
Hangauer et al. Genome Biology 2014, 15:112
http://genomebiology.com/2014/15/4/112
RESEARCH HIGHLIGHT
Discovering the complexity of the metazoan
transcriptome
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Abstract

Recent studies harnessing deep RNA sequencing
coupled with other complementary data have
revealed the complex nature of metazoan
transcriptomes.
ence in number of isoforms per gene is unlikely to be
The deeper you look, the more you find:
pervasive transcription
The advent of deep sequencing technology has ushered in
a new era of genomics research. The application of deep
sequencing to RNA analysis has shown that the majority
of the genomic sequence is transcribed in humans and
other metazoan species [1]. These analyses have resulted
in the identification of thousands of novel coding and
non-coding genes. Yet, it is clear that the full catalog of
transcription remains elusive. For example, when pre-
sumed non-transcribed human intergenic sequence was
studied in great depth, a complex web of overlapping,
spliced transcripts of very low abundance was found [2].
These and other findings indicate that the complexity of
the transcriptome is currently underappreciated.
In 2012, as part of the ENCODE project, which

focused initially on humans, Djebali et al. [1] showed
the staggering complexity and expanse of the human
transcriptome. At least three-quarters of the genome
produces transcripts, many of which demonstrate com-
plex splicing and specific expression patterns. Recent
results from the modENCODE project by Brown et al.
[3] analyzing the Drosophila transcriptome have shown
similarly impressive complexity and some surprising
differences compared with humans.
Digging even deeper: splicing
The ENCODE project team observed that human genes
do not follow a minimalistic isoform expression strategy;
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instead each gene simultaneously produces up to 10 to
12 isoforms [1]. In contrast, Brown et al. [3] observed
that in Drosophila, most genes have relatively few iso-
forms. In fact, 42% of Drosophila genes encode only a
single transcript isoform, whereas in mammals, 95% of
genes have multiple expressed isoforms [1,4]. This differ-

due to uneven sampling or read depth between humans
and Drosophila. The Drosophila data consist of over 12
billion read pairs from many tissues and conditions, with
enough read depth and conditions to identify isoforms
of most genes, and are at least on a par with the read
depth of the human data. Interestingly, in Drosophila,
the majority of alternatively spliced genes encode only a
single protein sequence and vary only in the first exon,
through either alternative promoter usage or splicing
[3]. Genome-wide analysis of human isoform protein-
coding capacity has not been reported, and it will be
interesting to determine whether human alternative spli-
cing significantly affects the protein sequence.
Splicing in Drosophila was found to be highly tissue-

specific, with over 50% of splicing events changing signifi-
cantly between tissues [3]. Tissue-specific splicing appears
to be more prevalent than sex-specific or developmental
stage-specific splicing. In fact, sex-specific splicing was
only found in sex tissues present exclusively in males or
females. The underlying reasons for this dominance of
tissue-specific splicing in Drosophila are unclear, but it
may be due to a variety of causes, including the strongly
tissue-specific expression or regulation of different com-
ponents of splicing machinery.
Though Brown et al. [3] found that Drosophila genes

have fewer isoforms than human genes, in general, they
observed very complex splicing of some Drosophila genes.
Specifically, they found that 47 genes each have an ex-
tremely high number (more than 1,000) of splice variants
and are expressed primarily in developing and adult
neural Drosophila tissue. These transcripts are strongly
enriched for RNA-editing, possessing 3′ UTR extensions,
and the total count of these genes’ isoforms makes up half
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of all transcripts in Drosophila. The biological significance
of the extreme splicing of these genes is unclear, and it is
currently unknown whether orthologs of these genes have
similar splicing patterns in other organisms.

Venturing into the dark matter of the genome
Utilizing extensive RNA-seq data, Brown et al. [3] ob-
served that, similar to humans, both antisense and
intergenic non-coding transcription is prevalent in
Drosophila. In particular, Drosophila gonad tissue was
found to express many previously unknown tran-
scripts, consistent with observations in testes from
other species [5,6]. Indeed, it has been hypothesized
that testes tissue has a permissive chromatin environ-
ment allowing transcription, perhaps serving as a gene
creation tissue during evolution [6].
Most antisense transcription in Drosophila results

from overlapping mRNAs on the opposite strand and
the majority is the result of overlapping UTRs. However,
21% of Drosophila long noncoding RNAs (lncRNAs) are
antisense to mRNAs (compared with 15% for humans)
and some lncRNAs overlap multiple mRNAs forming
‘sense-antisense gene-chains’, similar to those seen in
mammals [7]. The degree to which sense and antisense
transcripts are present in the same cells, compared with
mutually exclusive expression within distinct cells in a
cell population, is unclear and is an important avenue
for future research.
Earlier studies in Drosophila have catalogued lncRNAs

using non-stranded RNA-seq data of limited read depth
and tissue breadth. Using a vast set of stranded RNA-seq
data, Brown et al. [3] found up to 4,000 candidate
lncRNA genes with no predicted open reading frame
(ORF) longer than 100 amino acids. Further refinement
of this catalog, including removal of putative conserved
short protein-coding genes, resulted in a catalog of
about 2,000 lncRNAs. In comparison, there are 13,870
human lncRNA genes annotated in GENCODE v19.
Due to the low expression of most lncRNAs and poor
read coverage, Brown et al. catalogued the full structures
of only a few hundred Drosophila lncRNAs. In com-
parison, human lncRNAs discovered from RNA-seq
and other complementary deep sequencing data also
suffer from incomplete structures [5,8]. As a result, it is
unclear whether the different total lncRNA count in
humans and Drosophila reflects actual lncRNA numbers
or is an artifact of incomplete annotation. In addition,
Brown et al. only studied polyadenylated RNA, so it is
possible that there are many nonpolyadenylated lncRNAs
that remain unidentified: the overall complexity of the
Drosophila non-coding transcriptome could currently be
underestimated.
Putative lncRNAs that have not been experimentally

evaluated for protein-coding capacity could be novel
protein-coding genes. High throughput refinement
of candidate lncRNAs to remove very short peptide-
encoding genes, such as the Drosophila gene tarsel-less
(11 amino acids), is currently not technically feasible.
Ribosomal profiling data, if available across all tissues of
interest, could be used to identify only those transcripts
that have no physical association with the ribosome.
However, recent studies have shown that lncRNAs can
associate with the ribosome yet not encode a protein [9].
Furthermore, mass spectrometry has been used effect-
ively to identify some small peptide-encoding genes [10].
Unfortunately, mass spectrometry is prone to false nega-
tives and therefore is not a reliable method to identify all
short peptide-encoding genes exhaustively, a require-
ment if it were to be used as a robust filter for lncRNAs.
As a result, there is currently no high throughput empir-
ical or computational approach to definitively segregate
non-coding from coding transcripts with absolute confi-
dence. This is a major challenge for the lncRNA field
and new approaches are needed.
Despite the incompleteness of lncRNA annotations, it

is nonetheless clear that lncRNAs are frequently present
within non-coding regions of the genome known to be
functional. lncRNAs are strongly enriched for trait-
associated single nucleotide polymorphisms (SNPs) in
humans [8]. In Drosophila, of all the novel coding and
noncoding genes Brown et al. discovered, only lncRNAs
overlap previously molecularly defined mutations with
phenotypes [3]. This evidence, as well as a growing list
of examples of functional human lncRNAs containing
trait-associated SNPs (such as MIAT), has supported
the possibility that much of the intergenic functional
sequence in organisms acts through non-coding RNA
rather than, or in addition to, DNA. However, it remains
to be experimentally determined what fraction of, and
which, lncRNAs act as functional transcripts.

Where are we going and how do we get there?
Deep sequencing technology has allowed for an unpre-
cedented view of transcriptomes, revealing tremendous
complexity in transcript identity, splicing and expression
patterns. Complementary techniques, including RNA-
seq, CAGE, 5′ and 3′ end sequencing and others have
provided large amounts of detailed information. The re-
cent studies described here from the ENCODE and
modENCODE projects exemplify what can be learned
from the application of deep sequencing approaches to
transcriptomes (Figure 1).
Despite this impressive array of technologies and

large-scale collaborative efforts to apply them to tran-
scriptomes, a fully comprehensive catalog of any organ-
ism’s transcriptome remains elusive. Indeed, even the
complete saturation of sampling of all RNA species
within a single cell type has yet to be accomplished.



Techniques 

Human Findings

• >85% of the genome is transcribed

• 20,345 protein encoding genes 
  13,870 lncRNA genes (GENCODE v19)

• Splicing: 95% of genes produce 
   multiple isoforms

• LncRNAs are strongly enriched for 
  trait associated SNPs 

Drosophila Findings

• 14,692 protein coding genes 
  1,875 lncRNA genes (Brown et al.)

• Splicing: 90% of genes produce 
  few isoforms; 47% only produce one

• Splicing is highly tissue specific

• Newly identified lncRNA overlap regions 
  with defined mutational phenotypes

• RNA-seq

• CAGE 

• PET

• ChIP-seq

ENCODE modENCODE

Figure 1 Discovering the complexities of human and Drosophila transcriptomes. The ENCODE (left-hand side) and modENCODE (right-hand
side) projects have used a diverse set of techniques to provide an unprecedented view of the human and Drosophila transcriptomes.
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Many technical hurdles remain. First and foremost, what
read depth is required to saturate sampling of all tran-
scripts? The discovery of very low abundance transcripts
illustrates how difficult it may be to answer this question
[2]. Can a transcript with apparent expression in 1 out
of 10 cells be functional? 1 out of 100? 1 out of 1,000? Is
there meaningful biological information in many or few
of these low abundance transcripts? Determining the
limits of transcript abundance for functionality will be
important in directing future efforts toward a full under-
standing of the transcriptome.
There are many additional technical challenges on the

horizon. RNA transcripts may be capped or not, polya-
denylated or not, vary drastically in size from a few nu-
cleotides to megabases, and overlap each other in
complex ways. Current deep sequencing technology does
not allow for very long read lengths and extremely deep
read depths at an affordable cost, yet this may be the
only approach to unequivocally define full transcript
structures, particularly of lowly expressed transcripts in
complex loci. Another challenge on the horizon is the
analysis of single cell transcriptomes. Due to difficulties
in reliably isolating single cell RNA from tissues and
robustly sequencing RNA from a single cell, the amount
and biological importance of single cell heterogeneity of
RNA expression remains controversial.
Despite these challenges, the studies by Brown et al.

[3] and Djebali et al. [1] have provided important insight
into the nature of the Drosophila and human transcrip-
tomes. These studies and others to come will serve as
fundamental resources for increasing our understanding
of the transcriptome in its complicated beauty.
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