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Abstract

Expression quantitative trait loci (eQTL) mapping is a tool that can systematically identify genetic variation affecting
gene expression. eQTL mapping studies have shown that certain genomic locations, referred to as regulatory
hotspots, may affect the expression levels of many genes. Recently, studies have shown that various confounding
factors may induce spurious regulatory hotspots. Here, we introduce a novel statistical method that effectively
eliminates spurious hotspots while retaining genuine hotspots. Applied to simulated and real datasets, we validate
that our method achieves greater sensitivity while retaining low false discovery rates compared to previous methods.

Background
Expression quantitative trait loci (eQTL) mapping is an
approach linking genetic variation to gene expression to
identify genomic loci containing gene expression modula-
tors. An interesting observation in previous eQTL studies
is that expression levels of thousands of genes may be
affected by genetic variation at a single location called a
regulatory hotspot. Although some of the identified reg-
ulatory hotspots correspond to genetic variants that truly
govern expression of many genes, it has been recently
reported that spurious hotspots that do not have genetic
effects on genes may appear due to confounding fac-
tors such as batch effects. In this paper, we introduce a
novel statistical method that effectively eliminates spuri-
ous regulatory hotspots while retaining genuine hotspots
resulting from true genetic effects.
Understanding the relationship between genetic varia-

tion and gene regulation has recently received significant
interest. The most common approach for studying this
relationship is through eQTL, where both genetic varia-
tion and expression levels are collected from a set of indi-
viduals and associations between genetic variation and
expression are estimated [1-9]. Any identified association,
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or eQTL, suggests the presence of a region harboring
genetic variation that affects expression levels.
In eQTL mapping, two types of eQTLs are analyzed:

cis-eQTLs that are in close proximity to the gene locus
and trans-eQTLs that occur at greater distances from
the gene locus [10]. Previous eQTL studies for multiple
organisms [2-4,6] have shown that many genes are trans-
regulated by a small number of genomic regions, known
as ‘regulatory hotspots’. Although several eQTL studies
have successfully identified regulatory hotspots [11-13],
it has been reported in studies of recombinant inbred
mice that regulatory hotspots replicate poorly [14]. Previ-
ous studies have discovered that these regulatory hotspots
are spurious associations caused by various confounding
factors, such as batch effects or other technical artifacts,
which induce noise during sample preparation or expres-
sion measurements [15-17]. Confounding factors create
heterogeneity in expression data and may induce spurious
associations between SNPs and gene expressions, leading
to the identification of ‘spurious regulatory hotspots’ [18].
In these spurious hotspots, SNPs appear to be associated
with gene expression levels, although they do not have
genetic effects on the genes.
Several computational methods have been developed to

correct for confounding effects using various statistical
methods such as singular value decomposition or linear
mixed models [18-21]. The main assumption behind most
of these methods is that the confounding factors influence
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the global correlation structure between the gene expres-
sion values. Hence, the methods, such as Intersample
Correlation Emended (ICE) [18] and SVA [19], attempt
to estimate the global correlation structure and use it
as a covariate in the association to remove confound-
ing effects from the association statistic. Although these
methods effectively remove spurious regulatory hotspots,
they may also remove true hotspots caused by genetic
factors. This is because the global correlation structure
contains genetic effects, so by correcting for the global
structure, genetic effects are removed as well. For exam-
ple, in a well-studied yeast dataset, several hotspots are
known to be true genetic effects since they have been val-
idated by additional data such as protein measurements
[22,23]. Unfortunately, these hotspots are removed in
addition to the spurious ones. Other methods [20,21] also
do not explicitly remove true genetic signals and either
eliminated true hotspots or failed to remove spurious
hotspots in our experiments.
In this paper, we introduce a new method called Next-

generation Intersample Correlation Emended (NICE)
eQTL mapping, which attempts to eliminate spurious
regulatory hotspots while retaining hotspots caused by
genetic effects by utilizing a novel statistical framework.
Our method leverages an insight that confounding fac-
tors affect the majority of genes, while genetic effects
only affect a subset. This insight allows us to distin-
guish between confounding and genetic effects. We used
a recently developed statistic [24] to differentiate between
genes that are affected by both genetic effects and con-
founding effects versus genes that are affected by only
confounding effects. Using genes only affected by con-
founding, we are able to correct for the confounding
effects but preserve the genetic effects. We first show
by simulations that NICE successfully eliminates spurious
regulatory hotspots while preserving regulatory hotspots
corresponding to real genetic effects. On the other hand,
previous methods either fail to eliminate confounding
effects or fail to retain the genetic effects.
We demonstrated the utility of NICE with a yeast

dataset. Versions of a yeast dataset were generated in
2005 [2] and 2008 [25]. Since they were generated 3
years apart in different locations, the hotspots that are
shared between the datasets are likely to be the real
genetic effects, while hotspots that are different between
the datasets are likely to be spurious hotspots. We used
our method on only the first dataset to see if we could
discriminate between which hotspots are real and spu-
rious as determined by the second dataset. Applied to
the yeast dataset, NICE identified 83% (sensitivity) of the
putative regulatory hotspots that are consistent between
the two versions of the yeast dataset. Previous methods
applied to this dataset either eliminated many of the puta-
tive hotspots or predicted many spurious hotspots. In

addition, NICE eQTL mapping identified either more or
a comparable number of cis associations relative to pre-
vious methods. Furthermore, applied to a yeast dataset
grown in different conditions, NICE identified genes that
are related to gene–environment interactions and discov-
ered novel yeast regulatory hotspots that are likely to have
a true biological mechanism.

Results
NICE eQTL mapping
Our goal was to identify true genetic associations in an
eQTL mapping study without predicting spurious associ-
ations due to confounding factors. Consistent with previ-
ous approaches that correct for the confounding factors
based on singular value decomposition or linear mixed
models, we assumed that the confounding factors affect
the global correlation structure of expressions. That is,
we assumed that confounding factors affect the expres-
sion levels of most of the genes. On the other hand, we
assumed that genetic factors only affect the expression
levels of a subset of the genes related to the regulatory
pathways. Figure 1(a) shows a graphical model that con-
tains both genetic and spurious associations due to a
confounding factor. SNP 1 has a genetic effect on multiple
genes and thus, is a regulatory hotspot. Unlike SNP 1, SNP
2 has no direct genetic effects on any of the genes. How-
ever, SNP 2 has spurious associations with many of the
genes because, by chance, it happens to be correlated with
the confounder and this results in a spurious regulatory
hotspot.
To eliminate spurious associations, ICE [18] models the

confounding effects by estimating the global correlation
structure of the expression levels of all genes and uses this
structure as a covariate in the association statistic. This
has the same effect as if the confounding factor itself is
included as a covariate in the association statistic, remov-
ing its effect. Unfortunately, any regulatory hotspots, as
in the case of the first three genes of Figure 1(b), will
also be captured in the global correlation structure and
be eliminated. For this reason, ICE [18] tends to elimi-
nate true regulatory hotspots in addition to confounding
effects.
In contract to ICE [18], NICE uses only a subset of genes

to model the global correlation structure between expres-
sion levels used to correct for confounding factors. Since
most genes are affected by confounding effects, any sub-
set of genes will likely capture the confounding effects and
utilizing only those genes to estimate the global correla-
tion structure is enough to correct for the confounding
factor. Theoretically, if we can correct for confounding
effects using the genes that are not involved in true regu-
latory hotspots, we would eliminate spurious associations
while preserving true genetic associations. Unfortunately,
we do not know in advance which genes are involved in
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Figure 1 GraphicalFigures: format model of ICE and NICE with correction for confounding effects. (a) Genetic and spurious associations.
SNP 1 has a genetic effect on the first three genes (blue arrows). SNP 2 has no genetic effect on any of the genes; however, it has spurious
associations with many of the genes, because, by chance, it happens to be correlated with a confounding factor (red arrows). (b) ICE [18] models
the confounding effects by estimating the global correlation structure of the expression levels of all genes (gray block). However, this eliminates
genetic associations in addition to confounding effects since any regulatory hotspots, such as the first three genes, will also be captured in the
global correlation structure and be eliminated. (c) NICE uses only a subset of genes to model the global correlation structure between expression
levels used to correct for confounding factors. Since any subset of genes will capture the confounding effects, by using the bottom four genes (gray
block) we can eliminate the confounding effects but preserve the genetic effects.
SNP, single nucleotide polymorphism.

the regulatory hotspots, which complicates the choice of
which genes to use to correct for the confounding. Practi-
cally, almost all genes are affected by confounding effects
while only some genes have both confounding and genetic
effects. We expect this second group of genes to show
stronger associations than the others. Thus we use the
weakly associated genes tomodel the confounding factors.
For example, in Figure 1(c), by using the four most weakly
associated genes, we can correct for the confounding
effects but preserve the genetic effects.

NICE eliminates spurious regulatory hotspots while
preserving true genetic effects
To validate that our method eliminates spurious regula-
tory hotspots while preserving regulatory hotspots corre-
sponding to real genetic effects, we generated a simulated
dataset with both true regulatory hotspots and a batch
effect that creates spurious hotspots. We created a dataset
that has 100 samples with 1,000 SNPs and 1,000 gene
expression levels.We added five trans-regulatory hotspots
and cis effects. For each of the trans-regulatory hotspots,
20% of the genes have trans effects. SNPs were randomly
generated with minor allele frequencies of 30%. A batch
effect was simulated where expression levels in the first
half of the samples were correlated with each other, but
not correlated with the second half of the samples, and
vice versa.
We visualized the results of the eQTL study with an

eQTL plot such as those shown in Figure 2. The x-axis

corresponds to SNP positions and the y-axis corresponds
to the gene positions. The intensity of a point on the
plot represents the significance of the association. The
diagonal band represents the cis effects and the verti-
cal bands represent hotspots. On the eQTL plot, we
mark successfully identified regulatory hotspots with blue
arrows, missed regulatory hotspot with green arrows
and spurious hotspots with red arrows. In the simu-
lated data, the eQTL plot has five regulatory hotspots
(Figure 2(a), blue arrows) and eight spurious hotspots
(Figure 2(a), red arrows) induced by the batch effect we
simulated.
We compared our method with several methods includ-

ing SVA [19], ICE [18], LMM-EH [20] and PANAMA
[21]. They were all used to correct expression hetero-
geneity on the simulated data and the results are shown
on eQTL plots (Figure 2). NICE successfully identified
five real regulatory hotspots and eliminated spurious
ones (Figure 2(f )). SVA also identified five real regula-
tory hotspots and eliminated spurious ones (Figure 2(b)),
which was expected as SVA is designed to capture only
the broad signal and our simulated data contains only one
large batch effect. In the next section, we show that SVA
does not perform as well on a real dataset that contains
more realistic confounding effects. On the other hand,
ICE and LMM-EH removed not only spurious hotspots
but also real hotspots (Figure 2(c),(d)). PANAMA failed
to remove the spurious hotspots and did not show a big
difference with the standard t-test (Figure 2(a),(e)). The



Joo et al. Genome Biology 2014, 15:r61 Page 4 of 15
http://genomebiology.com/2014/15/4/r61

Figure 2 eQTLmaps for differentmethods applied to the simulated data. The x-axis corresponds to SNP positions and the y-axis corresponds to
the gene positions. The intensity of a point on the plot represents the significance of the association. The diagonal band represents the cis effects and
the vertical bands represent hotspots. Blue arrows show the locations of real genetic regulatory hotspots, green arrows indicate missing hotspots
and red arrows show spurious hotspots. The eQTL map for the standard t-test (a), SVA (b), ICE (c), LMM-EH (d), PANAMA (e) and NICE (f) are shown.

results are summarized in Table 1. Given the number
of real (R), missing (M) and spurious (S) hotspots iden-
tified, we calculated the sensitivity and false discovery
rate (FDR) as R/(R + M) and S/(R + S), respectively.
All methods successfully identified cis effects. We fur-
ther studied the test statistics of P values by estimating
the genomic control inflation factor λ [26] to check if the
P values are either inflated (λ > 1 ) or deflated (λ <

1). Figure 3 shows �λ, which is defined as 1 − λ. The
�λ values of SVA and NICE are close to zero. On the
other hand, the standard t-test and PANAMA show infla-
tion (�λ > 0) and ICE and LMM-EH show deflation
(�λ < 0).

NICE eliminates spurious hotspots while preserving
genetic hotspots for a yeast dataset
We took advantage of a unique dataset consisting of two
versions of a yeast dataset generated in 2005 [2] and 2008
[25] to validate ourmethod. The two datasets contain sim-
ilar strains, but were generated 3 years apart in different
locations. For this reason, the hotspots that are shared
between the datasets are likely real genetic effects, while
hotspots that are different between the datasets may be
spurious hotspots caused by technical confounding fac-
tors present at the time of generation of the datasets. In
addition, some of these hotspots were further validated by
other experimental data such as protein levels [22,23].

Table 1 Number of real, missing and spurious hotspots identified by different methods applied to simulated data

Method Real hotspots Missing hotspots Spurious hotspots Sensitivity False discovery rate

t-test 5 0 8 1.0 0.62

SVA 5 0 0 1.0 0

ICE 0 5 0 0 N/A

LMM-EH 0 5 0 0 N/A

PANAMA 5 0 8 1.0 0.62

NICE 5 0 0 1.0 0

N/A, not applicable.
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Figure 3 Inflation factors for different methods for simulated data. �λ is defined as 1 − λ.

To determine which hotspots in the two datasets are
regulatory hotspots due to genetic effects, we used the fol-
lowing approach. We first computed a P value for each
gene-SNP pair in both datasets using the standard t-test
(Figure 4(a),(b)). We then merged the P values of the two
datasets by taking a maximum P value between the two
(Figure 4(c)). The idea is that associations due to true
genetic effects are likely to have significant P values in
both datasets while associations due to the confound-
ing effects tend to have a significant P value in only one
of the datasets. Thus, by taking the maximum P value,
we can identify the associations that are significant in
both datasets. From the merged P values of the two
datasets, we identified the top 12 hotspots in terms of
their association strength, and considered them as ‘puta-
tive hotspots’. We are interested in the number of hotspots
each method recovers from these putative hotspots. The
2008 dataset is of higher quality than the 2005 dataset

since it uses a newer version of the array technology. We
verified the relative quality of the datasets by compar-
ing the number of cis-eQTLs identified in each dataset,
which demonstrates that the 2008 dataset is of higher
quality. For this reason, we expected that all hotspots orig-
inally found in the 2005 dataset that are true effects will
be found in the 2008 dataset. Thus hotspots identified in
the 2005 dataset but not in the 2008 dataset are likely
spurious.
We measured the presence of a hotspot by computing

the sum of the log P values of all of associations of a sin-
gle marker with the expression level of each gene. This
measure, called the hotspot level, identifies hotspots since
it captures which SNPs are associated with many gene
expression levels. We visualize the hotspot level at the top
of our eQTL plots (Figure 4). We used the hotspot level to
identify the putative hotspots from the merged P values of
the two datasets (blue asterisks in Figure 5(a)).

Figure 4 eQTLmaps of two versions of a yeast dataset that were generated 3 years apart in different locations. The standard t-test was
used to generate the P values. (a) eQTL map of the yeast dataset generated in 2005 [2]. (b) eQTL map of the yeast dataset generated in 2008 [25].
(c) eQTL map using the maximum P value of the two datasets to show the putative genetic associations in the yeast dataset. The graph on the top
of each eQTL map shows the strength of regulatory hotspots as the average over all genes of the − log P values for a given SNP.
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Figure 5 Putative, missing and spurious hotspots for the methods applied to the yeast dataset generated in 2005 [2]. (a) The average over
all genes of the − log of the maximum P value of the two yeast datasets for each SNP. (b)-(g) The average over all genes of the − log P value for
each SNP for several methods: the standard t-test, SVA, ICE, LMM-EH, PANAMA and NICE. Blue asterisks show putative genetic regulatory hotspots
predicted from the merged dataset, green arrows show missing hotspots and red arrows show spurious hotspots identified by each method. Red
horizontal lines show thresholds used to select significant peaks, which are two standard deviations above the mean. Note that the t-test has a
distinct advantage in this evaluation because P values from the t-test were used to determine the putative regulatory hotspots.

Our goal in this experiment was to identify the true
regulatory hotspots and eliminate the spurious hotspots
using the 2005 yeast dataset [2].We applied each approach
to the 2005 data and evaluated the results using knowl-
edge of which hotspots are true hotspots obtained using
both the 2005 and the 2008 datasets [2,25]. We computed
the hotspot levels for the following methods: the stan-
dard t-test, SVA, ICE, LMM-EH, PANAMA and NICE
(Figure 5). We have annotated the results for each method
with blue asterisks, and green and red arrows, which indi-
cate putative genetic regulatory hotspots predicted from
the P values of merged datasets, missing hotspots and
false positive hotspots, respectively. The results show that
our method identified all but two of the putative hotspots
while only predicting one spurious hotspot (Figure 5(g)).
ICE and LMM-EH made several false positive predictions

and SVA, LMM-EH and PANAMAmissed many hotspots
(Figure 5(c) to (f )). We note that the t-test has a dis-
tinct advantage in this evaluation because P values from
the t-test were used to determine the gold standard
(Figure 5(b)) and it is inappropriate to evaluate the t-test
in terms of sensitivity and FDR estimated from the gold
standard. Table 2 summarizes the results.
We considered an SNP as a hotspot if its hotspot level

was two standard deviations above the mean. We used
this criteria because it provides a reasonable threshold to
separate hotspots and noisy peaks. Other thresholds were
shown to be inappropriate. With lower thresholds, all
methods identified not only most of the putative hotspots
but also many spurious hotspots. With higher thresholds,
all methods missedmost of the putative hotspots. Figure 6
is a plot similar to a receiver operating characteristic
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Table 2 The number of putative, missing and spurious hotspots for the 2005 yeast data [2]

Method Putative hotspots Missing hotspots Spurious hotspots Sensitivity False discovery rate

t-test 9 3 0 0.75 0

SVA 5 7 0 0.42 0

ICE 8 4 3 0.67 0.27

LMM-EH 2 10 5 0.17 0.71

PANAMA 5 7 0 0.42 0

NICE 10 2 1 0.83 0.09

curve, showing the sensitivity and the number of spuri-
ous hotspots for different thresholds. The x-axis shows
the number of spurious hotspots and the y-axis shows the
sensitivity. For different thresholds, NICE performed the
best.
Figure 7 shows the inflation factors for the methods.

The standard t-test, SVA and PANAMA show inflation.
NICE shows deflation but not as much as ICE and is
comparable to LMM-EH. Additional file 1: Figure S1 and
Additional file 2: Table S1 show the results of the same
analysis from the point of view of analyzing the 2008
data and comparing the hotspots found in the intersec-
tion of the 2005 and 2008 datasets. We note that NICE
discovered several additional hotspots not identified in
the 2005 data, which is expected because the 2008 data
is of higher quality in general. Below we show that sev-
eral of these additional hotspots are likely real genetic
effects.
Consistent with previous analyses [18,20,21], to com-

pare the statistical power of the methods, we compared
the number of cis associations reported by the differ-
ent methods (Figure 8). NICE was able to identify more
cis associations than the t-test, SVA, ICE or PANAMA,
and identified a comparable number of cis associations
as LMM-EH. This suggest that NICE is not only able to

identify true regulatory hotspots but also increases the
general sensitivity of the eQTL detection.

NICE discovered novel yeast regulatory hotspots
We reanalyzed the 2008 yeast dataset described above
using NICE to demonstrate the utility of our approach.
The dataset contains expression levels for yeast strains
grown in both glucose and ethanol media. In our exper-
iments above, we compared the consistency between the
2005 data and the 2008 data both for yeast grown in
glucose. Here we analyzed both conditions in the 2008
data to identify both hotspots in each condition as well
as hotspots involved in gene–environment interactions
consistent with the previous analyses of this data [25].
To be consistent with the previous analyses, we utilized
the method for determining the presence of a hotspot
defined in Smith and Kruglyak instead of the metric we
used above [25]. We began by dividing the yeast genome
into 611 20-kb bins. For each bin, we counted the num-
ber of significant trans linkages in the bin. Assuming a
Poisson process, the number of expected linkages in each
bin is the ratio between the number of trans linkages
and the number of bins. For simplicity, we used the top
3,000 trans associations identified by each method yield-
ing λ = 4.9. After adjusting for the number of bins using

Figure 6 Sensitivity and the number of spurious hotspots for different thresholds applied to the yeast dataset generated in 2005 [2]. The
x-axis corresponds to the number of spurious hotspots and the y-axis corresponds to the sensitivity. The threshold applied was five standard
deviation above themean (the left and bottommost mark), four standard deviations above themean, three standard deviations above themean, etc.
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Figure 7 Inflation factors for different methods for the yeast dataset generated in 2005 [2]. �λ is defined as 1 − λ.
FDR, false discovery rate; kb, kilobase.

a Bonferroni correction, a bin was considered to have sta-
tistically significance (P < 0.05) if it has >13 linkages.
When we identified significant linkages using a P value
cutoff (P < 5 × 10−5), we achieved almost the same
result.
To compare the regulatory hotspots found by various

methods, we first defined 11 putative regulatory hotspots
from a collection of independent experiments using the
same parental strains grown in glucose [1,27] (Additional
file 3: Table S2). Some of these hotspots were expected
because of deletions in one of the strains including
a hotspot at Chr3:90000 for LEU2 and a hotspot at
chr5:110000 for URA3.
We first analyzed the glucose data from Smith and

Kruglyak [25]. Table 3 shows the number of known
hotspots captured by each method. We see that both the
t-test and NICE captured nine of the putative regula-
tory hotspots while ICE captured only eight. Both NICE

and ICE captured many more hotspots than the t-test
and we wanted to know whether these were spurious or
real. We analyzed the 2005 dataset using the same defini-
tion of regulatory hotspots as in Smith and Kruglyak [25]
and found that 2 / 5, 5 / 14 and 8 / 17 of the additional
hotspots found by the t-test, ICE and NICE, respectively,
were replicated. Those additional hotspots that do not
overlap with the 2005 dataset could be specific to the 2008
experiment so we further compared them to the ethanol
dataset. We found that 3 / 5, 13 / 14 and 15 / 17 of the
additional hotspots found by the t-test, ICE and NICE,
respectively, were replicated in the ethanol experiment.
These two results suggest that not only does NICE control
for spurious regulatory hotspots, it also discovers more
regulatory hotspots that are likely to have a true biological
mechanism.
One of the additional hotspots NICE found to be shared

between ethanol and glucose is at Chr7:380000. However,

Figure 8 The number of cis associations for the yeast dataset [2].
FDR, false discovery rate; kb, kilobase.
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Table 3 The number of putative, missing and additional hotspots for the 2008 yeast dataset grown in glucosemedia [25]

Method Putative Missing Additional Glucose shared Ethanol shared

t-test 9 2 5 2 3

ICE 8 3 14 5 13

NICE 9 2 17 8 15

The last two columns show the number of glucose-shared and ethanol-shared hotspots for the additional hotspots compared to the glucose dataset generated in
2005 [2] and the ethanol dataset generated in 2008 [25].

from the t-test results, this hotspot appears to be ethanol
specific. We further confirmed that this hotspot was also
found by NICE for the 2005 data, suggesting that it is
likely to be a real hotspot that is not condition specific.
The two possible candidate genes are RPB9 and MNP1
since the regulatory hotspot is linked in cis to the expres-
sion of both of these genes at P values of 6.8 × 10−6

and 2.2 × 10−4, respectively. RPB9 is a RNA polymerase
II subunit that is crucial for transcription fidelity while
MNP1 is a putative mitochondrial ribosomal protein that
is required for respiratory growth. NICE also found an
additional hotspot at Chr14:1360000 for the glucose data
from both 2005 and 2008, but which is absent from
the ethanol data suggesting that it is a glucose-specific
hotspot. The t-test did not find this hotspot for either
glucose dataset. The closest gene is APT2, which is an
apparent pseudogene that is not expressed in normal con-
ditions. Interestingly, with our data, we found a strong
association between Chr14:1360000 and APT2 in cis at
P = 2.3 × 10−17, suggesting that this gene might be
functional in a glucose-dependent way.

Discussion
In this paper, we present a novel approach, NICE, for iden-
tifying true genetic regulatory hotspots while eliminating
spurious hotspots caused by confounding factors. We
leveraged the insight that confounding factors are likely
to affect the majority of genes, while genetic effects are
likely to affect only a smaller subset. This insight allowed
our approach to distinguish between true and spurious
regulatory hotspots. Our approach is related to previous
methods that correct for confounding factors, such as ICE
or SVA, which model the global correlation structure and
use this structure to correct the association statistics to
eliminate the effect of any confounding factors affecting
the association statistic. NICE uses only a subset of genes
predicted not to be part of the true genetic hotspot to
model the global correlation structure between expression
levels to correct for confounding factors, which eliminates
the confounding factors but preserves true hotspots. We
compared several previous approaches [18-21] with both
simulated and real datasets, and demonstrated that our
method achieved higher or comparable statistical power
when identifying associations while correcting for con-
founding factors.

While our approach, NICE, extends the mixed model
approach that ICE [18] used, in principle, the basic idea
behind our approach can be applied to other approaches
for correcting for expression heterogeneity such as the
SVA approach based on singular value decomposition
[19]. In this method, for each SNP, a separate singular
value decomposition would be computed only taking into
account genes that are predicted not to be part of a genetic
hotspot. Similarly, the techniques used in LMM-EH [20]
can also be adapted in this framework to incorporate
multiple variance components to correct for population
structure and also correct for bias in estimating the global
correlation structure in the presence of population struc-
ture.
Our method is based on the assumption that confound-

ing factors are likely to affect the majority of genes, while
genetic effects are likely to affect only a subset of the
genes. While our approach is an improvement over cur-
rent methods, in some cases this assumption may be vio-
lated, for example, slightly different growth temperatures
between batches may result in a specific subset of genes
being differentially expressed (e.g. heat shock, cell cycle
regulators, etc.). In these cases, our approach would be
unable to distinguish those confounding effects from real
genetic effects. An additional challenge in eQTL studies
is correcting for multiple testing. Possible approaches for
multiple testing correction are applying permutation tests
or FDRs. Unfortunately, when confounding is present,
the confounding causes a violation of the basic assump-
tion necessary for these approaches, which is that the
individuals in the sample are independent and identically
distributed. Shared confounding factors induces complex
dependencies among the gene expression patterns of indi-
viduals and complicates multiple testing. How to correct
for multiple testing in the presence of confounding is a
fundamental problem and a promising avenue of future
work, which is beyond the scope of this paper.

Conclusions
In this paper, we introduce a novel statistical method
that effectively eliminates spurious regulatory hotspots
resulting from various confounding factors while retain-
ing genuine hotspots resulting from true genetic effects.
In simulations, our method perfectly segregates genuine
and spurious hotspots. We validate our method on yeast
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data where the locations of true genetic hotspots are
known through concordance between replicated datasets.
Our method achieves greater sensitivity (83%) in detect-
ing concordant hotspots compared to previous methods
while retaining a low false discovery rate. In addition
to detecting regulatory hotspots, our method identi-
fies more or a comparable number of cis-eQTLs than
other methods. We further apply our method to yeast
data grown in different conditions to identify gene-by-
environment interactions and show that our method dis-
covers novel yeast regulatory hotspots that are likely to
have a true biological mechanism.

Materials andmethods
Generative model
We assume the following linear mixed model as the gen-
erative model of the expression levels,

Y = μ + Xβ + u + e (1)

Let n be the number of individuals,m the number of genes
and l the number of SNPs. Y is an n × m matrix of the
gene expression values, μ is an n × l matrix of the means
of expression levels of individuals,X is an n×lmatrix with
SNPs encoded by 0 and 1 for haploid and 0, 1 and 2 for
diploid, β is an l × m matrix for their coefficients, and u
and e are n×mmatrices with multivariate normal random
variables sampled fromN(0, σ 2

g H) andN(0, σ 2
e I) account-

ing for the confounding effects and random errors. Here,
H is an n×n covariance matrix that explains the intersam-
ple correlation structure induced by confounders and I is
an n × n identity matrix. σ 2

g and σ 2
e are coefficients of the

two variance components.

eQTL mapping
Based on our generative model, equation (1), we map
eQTL as follows. To test the effect of SNP j on the
expression level of gene i, we assume the model

yi = μi + xjβij + ui + εij (2)

where yi is a size n vector denoting gene expression lev-
els of individuals, μi is a size n vector denoting the mean
of expression levels of individuals, xj is a size n binary
vector denoting SNPs of individuals, ui ∼ N(0, σ 2

g H)

are confounding effects, and εij ∼ N(0, σ 2
e I) are resid-

ual errors. The null hypothesis that we want to test is
βij = 0. Typically, H is defined or estimated before the
eQTL mapping. Given an estimated Ĥ , we use the effi-
cient mixed-model association (EMMA) C package [28]
to estimate efficiently the variance components (σ 2

g and
σ 2
e ). We use the F test as previously suggested on the basis

of REML (Restricted Maximum Likelihood) estimates of
variance components [28-30]. The challenge in this model
is how to estimate Ĥ that is close to the true covariance
structure of confounding, H.

ICE eQTL mapping
The ICE eQTL mapping approach [18] utilizes a global
intersample correlation generated from all genes to esti-
mate H. The global intersample correlation matrix for an
expression dataset is generated as follows. Let Y be an
m×n expressionmatrix with n individuals form genes. Let
μi, σi be the mean and standard deviation of expression
values of the ith genes (Yi1,Yi2, ...,Yin). Let Z be anm × n
matrix with each element Zij = (Yij − μi)/σi. The inter-
sample correlation matrix is defined as the covariance
matrix of Z, Ĥ = Cov(Z). The estimated intersample cor-
relation matrix Ĥ is then used in the linear mixed model
in equation (2) to correct for the confounding effects.

NICE eQTL mapping
We propose a new eQTL mapping approach called NICE
eQTL mapping. NICE builds upon the framework of ICE
eQTL mapping but uses a more refined strategy to esti-
mate H, the covariance matrix of confounding effects.
The primary limitation of ICE is that it uses the global
intersample correlation generated from all genes. If there
exists a regulatory hotspot that affects many genes, ICE
will over-correct for the confounding and remove the
associations to the regulatory hotspot. To overcome this
challenge, we must use the genes that are only affected
by the confounding but not by the regulatory hotspots to
estimate H. It turns out that segregating these two groups
of genes is a highly challenging computational problem.

Assumptions
We assume that confounding affects the global correla-
tion structure of the gene expressions thereby affecting
most of the genes. This is a standard assumption consis-
tent with previous approaches. We then assume that true
regulatory hotspots affect only a subset of the genes. This
assumption will be invalid only if a hotspot affects most
of the genes, which will be unlikely in practice. Our goal
is to separate the genes affected by the true genetic effects
from the genes affected only by the confounding. If we
can successfully separate them, we will be able to estimate
H more accurately using the genes affected only by the
confounding.
To this end, we make an assumption that the effect size

of genetic effects is greater than the magnitude by which
the confounding affects the expression levels. That is, we
assume that the genes with true genetic effects tend to
have more significant results than the other genes affected
only by the confounding. This assumption may not be
true if the genetic effects are small and the confound-
ing is severe, but in such cases, the noisy data will be
highly challenging and in this paper we will ignore such
cases. Additionally, we assume that the true genetic effects
of regulatory hotspot may have a structure. For exam-
ple, the hotspot may be related to an enhancer element
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upregulating many genes, in which case the mean of the
effect will be nonzero. Ideally, we would want to use such
structures to discriminate the true genetic effects from
confounding.

Bayesian framework
A Bayesian framework fits well with our purpose of sep-
arating the genes with true genetic effects from the genes
with only confounding effects, because it gives each gene
a posterior probability that the genetic effect will exist or
not. Given an SNP that we want to test, we first apply the
standard t-test between the SNP and all genes to obtain
the effect sizes and standard errors of the SNP effect with
respect to all genes. Let βi be the estimated effect size of
the SNP to gene i and let Vi be the variance of it. We
assume a model that

P(βi|no genetic effect) = N(βi; 0,Vi)

and

P(βi|genetic effect) = N(βi;μ,Vi)

Note that a few simplifications are employed in this
model. First, based on our assumption that the confound-
ing effects are sufficiently smaller than the genetic effects,
we approximated the confounding effects as zero. Second,
to capture the possible structure within genetic effects, we
employed the mean term μ. Although this is a simplified
model, we found that this approach can capture themajor-
ity of the genes affected by the genetic effects, which turns
out to be sufficient for our purpose of finding an accurate
H.
We assume a prior for the effect size

μ ∼ N(0, σ 2)

Let Ti be a random variable, which is 1 if gene i is
affected by the genetic effect of the SNP of interest and 0
otherwise. Let π be the prior probability that each gene is
affected by the genetic effect such that

P(Ti = 1) = π , i = 1, ...,m

Then we assume a beta prior on π

π ∼ Beta(α1,α2)

Let T = (T1, ...,Tm) be the vector indicating the exis-
tence of a genetic effect in all genes. Let �β = (β1, . . . ,βm).
Our goal is to estimate the posterior probability that the
genetic effect exists for each gene i, namely

P(Ti = 1| �β)

Notice that T can have 2m different values. Let U =
{t1, . . . , t2m} be the set of those values. By Bayes’ theorem,

P(Ti = 1| �β) = P( �β|Ti = 1)P(Ti = 1)
P( �β|Ti = 0)P(Ti = 0) + P( �β|Ti = 1)P(Ti = 1)

=
∑

t∈Ui P( �β|T = t)P(T = t)∑
t∈U P( �β|T = t)P(T = t)

(3)

where Ui is a subset of U whose elements’ ith value
is 1. Thus, we should calculate for each t the posterior
probability of T ,

g(t) = P( �β|T = t)P(T = t) ∝ P(T = t| �β)

consisting of the probability of �β given T and the prior
probability of T .

Connection tometa-analytic approach
It turns out that our Bayesian model for eQTL map-
ping is equivalent to a meta-analysis model although their
contexts are different. In a meta-analysis of genetic associ-
ation studies that combines multiple independent studies,
if there exists heterogeneity, which refers to the differ-
ences in effect sizes of studies [31], it is challenging to
predict which study has an effect and which study does
not. Thus, the problem of finding studies with an effect
is essentially equivalent to the problem of finding genes
having genetic effects in our context. Recently, we have
developed an efficient method to solve this problem in the
context of meta-analysis [24]. Here we adapt this approach
to calculate the posterior probability of T. We briefly
describe below how we can calculate g(t).
g(t) consists of the prior probability of T and the proba-

bility of �β given T. The prior probability of T is

P(T = t) =
∫ ∞

−∞
P(T = t|π)p(π)dπ

=
∫ ∞

−∞
π |t|(1 − π)m−|t|p(π)dπ

=
∫ ∞

−∞
π |t|(1 − π)m−|t| 1

B(α1,α2)
πα1−1(1 − π)α2−1dπ

= B(|t| + α1,m − |t| + α2)

B(α1,α2)

where |t| is the number of 1’s in t and B is the beta
function.
The probability of �β given T is

P( �β|T = t) =
∫ ∞

−∞

∏
i∈t0

N(βi; 0,Vi)
∏
i∈t1

N(βi;μ,Vi)p(μ)dμ

=
∏
i∈t0

N(βi; 0,Vi)

∫ ∞

−∞

∏
i∈t1

N(βi;μ,Vi)p(μ)dμ

(4)
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where t0 are the indices of 0 in t and t1 are the indices of 1
in t. We can analytically work out the integration to obtain∫ ∞

−∞

∏
i∈t1

N(βi;μ,Vi)p(μ)dμ = C̄ · N(β̄ ; 0, V̄ + σ 2)

where

β̄ =
∑

i Wiβi∑
i Wi

and V̄ = 1∑
i Wi

whereWi = V−1
i is the inverse variance or precision. The

summations are all with respect to i ∈ t1. C̄ is a scaling
factor such that

C̄= 1
(
√
2π)m−1

√ ∏
i Wi∑
i Wi

exp
{
−1
2

(∑
i
Wiβ

2
i −

(∑
i Wiβi

)2∑
i Wi

)}
See Han and Eskin [24] for the details of the derivation. As
a result, we can calculate g(t) for every t.

Markov chainMonte Carlo
Although we calculate g(t) for each t, it is impractical to
perform an exact calculation of P(Ti = 1| �β) in equation
(3) since we have a large number of genes. Thus, we
use the following Markov chain Monte Carlo (MCMC)
method [24]:

1. Start from a random t.
2. Choose a next t, t′, based on the moves defined below.
3. If g(t) < g(t′), move to t′. Otherwise, move to t′ with

probability g(t′)/g(t).
4. Repeat from step 2.

The set of moves we use for choosing t′ is {M1,M2, . . . ,
Mm} ∪ {Mshuffle}. Mi is a simple flipping move of Ti
between 0 and 1. Mshuffle is a move that shuffles the val-
ues of T. At each step, we randomly choose a move from
this set assuming a uniform distribution. Other moves can
also be used, such as moves based on Bayes’ factors. We
allow nB burn-in and sample nS times. After sampling,
nS samples gives us an approximation of the distribution
over g(t), which subsequently gives the approximations
of equation (3). Calculating the posterior probability is
the most computationally intensive part of NICE relative
to ICE [18] with respect to the running time. By using
MCMC, we make dramatic reductions in computational
cost, which allows NICE to scale to large datasets.

NICE intersample correlationmatrix
After we calculate the posterior probability that a gene is
affected by the true genetic effect of the SNP, we select
genes with a probability less than a threshold η = 0.5.
This set of genes represents the genes that are putatively
affected only by the confounding. Thus, we use this set of
genes to build the intersample correlation matrix ĤNICE.
Then we apply ĤNICE to the linear mixed model (2) to
correct for the confounding in our eQTL mapping. The

reason why we choose η = 0.5 as a threshold is because
we want to find a subset of genes approximately with-
out genetic effects. Although it is ideal to select all the
genes without genetic effects, any subset of those genes is
likely to capture the global correlation structure as shown
in Figure 1(c), and is enough to correct for confounding
effects. We choose genes that have an effect with less than
50% chance to select genes that are putatively affected only
by the confounding effect. However, we find that unless
the threshold is extreme (e.g. η ≤ 0.1 or η ≥ 0.9), all
thresholds yield similar results and the result is robust to
the parameter (Additional file 4: Figure S2). We count the
number of genes selected by NICE using the posterior
probability with threshold η = 0.5 applied to the yeast
data generated in 2005 [2] (blue dots in Additional file 5:
Figure S3). Except for the putative hotspots, mostly, NICE
uses the majority of the genes to build the intersample
correlation matrix ĤNICE similar to ICE [18].

Implementation
To calculate the posterior probability in equation (3), we
used METASOFT [31] with prior parameters, σ = 0.05,
α1 = 1 and α2 = 5. We used σ = 0.05 by assum-
ing a small effect size. However, an effect size of up to
0.4, which is a possible choice as a large effect size in
a genome-wide association study [32,33], did not affect
the results significantly (Additional file 6: Figure S4). We
assume that confounding affects most of the genes while
true regulatory hotspots affect only a subset of the genes.
Based on the assumption, we assume that 20% of the genes
have trans effects for our prior (α1/α2 = 0.2). We used
α1 = 1 and α2 = 5 to give a diffuse distribution. In prac-
tice, changing the α1 and α2 priors gives similar results as
changing the threshold η (data not shown). As shown in
Additional file 4: Figure S2, the results are robust unless
the threshold/priors are too extreme. If one does not have
prior information about a dataset, we suggest using these
default priors as they are based on our model assumption.
We used nB = 1,000 burn-in and nS = 1,000,000 sampling
in MCMC. We selected genes with posterior probability
less than η = 0.5. If less than 1% of the genes were selected
to calculate the covariance matrix, we used the standard
t-test instead of NICE.

P value based approach
Instead of using the posterior probability described in the
previous sections, here we show whether a more stan-
dard test statistic, such as the P value from the standard
t-test, could be used for selecting genes without genetic
effects to estimate the intersample correlation matrix H.
We use the P value for selecting genes without genetic
effects in the following approach. For each SNP, we first
order the genes based on the P value obtained using the
standard t-test, {g1, g2, . . . , gm}, where g1 is the gene with
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the largest P value and gm is the gene with the smallest
P value when there are m genes. Then we select the first
x% of the ordered genes {g1, g2, . . . , gxm/100} as the genes
without genetic effects and use the expression levels of
those genes to estimateH. The following processes are the
same as those used for NICE. Let us say α is the percent-
age of genes that have trans effects on a trans-regulatory
hotspot. When we apply this approach for various sim-
ulated datasets with different α, x = 100 − α gives the
best estimation of H for correcting for the confounding
effects but retaining the true genetic effects (here we show
only the case when α = 20). However, when we use fewer
(x < 100 − α) or more (x > 100 − α) genes, we fail
to remove confounding effects or fail to retain the true
genetic effects, respectively. Additional file 7: Figure S5
shows eQTL maps for when this approach was applied to
our simulated data. Our simulated data has trans effects
on 20% of the genes (α = 20), in other words, 80% of
genes do not have trans effects. Therefore, when we use
80% (x = 80) of the genes to build the intersample corre-
lation matrixH, we are able to correct for the confounding
effects but retain the genetic effects. However, when we
use fewer of the genes, e.g. 60% (x = 60), or more of them,
e.g. 99% (x = 99), we either fail to remove confounding
effects or fail to retain the true genetic effects, respec-
tively. Unfortunately, we do not know how many genes
have trans effects for each marker in advance. Moreover,
we note that this approach creates many spurious associa-
tions other than the ones induced by confounding effects.
For example, many horizontal lines appear in the eQTL
map (Additional file 7: Figure S5(a)). This is because when
we select x% of genes with the largest P values, some of
the selected genes are shared betweenmany SNPs and this
creates spurious associations between the shared genes
and the SNPs.
We also applied this approach to the yeast dataset gener-

ated in 2005 [2] using 10%, 30%, 50%, 70% and 90% of the
genes. As a result, it missed many putative hotspots and
made many false positive predictions (Additional file 8:
Figure S6). Thus, we conclude that the P value is inef-
fective for selecting genes without genetic effects. On
the other hand, the posterior probability that we use for
NICE is robust as the value of η neither has a significant
influence on the results nor is specific to the datasets.

Simulated dataset
We generated a simulated dataset for 1,000 genes, 1,000
SNPs, and 100 samples based on our generative model,
equation (1), with σg = 0.9 and σe = 0.1. Assuming hap-
loidy, the SNPs were encoded by 0 and 1 and randomly
generated with a minor allele frequency of 30%. A batch
effect was simulated as a confounding effect where expres-
sion levels in the first half of the samples were correlated
with each other, but not correlated with the second half of

the samples, and vice versa. Five randomly selected trans-
regulatory hotspots were simulated and for each of them,
20% of the genes had trans effects of size 0.4 where half
had positive effects and the other half had negative effects.
The cis effect was simulated with a size of 0.5.

Yeast datasets
We evaluated our method using replicate gene expres-
sion datasets. We used two versions of a yeast dataset
produced 3 years apart at different locations using
different microarray platforms. The first dataset [2]
was generated in 2005, of which 6,138 probes and
2,956 genotyped loci in 112 segregants were used.
The second dataset [25] was generated in 2008, of
which 6,138 probes and 2,956 genotyped loci in 109
segregants were used.We classified the eQTL as cis-acting
when the location of an SNP and the location of a probe
were within 50 kb.We calculated the number of cis-eQTLs
for different FDRs where the FDRs were calculated using
the q value function of R.

Running previous methods
For running previous methods, SVA [19], ICE [18], LMM-
EH [20] and PANAMA [21], we downloaded the program
available from the authors and ran it using default options.
For running SVA, the ‘two-step’ method was used. For
running LMM-EH, eLMM v1.2 was used for generating
the covariance matrix KEH and FaST-LMM v2.05 [34]
was used for calculating the associations. For running
eLMM, the ICE covariance matrix was used for the ini-
tial KEH . The EM (Expectation Maximization) steps for
each full iteration was set to 3 and 10 ∼ 20 number
of total iterations was applied. eLMM includes LMM-
EH-PS, which corrects for confounding factors as well
as population structure. We used LMM-EH instead of
LMM-EH-PS because neither our simulated nor yeast
dataset contained a population structure. In addition,
LMM-EH-PS failed to run on our Windows machine with
1.73 GHz Intel Core i7 CPU and 4 GB RAM. Nicolo
Fusi, the author of PANAMA, helped with running this
program.

Additional file

Additional file 1: Figure S1. Putative, missing and additional hotspots for
the standard t-test, SVA, ICE, LMM-EH, PANAMA and NICE applied to the
yeast dataset generated in 2008 [25]. (a) The average over all genes of
the − log of the maximum P value of the two yeast datasets for each SNP.
(b)-(g) The average over all genes of the − log P value for each SNP for the
standard t-test, SVA, ICE, LMM-EH, PANAMA and NICE. Blue asterisks show
putative genetic regulatory hotspots predicted from merged dataset,
green arrows show missing hotspots and red arrows show additional
hotspots. Red horizontal lines show the thresholds used to select
significant peaks, which are two standard deviations above the mean. Note
that the t-test has a distinct advantage in this evaluation because P values
from the t-test were used to determine the putative regulatory hotspots.

http://www.biomedcentral.com/content/supplementary/gb-2014-15-4-r61-S1.png
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Additional file 2: Table S1. The number of putative, missing and
additional hotspots identified by the different methods applied to the
yeast data generated in 2008 [25].

Additional file 3: Table S2. List of putative hotspots. We defined 11
putative regulatory hotspots from a collection of independent
experiments using the same parental strains grown in glucose [1,27].

Additional file 4: Figure S2. eQTL maps for NICE using different
thresholds for simulated data. (a)-(c) Thresholds of η = 0.3, η = 0.5 and
η = 0.7, respectively. Blue arrows show the locations of real genetic
regulatory hotspots.

Additional file 5: Figure S3. Number of genes used to build ĤNICE for
the yeast dataset generated in 2005 [2]. The bottom plot shows hotspot
levels for NICE as in Figure 5(g). The blue dots above the hotspot levels
show the number of genes selected by NICE using a posterior probability
less than a threshold η = 0.5.

Additional file 6: Figure S4. eQTL maps of NICE using different σ values
applied to simulated data. (a)-(c) σ = 0.05, σ = 0.2 and σ = 0.4,
respectively. Blue arrows show the locations of real genetic regulatory
hotspots. The results from NICE are robust to the prior σ .

Additional file 7: Figure S5. eQTL maps when P values are used for
selecting genes without genetic effects to build H for simulated data.
(a),(b),(c) eQTL maps when 60% (x = 60), 80% (x = 80) and 99% (x = 99)
of the genes with the largest P values were selected, respectively. The
simulated data has trans effects for 20% of the genes for each
trans-regulatory hotspot. Blue arrows show the locations of real genetic
regulatory hotspots.

Additional file 8: Figure S6. Putative, missing and spurious hotspots
when P values are used to build H for the yeast dataset from 2005 [2]. (a)
Putative hotspots as in Figure 5(a). (b) to (f) eQTL maps when 10%
(x = 10), 30% (x = 30), 50% (x = 50), 70% (x = 70) and 90% (x = 90) of the
genes with the largest P values are selected, respectively.
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