.82E-02) [8]

hsa-mir-93 N (2.67E-04 to 4.33E-02) [36], I (4.47E-04 to 4.33E-02) [35]

hsa-miR-30c N (9.85E-05 to 4.21E-02) [40], E (3.31E-04 to 4.21E-02) [25]

hsa-miR-205 N (1.40E-03 to 3.75E-02) [9], S (1.19E-04 to 3.75E-02) [23]

hsa-miR-346 I (8.61E-04 to 3.03E-02) [56]

hsa-miR-519c G (7.42E-04 to 4.76E-02) [81], N (6.58E-03 to 4.71E-02) [25]

hsa-miR-25 N (1.04E-04 to 3.61E-02) [39], Es (3.95E-02) [8]

hsa-mir-186 N (9.62E-04 to 3.11E-02) [27], E (2.83E-03 to 3.11E-02) [14], S (9.62E-04 to 3.11E-02) [17], Es (1.82E-02) [8]

hsa-miR-23a N (1.69E-03 to 4.11E-02) [81], S (8.70E-04 to 4.11E-02) [62]

hsa-miR-342 N (6.49E-04 to 4.11E-02) [15], E (2.13E-03 to 4.11E-02) [12], S (6.49E-04 to 4.11E-02) [15]

hsa-miR-23b N (4.31E-05 to 4.01E-02) [87], S (3.71E-03 to 4.01E-02) [60], E (4.68E-03 to 4.01E-02) [20]

hsa-miR-195 N (4.59E-03 to 4.04E-02) [74], Es (1.12E-02) [10]

hsa-miR-23b N (4.31E-05 to 4.01E-02) [87], S (3.71E-03 to 4.01E-02) [60], E (4.68E-03 to 4.01E-02) [20]

hsa-miR-451 S (2.99E-04 to 2.43E-02) [29] 

hsa-miR-376a N (1.62E-03 to 3.88E-02) [23], E (1.62E-03 to 3.10E-02) [10], S (1.17E-04 to 4.02E-02) [32], C (4.71E-03) [5]

hsa-miR-191 N (2.53E-04 to 4.62E-02) [34], E (1.87E-03 to 3.93E-02) [12]

hsa-miR-524-3p N (3.44E-04 to 4.47E-02) [66]

hsa-miR-194 N (8.47E-03 to 3.86E-02) [24]

hsa-miR-29b S (1.97E-05 to 2.91E-02) [41], C (1.63E-03) [6]

hsa-miR-107 G (4.81E-04 to 4.13E-02) [46], E (1.27E-03 to 4.13E-02), N (1.70E-03 to 4.13E-02) [16]

hsa-miR-103 G (1.31E-03 to 4.27E-02) [49], E (2.01E-04 to 4.27E-02), S (3.03E-03 to 4.27E-02) [23], N (1.82E-03 to 4.27E-2) [35]

hsa-miR-185 N (8.16E-04 to 3.75E-02) [26]

IPA analysis of potential target genes for each of the signifi cantly diff erentially expressed miRNAs revealed biological functions and pathways associated with the 
target genes. P-values calculated from Fisher’s exact test for each function are listed in parenthesis; the number of genes involved in each biological function or 
pathway is listed in square brackets. The functions are described as: A, androgen and estrogen metabolism; C, circadian rhythm signaling; E, embryonic development; 
Es, estrogen receptor signaling; G, gastrointestinal diseases/digestive system development and functions; I, infl ammatory diseases; N, neurological diseases/nervous 
system development and functions; S, skeletal and muscular disorders/skeletal and muscular system development and functions.
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diff erentially expressed miRNAs also target genes 

involved in co-morbid disorders associated with ASD, 

such as muscular and gastrointestinal diseases [50-58]. 

Target genes of 13 miRNAs (30%) signifi cantly dys-

regulated in autistic individuals were associated with 

skeletal and muscular diseases as well as skeletal and 

muscular development or function. Target genes for 12 

signifi cantly dysregulated miRNAs (28%) were associated 

with gastrointestinal disorders, development, and func-

tion, as well as hepatic system disease, hepatic fi brosis, 

and hepatic cholestasis (P < 0.05). It is interesting to note 

that these disorders are among the most signifi cant 

biological functions and pathways enriched within the 

dataset of target genes, inasmuch as ASD individuals are 

frequently found to have co-morbid diagnoses involving 

muscle dysfunction (for example, muscular dystrophy, 

muscle weakness, and hypotonia) and digestive disorders 

that aff ect absorption and metabolism.

Another interesting biological function associated with 

the miRNA gene targets is steroid hormone metabolism. 

More than 11% (5 out of 43) of the diff erentially expressed 

miRNAs showed an association with androgen and 

estrogen metabolism, as well as with estrogen receptor 

signaling (P < 0.05). Moreover, IPA also showed that 

target genes for two of the most up-regulated miRNAs - 

hsa-miR-376a and hsa-miR-29b - were signifi cantly 

associated with circadian rhythm signaling (Fisher’s exact 

test, P = 4.71E-03 and 1.63E-03, respectively).

Quantitative TaqMan RT-PCR confi rmation of selected miRNAs

MicroRNA TaqMan quantitative RT-PCR (qRT-PCR) 

analyses were performed to confi rm the miRNA expres-

sion data of four miRNAs known to be associated with 

brain development and function. Hsa-miR-29b and hsa-

miR-219 are known to be brain-specifi c, while hsa-miR-

139-5p is highly enriched in brain [59-61]. Although not 

specifi c to the brain, hsa-miR-103 is highly expressed 

during corticogenesis [59,62], suggesting an important 

role in brain development and function. Expression levels 

of all four brain-associated miRNAs from these analyses 

were correlated with miRNA microarray data (Figure 3).

Correspondence between diff erentially expressed putative 

target genes and the diff erentially regulated miRNAs

To examine the possibility that changes in specifi c 

miRNAs could result in corresponding changes in the 

expression levels of the putative target genes, diff er-

entially expressed genes from previous cDNA micro array 

analyses of the same LCLs used in this study [21,40] were 

compared with the potential target genes of the 

diff erentially expressed miRNAs. Of the 3,905 diff eren-

tially expressed genes between the autistic and control 

groups, 1,406 (36%) were found to be putative targets of 

the diff erentially expressed miRNA, with 1,053 (27%) of 

these genes exhibiting changes inversely correlated with 

the respective miRNA changes. Th ese percentages of 

target genes predicted to be regulated by the miRNA 

identifi ed in this study are within the range of the 

approxi mately 10 to 60% of protein-coding genes that are 

estimated to be regulated by miRNA [63-65]. Although 

translational repression is the main mechanism of 

suppres sion by miRNA in mammalian cells, the sup-

pressed target mRNA often eventually is degraded in 

P-bodies [49], thus leading to the expected decreases in 

transcript levels observed here. A recent study further 

confi rms the eff ect of miRNA on suppressing target 

mRNA levels [66].

To increase the stringency of the pathway analyses, an 

expression level cutoff  of log
2
(ratio) ≥ ±0.4 was applied to 

the diff erentially expressed genes, which reduced the list 

of potential gene targets to 94 genes. IPA analysis of this 

set of genes (Table 3) revealed a number of genes signifi -

cantly involved in neurological disease (P = 1.38E-03 to 

1.89E-02). Infl ammatory diseases, which have also been 

associated with ASD [22], were found to be signifi cantly 

associated with the diff erentially expressed potential 

target genes (P = 2.51E-03 to 2.11E-02). It is interesting to 

note that lipid metabolism is a cellular function that is a 

potential target of miRNA regulation. Th e top canonical 

pathways implicated by the target genes were nitric oxide 

signaling (P = 1.07E-02), vascular endothelial growth 

factor (VEGF) signaling (P = 1.47E-02), and amyotrophic 

lateral sclerosis signaling (P = 1.88E-02).

Figure 3. Results of TaqMan miRNA qRT-PCR analyses of four 

brain-associated miRNAs (hsa-miR-219-5p, hsa-miR-139-5p, 

hsa-miR-29b, and hsa-miR-103) in autistic and control 

lymphoblastoid cell lines. Expression levels of selected miRNAs 

associated with brain development from TaqMan qRT-PCR analyses 

confi rm data obtained by miRNA microarrays. Green bars, qRT-

PCR data; orange bars, DNA microarray data. Error bars represent 

standard errors associated with miRNA Taqman qRT-PCR or miRNA 

microarray analyses (hsa-miR-219-5p/hsa-miR-29b/hsa-miR-103, n = 5 

case-control pairs; hsa-miR-139-5p, n = 4 pairs).
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Network prediction of the diff erentially expressed potential 

target genes of the diff erentially expressed miRNAs in ASD

Th e diff erentially expressed potential miRNA targets 

were analyzed with Pathway Studio 5 to identify the 

possible relationships among the target genes and their 

associated functions (Figure 4). Interestingly, the pathway 

generated by Pathway Studio revealed relationships 

between the potential targets of the miRNAs and autism, 

as well as other neurological functions and disorders 

previously found to be impacted or associated with ASD, 

such as memory, regulation of synapses, synaptic 

plasticity, muscle disease, muscular dystrophy, and 

muscle strength [50,51,67].

Validation of miRNA targets

Two brain-specifi c miRNAs (hsa-miR-29b and hsa-miR-

219-5p), whose diff erential expression in ASD was 

confi rmed by TaqMan miRNA qRT-PCR analyses, were 

selected for miRNA target validation. Among putative 

target genes of these miRNAs are Inhibitor of DNA 

binding 3 (ID3), which is a target of miR-29b, and Polo-

like kinase 2 (PLK2), a target of miR-219-5p. ID3 and 

PLK2 have been associated with circadian rhythm 

signaling and modulation of synapses, respectively 

[68-71], and both biological mechanisms have been 

implicated in ASD [12,14-16,72-79]. To examine whether 

the overexpression of hsa-miR-29b and the suppression 

of hsa-miR-219-5p may be responsible for the respective 

decrease in ID3 and increase in PLK2 transcript levels, 

LCLs derived from three nonautistic individuals were 

transfected with hsa-miR-29b pre-miR precursor and 

hsa-miR-219b anti-miR inhibitor, respectively, to increase 

hsa-miR-29b and decrease hsa-miR-219-5p activity in the 

cells. qRT-PCR analyses of the transfected cells revealed 

the down-regulation of the ID3 gene in the LCLs 

transfected with hsa-miR-29b pre-miR precursor, and the 

up-regulation of the PLK2 gene in the LCLs transfected 

with hsa-miR-219b anti-miR inhibitor (Figure 5). Th ese 

results suggest that ID3 and PLK2 are targets of hsa-miR-

29b and hsa-miR-219-5p, respectively. Furthermore, 

most of the paired comparisons exhibit opposite changes 

in miRNA and mRNA target expression levels, suggesting 

that PLK2 and ID3 are in vivo targets of the respective 

miRNA (Table 4).

Table 3. Predicted biological functions from Ingenuity Pathways Analysis

   Number
  P-value of genes Genes

Diseases and disorders

 Neurological disease 1.38E-03 to 1.89E-02 8 UCHL1, ATF3, NDP, TUBB2C, KIF1B, TUBB2A, MST1, BCL2

 Infl ammatory disease 2.51E-03 to 2.11E-02 16 IL6ST, ADM, TUBB2C, IL32, PIK3R1, TUBB2A, EIF1, ALOX5AP, MMP10, 

    DUSP2, BCL2, GNAI2, HSPA8, FUT8, LDLR, AHNAK

 Skeletal and muscular disorders 2.71E-03 to 1.89E-02 16 IL6ST, ADM, COL6A2, TUBB2C, IL32, TUBB2A, ALOX5AP, MMP10, 

    LARGE, DUSP2, BCL2, GNAI2, HSPA8, CEP290, BMI1, AHNAK

Molecular and cellular functions

 Lipid metabolism 1.19E-04 to 2.51E-02 13 ADM, IL6ST, ABCG5, ABHD5, IL32, PIK3R1, ALOX5AP, BCL2, GNAI2, 

    IFRD1, LDLR, PRKAR2B, PITPNC1

 Molecular transport 1.19E-04 to 2.51E-02 12 IL6ST, IFRD1, HSPA8, GNAI2, ABHD5, ABCG5, LDLR, PIK3R1, IL32, 

    PITPNC1, ALOX5AP, BCL2

 Small molecule biochemistry 1.19E-04 to 2.51E-02 17 IL6ST, ADM, AMPD3, ABCG5, ABHD5, PIK3R1, ASS1, IL32, ALOX5AP, 

    BCL2, IFRD1, GNAI2, BCAT1, LDLR, PITPNC1, GOT1, GLDC

 Cellular development 1.32E-04 to 2.42E-02 13 IL6ST, ATF3, PIK3R1, ID3, BCL2, IGLL1, IFRD1, ELF3, BMI1, PRKAR2B, 

    PLK2, LAMA1, PLAC8

 Cell death 2.36E-04 to 1.89E-02 14 IL6ST, ADM, ATF3, DDIT4, PIK3R1, NCK1, PSIP1, SH3BP5, ID3, BCL2, 

    PRKAR2B, BMI1, PLK2, PLAC8

Canonical pathways

 Nitric oxide signaling 1.07E-02 3/90 CACNA1E, PRKAR2B, PIK3R1

 VEGF signaling 1.47E-02 3/92 PIK3R1, EIF1, BCL2

 Amyotrophic lateral sclerosis signaling 1.88E-02 3/108 CACNA1E, PIK3R1, BCL2

Toxicity list

 Hormone receptor regulated cholesterol metabolism 4.96E-02 1/8 LDLR

IPA of signifi cant disorders, molecular and cellular functions, canonical pathways, and toxicity genes that are strongly associated with 94 diff erentially expressed 
potential target genes of the miRNAs (log2 ratio ≥ ±0.4). The Fisher’s exact P-values and the number of genes for each top biological function are listed. VEGF, vascular 
endothelial growth factor.
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Discussion

miRNA expression in autism spectrum disorders

In this study, we demonstrate the diff erential expression 

of 43 miRNA species in LCLs from individuals with ASD 

relative to controls (Table 1), 16 of which are brain-

specifi c, brain-related, or involved in neural diff eren-

tiation [59-62]. Although the total number of samples in 

this study is modest, the use of discordant monozygotic 

twins and sibling case-controls off ers the ability to 

identify diff erences in miRNA against the same or closely 

related genotype, which is an advantage in investigations 

of epigenetic mechanisms contributing to autism. We 

have previously used this strategy in fi rst identifying gene 

expression diff erences in these same monozygotic twins 

[21] and sibling case-controls [40], and then validated our 

initial fi ndings with a larger study involving 116 unrelated 

case-controls [77]. Here, we further utilize the original 

gene expression data of these same samples to 

demon strate that diff erentially expressed miRNA can 

account for approximately 36% of the diff erentially 

expressed transcripts [21,40], thus implicating miRNA as 

a potent regulator of gene expression in ASD. Functional 

analyses of the putative gene targets that show inverse 

correlation with the expression of miRNA reveal numer-

ous processes relevant to or associated with ASD that are 

potentially regulated by the diff erentially expressed 

miRNA (Table 2, Figure 4). Th ese processes include 

embry onic develop ment, synaptic development and 

func tion, circadian rhythm signaling, infl ammation, 

androgen metabolism, and digestive functions, mirroring 

the major fi ndings of our gene expression analyses 

[21,40,77]. Signifi cantly, we verify inverse changes in the 

levels of putative target genes of two of the altered brain-

specifi c miRNAs through the use of anti-miRs (for 

knockdown) and pre-miRs (for overexpression) 

(Figure 5).

Figure 4. Relationships between diff erentially expressed miRNAs, putative target genes, and functions. Network and pathway analysis 

using Pathway Studio 5 shows the relationships among the signifi cantly diff erentially expressed miRNAs, potential target genes (expression cutoff  

log
2
 ratio ≥ ±0.4), and biological functions and disorders implicated by the diff erentially expressed target genes. Up-regulated genes and miRNAs 

are in red; down-regulated genes and miRNAs are in green.

miRNA

Putative target genes

Disrupted biological functions and disorders
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To date, only two other studies have conducted miRNA 

expression profi ling of autistic individuals. Talebizadeh 

and colleagues [38] evaluated the global expression of 

470 known human miRNAs using LCLs derived from six 

autistic individuals and six sex- and age-matched controls 

by miRNA microarray assays. Of these 470 miRNAs, they 

found nine that were signifi cantly diff erentially expressed 

in the autistic samples. Th ree of the nine miRNAs were 

replicated in our study, with similar up-regulation of 

miR-23a and miR-23b, but down-regulation of miR-132. 

Although we have no specifi c explanation for this 

contrasting result for miR-132, diff erences between our 

study and that of Talebizadeh et al. [38] include our use 

of related samples (that is, co-twins/siblings) as controls, 

a custom-printed rather than commercial platform, and 

the restriction of our study to male subjects. Additional 

analyses are thus required to further explain the 

diff erences in miRNA expression data between these two 

studies on LCLs.

Abu-Elneel et al. [39] investigated the expression of 466 

human miRNAs in postmortem cerebellar cortex tissue 

of 13 autistic individuals using multiplex quantitative 

PCR and found 13 down-regulated and 16 up-regulated 

miRNAs. Interestingly, the up-regulation of miR-23a and 

down-regulation of miR-106b reported in the autistic 

cerebellar cortex were also found in our study using 

LCLs. Predicted potential target genes of miR-23a were 

found to be associated with neurological diseases and 

skeletal and muscular system development and functions, 

whereas those of miR-106b were associated with neuro-

logical diseases, infl ammatory diseases, and gastro intes-

tinal diseases (Table 2). Th ese fi ndings support the 

Table 4. Comparison of miRNA and mRNA expression levels for discordant twins and sib pairs for miR-219 and its target, 

PLK2, and for miR-29b and its target, ID3

miRNA (target) A361/C360 A809/C810 A809/C813 A2369/C2368 A2369/C2357 A366/C365 A2769/C2772 Average

miR-219 (PLK2) -1.447 (0.414) -1.089 (0.147) -2.330 (NA) -2.390 (NA) -0.175 (NA) 0.398 (0.314) -1.176 (0.456) -1.173 (0.333)

miR-29b (ID3) 0.585 (-0.406) 1.720 (-0.187) 1.287 (-0.574) 0.395 (-0.603) 1.315 (0.070) 2.939 (-0.152) 0.061 (-0.233) 1.186 (-0.298)

The fi rst three columns are log2 ratios for discordant monozygotic twins, while the last four columns are ratios for sib-pair comparisons. NA, no expression ratio 
obtained for this gene because an intensity value for either the autistic or control sample was missing.

Figure 5. Validation of miRNA targets. Three LCLs from non-autistic individuals were transfected with hsa-miR-29b pre-miR precursor, 

hsa-miR-219b anti-miR inhibitor, pre-miR negative control, or anti-miR negative control. At 72 hours after transfection, qRT-PCR analyses were 

conducted to determine expression of PLK2 and ID3 genes in the pre-miR/anti-miR-transfected LCLs (red), compared to respective pre-miR/anti-

miR negative controls (navy). (a,b) Expression of PLK2 was signifi cantly increased in the LCLs transfected with anti-miR-219-5p (a), whereas ID3 

expression was signifi cantly decreased in pre-miR-29b-transfected LCLs (b). The error bars show the standard error among the technical replicates. 

*P < 0.05.

(a) (b)

*

* *

*
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*
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hypothesis that miRNA dysregulation in peripheral blood 

cells can refl ect at least some miRNA alterations occur-

ring in the brain, thus lending support to the use of LCLs 

as a surrogate tissue to study miRNA expression in 

individuals with ASD.

Brain-related miRNAs are diff erentially expressed in LCLs 

from ASD patients

Our earlier studies profi ling gene expression in LCLs from 

monozygotic twins and siblings discordant for diagnosis of 

autism and unrelated autistic case-controls reveal the 

diff erential expression of hundreds to thousands of genes 

[21,40,77], suggesting that higher level epigenetic gene 

regulatory mechanisms are involved in ASD. Th e present 

study provides further insight into the post-transcriptional 

gene regulatory network asso ciated with ASD by identi-

fying diff erential miRNA expres sion as one mechanism for 

the diff erential gene expression associated with ASD. 

Interestingly, at least 16 of these miRNAs have been 

previously reported by Sempere and colleagues [59] to be 

brain-specifi c, brain-enriched, or induced by neuronal 

diff erentiation. Krichev sky and colleaques [62] reported 

signifi cant changes in the expression of nine miRNAs 

during brain development; one of these miRNAs 

(miR-103) was also signifi cantly diff erentially expressed in 

our study. Th us, the diff erential expression of these brain-

related miRNAs in LCLs suggests that gene expression 

diff erences pre viously observed in LCLs [21,40,77] may 

refl ect similar changes in the brain, possibly due to global 

or system-wide dysregulation of miRNA expression.

Biological functions associated with the confi rmed miRNAs 

and their target genes

Using miRNA TaqMan qRT-PCR, we confi rmed four 

diff erentially expressed miRNAs (hsa-miR-219-5p, hsa-

miR-139-5p, hsa-miR-29b, and hsa-miR-103) previously 

reported to be associated with the brain [59-62]. Of the 

confi rmed miRNAs, we observed a signifi cant decrease 

in brain-specifi c hsa-miR-219, which is associated with 

circadian rhythm and N-methyl-D-aspartate (NMDA) 

glutamate receptor signaling, both of which have been 

implicated in ASD [72-77,80,81]. In particular, Kocerha 

and colleagues [82] found that disruption of NMDA 

receptor signaling resulted in decreased levels of miR-219 

in mice. Hypofunction of NMDA receptor signaling has 

been associated with a number of neurological disorders, 

including autism [83-85], attention defi cit hyperactivity 

disorder [86,87], and schizophrenia [88]. One of the 

putative target genes whose expression was confi rmed to 

be inversely correlated with hsa-miR-219 expression is 

PLK2 (Figure 4), a serine/threonine kinase expressed in 

the brain [89] that participates in regulation of cell cycle 

progression [90] and homeostatic plasticity of hippocampal 

neurons [69,70]. A recent study found that PLK2 was 

induced during prolonged epileptiform activity, and was 

required for the activity-dependent reduction in mem-

brane excitability of pyramidal neurons, suggesting 

PLK2’s role in preventing escalating potentiation and in 

maintaining synapses in a plastic state [71]. PLK2 

induction in hippocampal neurons resulted in weakening 

of synapses through phosphorylation and degradation of 

post-synaptic spine-associated Rap GTPase-activating 

protein (SPAR), a regulator of actin dynamics and den-

dritic spine morphology [69,71], leading to loss of mature 

dendritic spines and synapses [91,92]. Over-expression of 

PLK2 in individuals with ASD due to decreased 

hsa-miR-219 levels as observed in this study (Figure  5, 

Table  4) may thus lead to global reduction in synaptic 

strength and neuronal excitability, which could be 

partially responsible for the synaptic dysfunction impli-

cated in ASD.

Another confi rmed brain-specifi c miRNA diff erentially 

expressed in individuals with ASD is hsa-miR-29b. 

Besides its confi rmed target, ID3 (Figure 5), which is 

involved in regulating the biological clock (see below), 

other target genes that show expression levels inversely 

correlated with the over-expression of this miRNA 

include COL6A2 (Collagen, type VI, alpha 2), CLIC1 

(Chloride intracellular channel 1), ARPC5 (Actin related 

protein 2/3 complex, subunit 5, 16kDa), and KIF26b 

(Kinesin family member 26B). Interestingly, a number of 

mutations in COL6A2 have been observed in muscular 

disorders, including Bethlem myopathy [93-95] and 

Ullrich congenital muscular dystrophy [94,96-98]. Muta-

tion in the COL6A2 gene results in decreased COL6A2 

transcript, leading to disruption of collagen formation 

and stability, which results in decreased muscle strength 

[93]. A number of motor impairments and muscular dis-

orders, including muscular dystrophy, hypotonia, and 

muscle weakness, are observed in individuals with ASD 

[50,99,100]. It is therefore interesting to postulate that 

suppression of COL6A2 as a result of up-regulated hsa-

miR-29b may be one of the genetic mechanisms under-

lying muscular disorders and motor impairments 

frequently observed in individuals with ASD.

Among brain-enriched miRNAs [59], hsa-miR-139-5p 

was selected for confi rmation analysis using miRNA 

TaqMan qRT-PCR assay. Although the precise targets in 

brain are not known, one of its putative targets (myo-

megalin or PDE4DIP (Phosphodiesterase 4D interacting 

protein)) is a homolog of brain-enriched CDK5RAP2 

(CDK5 regulatory subunit associated protein 2), a gene 

that regulates brain size [101-104], which has been shown 

to be abnormal in ASD [105-119]. Interestingly, this 

miRNA has been shown to be involved in prion-induced 

neurodegeneration [120].

Two of the most up-regulated miRNAs, miR-103 and 

miR-107 (Table 1), have been reported to be paralogous 
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miRNAs. miR-103 and miR-107 are expressed in many 

human organs, with the highest concentrations occurring 

in brain tissue [121]. Furthermore, miR-103 was 

demonstrated to change during corticogenesis in mice 

[62]. Although the specifi c targets of miR-103/107 in 

brain are unknown, these miRNAs are known to be 

associated with lipid metabolism [121], and in fact reside 

within introns of the pantothenate kinase (PANK) genes, 

which catalyze the biosynthesis of Coenzyme A, a critical 

component in fatty acid biosynthesis and oxidation. It 

should be noted that, while PANK was not found to be 

among the signifi cantly diff erentially expressed genes in 

this study, it was found to be increased in ASD and in the 

same direction as miR-103/107 in our previous study of a 

larger cohort of 31 autistic individuals with severe 

language impairment and 29 controls [77]. Aside from 

the association of PANK mutations and a neuro degenera-

tive (Hallervorden-Spatz) disease [122,123], alterations in 

lipid and fatty acid metabolism are also known to be 

associated with ASD. Vancassel and colleagues [124] 

examined the levels of phospholipid fatty acids in the 

plasma of individuals with ASD compared to controls 

with mental retardation and found signifi cant reductions 

in docosahexaenoic acid (22:6n-3) levels in autistic 

individuals, resulting in signifi cantly lower levels of total 

n-3 polyunsaturated fatty acids. Th e dysregulation of 

miR-103/7 may therefore contribute to abnormal lipid 

and fatty acid metabolism in ASD.

miRNAs regulating circadian rhythm are signifi cantly 

dysregulated in ASD

Recently, dysregulation of circadian rhythm has been 

considered as a mechanism for impairments in neuro-

logical and other functions (for example, sleep, digestive) 

in ASD [72-77]. In particular, the circadian rhythm (or 

‘clock’) genes have been posited to underlie social timing 

defi cits associated with autism [72], as well as lead to the 

sleep disorders frequently observed in ASD [125,126]. 

Bourgeron [75] also proposed an important role for 

circadian rhythm with respect to regulation of synaptic 

genes (NLGN3 (Neuroligin 3), NLGN4 (Neuroligin 4), 

NRXN1 (Neurexin 1), and SHANK3 (SH3 and multiple 

ankyrin repeat domains 3)), thus aff ecting susceptibility 

to ASD. Our large-scale genomic study also found strong 

support for an association between ASD and circadian 

rhythm dysfunction [77]. Interestingly, as many as 15 

circadian rhythm genes, including AANAT (Arylalkyl-

amine-N-acetyltransferase), BHLBH2 (Class B basic 

helix-loop-helix protein 2), CRY1 (Cryptochrome 1 

(photolyase-like)), NPAS2 (Neuronal PAS domain protein 

2), PER1 (Period homolog 1), PER3 (Period homolog 3), 

and DPYD (Dihydropyrimidine dehydrogenase), were 

diff erentially expressed exclusively in the most severe 

phenotype of ASD, which was characterized by severe 

language impairment [77,127]. It is interesting to note 

that two of the most signifi cantly down-regulated miRNAs 

(miR-219 and miR-132) in individuals with ASD have 

been reported to be involved in modulating the master 

circadian clock located in the suprachiasmatic nucleus 

[128-131]. Specifi cally, brain-specifi c miR-219 was a 

target of the master circadian regulator CLOCK and 

BMAL1 (Brain and muscle ARNT-like 1) complex, exhi-

bited robust circadian rhythm expression, and fi ne-tuned 

the length of the circadian period in mice [130,131]. It is 

relevant, therefore, that we demonstrate that PLK2, 

which is involved in circadian rhythm signaling, is a 

target of miR-219 (Figure 5).

Functional analyses of putative target genes using IPA 

(Table 2) also showed that other miRNAs (hsa-miR-29b 

and hsa-miR-376a) are signifi cantly associated with 

circadian rhythm signaling, with hsa-miR-29b targeting 

the ID3 gene, which might be important for entrainment 

and operation of the mammalian circadian system 

through ID3 interaction with CLOCK and BMAL1 [68]. 

Signifi cantly, we show that hsa-miR-29b pre-miR pre-

cursor results in the down-regulation of ID3 transcript. 

ID3 is also a neuronal target of MeCP2 (Methyl CpG 

binding protein 2), which is the causative gene for Rett 

syndrome [132]. Other putative targets of brain-specifi c 

hsa-miR-29b are genes known to interact in the 

regulation of the biological clock, including ARNTL (Aryl 

hydrocarbon receptor nuclear translocator-like; BMAL1), 

ATF2 (Activating transcription factor 2), DUSP2 (Dual 

specifi city phosphatase 2), PER1, PER3, and VIP (Vaso-

active intestinal peptide). Although only DUSP2 was 

found to be diff erentially expressed in the current 

analysis, it is interesting to note that our recent large-

scale gene expression study of LCLs from over 100 

unrelated case-controls found signifi cant decreases in 

PER1 and PER3 transcript levels in individuals with the 

most severe phenotype of ASD [77]. However, further 

experimental studies are required to determine whether 

or not the over-expression of hsa-miR-29b results in the 

suppression of these two PER genes.

Target genes of miRNAs involved in functions and 

processes associated with ASD

To obtain more insight into the biological functions 

regulated by each of the diff erentially expressed 

miRNAs, the potential target genes of each miRNA 

were predicted in silico and uploaded into IPA network 

prediction software. For most miRNAs, target genes 

were predicted to be involved in neurological disease 

and nervous system development and function on the 

basis of gene enrichment within the dataset (Table 2). 

Th is fi nding suggests that the signifi cantly diff erentially 

expressed miRNAs may lead to post-transcriptional 

dysregulation of target genes that, in turn, leads to the 
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disruption in neurological functions contributing to ASD 

patho physiology.

Th e dysregulation of these specifi c miRNAs may also 

potentially impact other physiological functions. Besides 

the neurological functions, almost half of the diff er en-

tially expressed miRNAs targeted a number of genes 

involved in gastrointestinal disorders and hepatic 

diseases, which have been found in approximately 50% of 

individuals with ASD [133,134]. Our fi ndings thus 

provide a plausible explanation for some of the systemic 

eff ects observed in ASD that aff ect other organs in 

addition to the nervous system.

Steroid hormones have been suggested to be involved 

in the etiology or susceptibility to ASD [135,136]. In 

particular, previous studies have reported elevated 

androgen levels in the serum of autistic individuals, 

including females [135,136], and we have recently 

reported changes in genes in LCLs that correlated with 

increases in testosterone [40,77]. Androgens and estro-

gens are known to participate in synaptic plasticity in the 

brain of rats. Whereas estrogens have been found to take 

part in synaptic plasticity in the hippocampus of female 

rats [137], androgens can modulate that function in both 

male and female rats [138]. Within this context, it is note-

worthy that four of the diff erentially expressed miRNAs 

(miR-16, miR-186, miR-25, and miR-195) target genes 

participating in estrogen receptor signaling. miR-136, 

which was one of the most down-regulated miRNAs 

found among all fi ve ASD samples, is also associated with 

androgen and estrogen metabolism.

miRNAs are known to act through translational 

repression [23-27]. However, the repressed transcripts 

are often degraded in P-bodies, ultimately leading to 

reduced transcript levels for a particular miRNA-

repressed gene [49]. Th is inverse correlation between 

miRNA and target gene transcript levels is further 

suggested by the observed inverse correlation between 

miRNA ‘host’ genes and the miRNA target transcripts 

using a novel analysis called HOCTAR (for ‘host gene 

oppositely correlated targets’) [66]. Th us, an increase in a 

particular miRNA is likely to lead to decreased transcript 

levels of target genes and vice versa. However, inverse 

correlation of miRNA and target mRNA levels is not 

necessarily observed. Nevertheless, comparing the 

miRNA expression data obtained by the present study 

with data obtained by our previous cDNA microarray 

analysis of these same samples reveals that the direction 

of change for roughly 27% of the diff erentially expressed 

genes was inversely correlated with that of the respective 

potentially regulatory miRNAs. Relational gene networks 

constructed using computational network prediction 

tools show that the inversely correlated target genes of 

the signifi cantly diff erentially expressed miRNAs are 

linked to autism as well as to co-morbid disorders 

frequently reported in many autistic individuals (Figure 3). 

For example, a number of genes in the network are linked 

to synaptic function, such as regulation of synapse, 

synaptic plasticity, and synaptic transmission. Synaptic 

plasticity has been comprehensively described in the 

context of fragile X syndrome and linked to autism [139]. 

FMRP (Fragile X mental retardation protein), the key 

protein missing in fragile X syndrome, is an RNA binding 

and transport protein that regulates the translation of 

many other proteins important for synaptic plasticity, 

including neuroligins 3 and 4 and SHANK, all of which 

have been previously associated with autism 

[12,13,139,140]. Muscular dystrophy and muscle disease 

are also known to be among the co-morbid disorders 

frequently found in autism [99]. Th us, putative target 

genes of the diff erentially expressed miRNAs identifi ed in 

this study can be associated with both neurological as 

well as co-morbid features of ASD.

Although the major behavioral symptoms of ASD 

appear to be of neurological origin, the prevalence of 

gastrointestinal abnormalities, hypotonia, and immune 

disorders in individuals with ASD have led some 

researchers to view ASD more as a systems disorder that 

is a result of gene and environment interactions. Th us, 

several recent studies, including three from our labora-

tory [21,40,77], have used LCLs as a surrogate experi-

mental model to better understand the pathobiology of 

ASD as well as to identify peripheral biomarkers of ASD 

for diagnostic purposes [21,38,40,77,127,141,142]. In 

particular, our previous study of monozygotic twins 

discordant for diagnosis or severity of autism revealed 

diff erentially expressed genes with known neurological 

functions of potential relevance to autism [21]. Because 

identical twins share the same genotype, this study 

suggested the involvement of epigenetic factors in the 

regulation of gene expression in ASD. Furthermore, the 

global scale of the observed changes in gene expression 

suggested the operation of ‘master switches’ that can 

activate or suppress multiple genes at once. Non-coding 

RNAs, including miRNAs, are potential epigenetic 

regulators of gene expression and can operate in this 

fashion [24,143-146].

Conclusions

Our miRNA expression profi ling study of LCLs derived 

from individuals with ASD, their discordant monozygotic 

co-twins, and/or their unaff ected siblings reveals a set of 

signifi cantly diff erentially expressed miRNAs whose 

target genes are associated with neurological diseases 

and functions. Moreover, by integrating and correlating 

both miRNA and gene expression data from the same 

samples, we take a systems biology approach to reducing 

the total number of relevant targets for further study as 

candidate ASD genes. Finally, the signifi cant diff erential 
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expression of brain-specifi c and brain-related miRNAs 

detected in LCLs may refl ect systemic changes under-

pinning ASD that give rise to neuropathological 

conditions and, moreover, support the use of LCLs as a 

surrogate tissue to study miRNA expression in ASD.
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