PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Reaping the rewards of RNAi

ArticleInfo		
ArticleID	\Box	4679
ArticleDOI		10.1186/gb-spotlight-20030116-01
ArticleCitationID		spotlight-20030116-01
ArticleSequenceNumber	$\begin{bmatrix} \vdots \end{bmatrix}$	31
ArticleCategory	$\begin{bmatrix} \vdots \end{bmatrix}$	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	$\begin{bmatrix} \vdots \end{bmatrix}$	2
ArticleHistory	:	RegistrationDate : 2003–1–16 OnlineDate : 2003–1–16
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	\Box	
ArticleContext		130594411

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Loss-of-function phenotype analysis in nematode worms has benefited tremendously from a well-annotated genome and the efficacy of RNAi gene-inactivation technology. In the January 16 Nature Kamath *et al.* report the results of the first genome-wide RNAi screen in *Caenorhabditis elegans* (*Nature* 2003, **421**:231-237). Worms were fed on bacteria expressing double-stranded RNA for each *C. elegans* target gene. A library of 16,757 bacterial strains, covering 87% of predicted genes, was screened for genes implicated in sterility, embryonic lethality, slow growth or post-embryonic defects. About 10% of strains gave clear mutant phenotypes. The most common RNAi phenotype is embryonic lethality. Worm genes that were orthologs in other species are more likely to have a detectable RNAi phenotype than other genes. And genes that exist as a single copy are 2-3 times more likely than others to have a phenotype. Some protein domains showed association with particular types of RNAi phenotypes. Also, genes with RNAi phenotypes are often found grouped together in chromosomal clusters. In an accompanying paper, Ashrafi *et al.* describe how this RNAi library can be used as a powerful resource to identify genes that regulate body fat production (*Nature* 2003, **421**:268-272). In an accompanying 'News and Views' article Thomas Tuschl comments that these studies establish "a new standard for systematic, genome-wide genetic studies."

References

- 1. WormBase, [http://www.wormbase.org]
- 2. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*.
- 3. *Nature*, [http://www.nature.com]
- 4. Transcriptional territories in the genome.

This PDF file was created after publication.