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Abstract

poorly understood.

than position of the CpG site with respect to the gene.

and some discernible involvement of sequence variation.

Background: DNA methylation plays an essential role in the regulation of gene expression. While its presence near
the transcription start site of a gene has been associated with reduced expression, the variation in methylation
levels across individuals, its environmental or genetic causes, and its association with gene expression remain

Results: We report the joint analysis of sequence variants, gene expression and DNA methylation in primary
fibroblast samples derived from a set of 62 unrelated individuals. Approximately 2% of the most variable CpG sites
are mappable in ¢is to sequence variation, usually within 5 kb. Via eQTL analysis with microarray data combined
with mapping of allelic expression regions, we obtained a set of 2,770 regions mappable in cis to sequence
variation. In 9.5% of these expressed regions, an associated SNP was also a methylation QTL. Methylation and gene
expression are often correlated without direct discernible involvement of sequence variation, but not always in the
expected direction of negative for promoter CpGs and positive for gene-body CpGs. Population-level correlation
between methylation and expression is strongest in a subset of developmentally significant genes, including all four
HOX clusters. The presence and sign of this correlation are best predicted using specific chromatin marks rather

Conclusions: Our results indicate a wide variety of relationships between gene expression, DNA methylation and
sequence variation in untransformed adult human fibroblasts, with considerable involvement of chromatin features

Background

Perhaps the best studied of epigenetic phenomena, the
methylation of CpG dinucleotides, has been known for
many years to play a key role in X-chromosome inactiva-
tion [1], transcriptional silencing of foreign DNA elements
[2] and imprinting of genes [3], while aberrant DNA
methylation is implicated in many types of cancer [4]. The
relationship between methylation and gene expression is
complex, with high levels of gene expression often associ-
ated with low promoter methylation [5] but elevated gene
body methylation [6], and the causality relationships have
not yet been determined. In cell populations, the levels of
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DNA methylation across CpG sites in the genome is typic-
ally regarded as bimodal, with CpG-rich regions known as
CpG islands, often associated with transcription start sites
(TSSs), typically showing hypomethylation, and other CpG
sites showing hypermethylation (reviewed in [7]).
Methylation has been shown to be highly variable
across cell types with variable sites falling in two broad
categories: those with inverse correlation between DNA
methylation and chromatin accessibility, and those with
variable chromatin accessibility and constitutive DNA
hypomethylation [8]. As reviewed by Cedar and Bergman
[9], DNA methylation and histone modifications share
many relationships from the time of embryonic devel-
opment onwards, including hypothesized roles of DNA
methylation preventing the tri-methylation of histone
3 lysine 4 (H3K4me3), a marker generally associated
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with active promoters, as well as H3K4me3 preventing
DNA methylation [10].

Methylation also varies between healthy individuals in
a population. Relationships between DNA methylation,
gene expression and various other genetic and epigenetic
biomarkers have been examined previously. Recent studies
have identified SNPs whose genotype correlates with DNA
methylation (termed methylation quantitative trait loci, or
mQTLs) in various human populations and cell types. Bell
et al. [11] utilized the HumanMethylation27 BeadChips
from Illumina to map associations between SNPs and
methylation levels at 22,290 CpG dinucleotides in lympho-
blastoid cell lines (LCLs), finding 180 CpG sites associated
with nearby SNPs, and an enrichment for expression QTLs
(eQTLS) amongst mQTLs. Gibbs et al. [12] used the same
DNA methylation platform to study samples from four
human brain regions in 150 individuals and reported hun-
dreds of SNP-associated CpG sites in each brain tissue,
with mQTLs typically located very close to the associated
CpG site, and thousands of both mQTLs and eQTLs, but
only modest overlaps between the two, averaging 13 CpG
sites per tissue having a significant mQTL that was also
an eQTL. Similar results were seen using 180 LCLs de-
rived from one African and one European population
[13]. Zhang et al. [14] performed similar analyses using
the same methylation platform in 153 human adult cere-
bellum samples, finding 2,046 CpG sites with mQTLs; they
reported that, in general, CpG sites located in CpG islands
are more likely to be mappable to a SNP than non-CpG
island sites. They also assessed the relationship between
expression and methylation, with 20 of 112 CpG-gene
pairs analyzed showing nominally significant correlations,
with 5 of these 20 being positive correlations and the rest
negative. At present, though it is known that there is a
genetic component to both variable DNA methylation and
gene expression, as well as genome-level differences in
gene expression linked to DNA methylation, the combined
relationships between the three factors remains poorly
understood. Recent research [15] has examined the rela-
tionship between sequence, expression and DNA methyla-
tion as measured by the HumanMethylation27 assay in
whole blood, finding numerous cases of methylation/
expression relationships but focusing on the small number
of cases in which a genetic component was also found.
Drong et al. [16] report 149 CpG sites mappable to an
mQTL when making use of differential methylation
hybridization covering 27,718 genomic regions in 38 unre-
lated individuals, finding none of the mQTLs to also be
eQTLs. Gutierrez-Arcelus et al. [17] report positive and
negative expression-methylation relationships at the inter-
individual level in fibroblasts, T cells and LCLs derived from
a set of 204 umbilical cords from healthy newborns of
European descent, with negatively correlated CpG sites
enriched at ENCODE derived enhancer and promoter sites.
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To further understand the relationship between genetics,
gene expression, DNA methylation, and other epigenetic
marks, we present analyses of DNA methylation, gene
expression (both total and allelic) and DNA sequence
polymorphisms from a set of 62 fibroblast cell lines derived
from healthy human individuals, augmented with publicly
available histone mark and DNase I hypersensitivity (DHS)
data. We show that: widespread relationships exist between
DNA polymorphisms and DNA methylation (mQTLs);
widespread relationships exist between DNA methylation
and gene expression, especially in developmentally signifi-
cant genes, including all four HOX clusters; supplement-
ing expression quantitative trait locus (eQTL) data with
mapping of allelic expression to adjacent SNPs, a large set
of regions and genes mapped to a QTL that also functions
as an mQTL, comprising 242 genes and 23 regions not
overlapping with an annotated gene; and CpG sites where
methylation correlates with gene expression in cis do not,
in general, show strong overlap with annotated genes or
promoter regions - rather, CpG sites where this correlation
is negative are most commonly seen in sites associated with
active promoter marker H3K4me3 and DHS regions,
while those with positive correlation are most commonly
seen in the presence of the repressive chromatin marker
H3K27me3 (histone 3 lysine 27 tri-methylation).

Results

We report on the joint analysis of inter-individual variation
in the levels of DNA methylation, total and allelic ex-
pression, and DNA sequence of 62 healthy parents of
31 parent-child trios of European descent. Here, we start
by introducing each data set individually before discussing
the relationships among them.

DNA methylation assays

DNA methylation was assayed in forearm skin fibroblast
samples using the Illumina 450 K assay (Materials and
methods). For each sample, methylation was measured
at approximately 485,000 CpG sites, but we only considered
the approximately 392,000 sites uniquely mapped in auto-
somes and containing no known SNPs. Methylation levels
are measured in populations of diploid cells using beta
values [18], which range from 0 (no methylation) to 1
(complete methylation of the two alleles). Methylation mea-
surements were highly replicable, with the Pearson cor-
relation coefficient between beta values of two replicates
exceeding 0.99 in each of three pairs of biological replicates,
while the average pairwise correlation coefficient between
methylation from different samples levels ranges around
0.95; Additional file 1). Surrogate Variable Analysis [19] was
used to identify possible batch effects accounting for
inter-individual methylation variation but none were
detected, suggesting that the observed variation may mostly
be due to stochastic, environmental, or genetic effects.
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The Ilumina 450 K assay includes both type I probes
utilizing two query probes per CpG locus (largely concen-
trated around genes’ TSSs), and type II probes utilizing a
single probe per locus (dispersed somewhat more uniformly
across the genome; see Materials and methods). The distri-
butions of methylation beta values differ for type I and
type II probes due to their localization biases but both are
bimodal, with modes corresponding to CpG sites that are
unmethylated in most cells of the sample (hypomethylated),
and those that are methylated in most cells of the sample
(hypermethylated) (Figure 1A (type II probes); Additional
file 2A (type I probes)). Consistent with previous reports
[7], hypomethylated sites are mainly located in CpG islands
and within 1.5 kb of the TSS of a gene (53% of probes with
mean beta value <0.3 are located near a TSS versus 34% of
all probes; in the case of CpG islands, it is 60% versus 32%),
whereas hypermethylated sites are generally located in
the rest of the genome (distal intergenic and gene body
regions).

Hypomethylated CpG sites are preferentially located in
active regulatory regions characterized by DHS and
H3K4me3, as measured by the ENCODE consortium in
fibroblast cell lines [20] (Figure 2A (type II probes);
Additional file 3A (type I probes)). Of hypomethylated
CpG sites, 59% overlap with a DHS peak in the BJ foreskin
fibroblast line, and 72% with an H3K4me3 peak. This is
approximately twice the fraction seen among all CpG sites
(29% and 34%, respectively). On the contrary, hypermethy-
lated sites show a considerable overlap with H3K36me3, an
intragenic marker of active transcription [21], with 19% of
sites with mean beta >0.7 overlapping with a peak for this
mark, compared to 9% among all sites. However, 62% of
hypermethylated sites overlap none of the features con-
sidered in our analyses. Consistent with observations of
low methylation in regions of DHS and active histone
marks, genes with high expression levels show considerably
lower methylation in the region proximal to the TSS (up
to 1,500 bp from the TSS) and higher methylation in
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the gene body region compared to genes with lower
average expression levels (Figure 3A; Additional file 4A),
with probes adjacent to genes in the top quartile of ex-
pression having mean beta <0.3 81% of the time and mean
beta >0.7 only 11%. Those in the lowest quartile still have
a plurality of hypomethylated probes near the TSS, but
with numbers considerably diminished, that is, 42%
hypomethylated versus 30% hypermethylated.

We examined the levels of inter-individual variation of
methylation probes, finding a drop in variation of probes
located within 1,500 bp of a TSS annotated for an actively
expressed gene (Figure 3B; Additional file 4B), with only
11% of probes near the TSS of a top quartile expression
gene also being in the top quartile of methylation vari-
ation, compared to 30% for CpG sites adjacent to the
TSS of a bottom quartile expression gene. These results
were corroborated by the finding that sites with low
inter-individual methylation variation were enriched for
DHS and H3K4me3, and, to a lesser degree, sequence
conservation (Figure 2B; Additional file 3B).

On the contrary, highly variable CpG probes (top 25%,
standard deviation >0.0932) are usually located far away
from the TSS (either in intergenic regions or in the gene
body), or are located near the TSS of genes with low
expression in fibroblasts and generally lack regulatory
or evolutionary marks of function. The majority of these
CpG sites show a unimodal distribution (Additional
file 5). Genes whose TSS regions contain highly variable
CpG probes were enriched for Gene Ontology (GO) terms
related to multicellular organismal development (Additional
file 6, worksheet 1), compared to the full set of genes having
at least one CpG probe in the TSS region. Unexpectedly,
extremely variable CpG probes (top 5%, standard devi-
ation >0.15) show a marked increase in their overlap with
DHS and H3K4me3 marks. Genes collocated with these
CpG probes are even more strongly enriched for having
functions related to development, and include a large
number of genes from the HOX clusters (see Discussion).

-
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Figure 1 Fibroblast methylation beta values are bimodal and the two modes show different breakdown in terms of CpG islands and
genes. Distribution of methylation beta values in type Il probes across the genome, partitioned by position relative to (A) CpG islands (with a shore
defined by lllumina as less than 2 kb from an annotated CpG island, a shelf as 2 to 4 kb, and open sea as more than 4 kb) and (B) annotated genes.
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Figure 2 Mean and variance of beta values of CpG probes associate with several genome marks. Proportion of type Il CpG probes falling
in various types of genomics regions identified by ENCODE, partitioned by (A) CpG probe mean beta value and (B) percentile of beta value
standard deviation (Std. dev.). All data types, except for 28-way conservation, are derived from broad peaks in BJ human foreskin fibroblast cells.

Gene expression analysis to high inter-individual expression variation (standard
RNA expression levels for the 62 individuals were mea-  deviation >0.1127, corresponding to a total of 9,493 genes)
sured using the Illumina HumanRef8 microarray platform,  were considered for further analyses.

giving expression levels for 21,916 probes mapping to a To complement total expression data, allelic expression
total of 16,952 genes. Only probes that showed moderate = (AE) was assayed at a set of approximately 900,000 SNP
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Mean (A) and standard deviation (B) of type Il CpG probes with respect to their position relative to TSSs of annotated genes. Each green dot
corresponds to a CpG probe, and the four lines show the running median for probes based on the quartile of the expression level (from RNA-seq

in four individuals) of the gene they are associated with.
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locations dispersed in annotated genes and intergenic re-
gions of all autosomes using hybridization to genotyping
arrays, as previously described [22] (see Materials and
methods). For each sample and each heterozygous SNP,
the ratio of the expression level of each allele is estimated,
after normalization to genomic DNA. Of 24,814 known
canonical UCSC genes, 81% have at least one assayed SNP
within their boundaries. A previously described [23] hidden
Markov model was used to reduce the noise in the data
and estimate, for each SNP of each sample, the expected
true allele expression log-ratio. We note that because this
approach does not make use of gene annotation, it is able
to detect AE at transcripts that do not, or only partially,
overlap annotated genes. However, detection power for
genes that are short or contain a small number of SNPs is
reduced.

As previously reported for other cell types [22], AE
was seen to be widespread. We defined an aeSNP as a
SNP whose expected log, allele ratio is above 0.2 in at
least two samples (which corresponds to 5% false discovery
rate (FDR); Materials and methods), and found 74,624
aeSNPs within annotated gene regions (corresponding
to 15.8% of genic/intronic SNPs), and 25,467 outside
(corresponding to 5.4% of intergenic SNPs). aeSNPs were
clustered into 3,327 aeRegions (consisting of two or more
consecutive aeSNPs), of which more than 80% had full or
partial overlap with an annotated gene (Additional file 7),
similar to results previously obtained in lymphoblasts [23]
(for a full list of aeRegions, see Additional file 8).

Linking methylation and genetic variation

Inter-individual methylation variation is likely due to both
genetic and environmental variation between samples. To
determine the relationship between genetic variation and
CpG methylation levels, we first genotyped our 62 sam-
ples (Materials and methods). We then mapped CpG beta
values to the imputed genotype at polymorphic sites
within 250 kb (absolute value Spearman’s rho above 0.452,
which corresponds to a P-value of 6 x 107 and an FDR
of 5% (Materials and methods)). A set of 27,486 pairs
(Additional file 9) were retained as significant, involving a
total of 1,676 mappable CpG probes and 19,561 candidate
mQTLs. Whole genome bisulfite sequencing-derived DNA
methylation data were generated for four fibroblast cell
lines (Additional file 10) and used to validate array methy-
lation detected at mappable CpG loci. We observe high
concordance between array- and sequencing-derived
methylation for highly variable CpG sites across the
four cell lines (254 loci; median Pearson correlation
coefficient = 0.84).

Remarkably, mappable CpG probes are 1.5-fold enriched
in fibroblast DHS regions, but 1.75-fold depleted in highly
conserved regions. While CpG probes found within CpG
islands are underrepresented in the set of highly variable
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CpG probes (Figure 1B), CpG island probes are 1.66-fold
enriched in mappable probes when compared to the
set of highly variable CpG probes. Although mappable
CpG probes represent only 1.7% of all highly variable
CpG probes, they are approximately four times more
frequent among extremely variable CpG probes relative to
the set of highly variable probes (Figure 4). Most mappable
CpG probes have a distribution of methylation levels that
is unimodal, consistent with a moderate effect of genetic
variation on methylation. However, bimodality and trimod-
ality are much more frequent among this set of CpG probes
than in highly variable CpG sites in general (29.7% and
4.8% of mappable probes, corresponding to 1.5- and 2.6-
fold enrichments, respectively; Additional file 5). These
correspond to cases where the impact of genetic variation
is strong enough that classes of methylation levels are
clearly distinct.

The majority (67%) of mappable CpG probes have a
significant mQTL within 5 kb but in 6% of cases the
closest significant mQTL lies more than 100 kb away
(Figure 5A). Despite their relative rarity, these distal regu-
lators of methylation appear genuine, since even at these
larger distances, such pairs are seen much more often
than expected by chance (Figure 5B).

Linking gene expression and genetic variation (eQTLs)
We sought eQTLs within 250 kb of each gene with
variable expression (absolute value Spearman’s rho >0.537,
P-value <1.4x 10, corresponding to a 5% FDR; see
Materials and methods). Such eQTLs were found for
420 (4.4%) genes and involved 9,674 SNPs (Additional
file 11). This is comparable to previous reports from
Veyrieras et al. [24] (6.5% of genes mapping to an eQTL
in LCLs, with a larger sample size of 210), but larger than
the 2 to 3% seen by Stranger et al. [25] in four different
HapMap populations. Consistent with previous reports
[25], genes with eQTLs were not enriched for any specific
GO annotations. As previously reported [24], eQTLs are
most strongly over-represented near the TSS and transcrip-
tion end site (TES) of genes, with a stronger enrichment
within the gene body than outside (Figure 6).

These eQTL data were complemented with the mapping
of allelic expression ratios in aeRegions to candidate
regulatory allelic expression quantitative trait loci (aeQTLs)
within 250 kb (Spearman rho >0.452, P-value = 0.00029,
corresponding to a 5% FDR; see Materials and methods).
A total of 95,949 aeQTL-aeRegion pairs were obtained
(Additional file 12), involving a total of 2,360 (or 71%)
aeRegions and 89,874 candidate aeQTLs (many of which
being in linkage disequilibrium with each other). These
mappable aeRegions had a significant overlap with 1,452
annotated genes, three times more than the number of
genes for which eQTLs were detected. We found 127 genes
in both sets, corresponding to a 2.05-fold enrichment.
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Slightly larger overlap (2.92-fold enrichment) was observed
in terms of the SNPs these genes mapped to. This signifi-
cant but imperfect overlap by two methods is explained by
multiple assay-specific factors: aeRegions are dependent
on the presence of informative SNPs, are largely driven by
primary transcript variation (intronic expressed SNPs) and
in general allow for greater statistical power in terms
of detecting statistically significant correlated SNPs
[26] whereas eQTL mapping (conducted on Illumina
expression arrays) assesses both transcriptional and
post-transcriptional variation and is skewed towards meas-
uring exon-specific variation [27]. Consequently, these
methods can be used to complementarily capture different
compartments of expression variation. Roughly 70% of

mappable aeRegions have at least one candidate aeQTL
within 5 kb of one of their boundaries (Figure 7), which
is comparable to results seen using eQTL analysis with
known genes.

Linking gene expression to DNA methylation

We identified genes whose expression levels correlated with
methylation levels of high-variance CpG probes located
within their body or 250 kb on either end (absolute value
Spearman’s rho >0.506, P-value <5.132 x 107, resulting in
an FDR of 5%; see Materials and methods). This resulted
in the identification of 587 genes with correlation to
at least one of 1,793 CpG probes (Additional file 13).
Extremely variable CpQ sites are strongly over-represented
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Figure 7 aeQTLs are concentrated near boundaries of aeRegions.

amongst sites correlated with gene expression (Figure 4),
and correlated CpQG sites are 1.6-fold and 3.2-fold enriched,
respectively, for bimodal and trimodal sites relative to the
set of highly variable CpG sites.

Remarkably, methylation-correlated genes are far from
representing an unbiased sample of the genome, with 78
(13%) of them being known transcription factors (GO
enrichment P-value = 8.23 x 10°) and 145 (24%) involved
in multicellular organismal development (GO enrichment
P-value = 6.1 x 10%%) (Additional file 6, worksheet 2). These
include a number of genes from each of the four HOX
clusters, together with several other key regulators of
development and cellular differentiation such as EN1,
HAND?2, TBX1, TBX2, TBX3, TBX5, and TBX15.

We sought to further characterize the CpG sites having
methylation-expression correlations. Although about a
quarter of methylation correlated genes had their closest
correlated probe located within 1.5 kb of the TSS and
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30% in their gene body, more than a third showed only
correlation with distal intergenic probes (Figure 8).
Since highly expressed genes have on average low DNA
methylation near the TSS and higher DNA methylation
at the gene body (Figure 3A), one might expect to see
negative methylation-expression correlations for CpG
probes located near a gene’s TSS and positive correlations
for CpG probes located in its body. However, this is only
partially verified, with one-third of the former type of pairs
showing a positive correlation and nearly half of the latter
showing a negative correlation. Overall, strong enrich-
ments were seen for both negatively and positively corre-
lated probes in both the gene body and TSS region,
compared to other regions 3" or more than 5 kb 5" of the
gene (Figure 9).

In order to find genomic features that may help distin-
guish CpG probes that correlate positively and negatively
with gene expression, we turned to DHS and histone
modification data obtained by the ENCODE consortium
[8], considering data from five human fibroblast cell lines.
Though these cell lines were not derived from the same
donors as used in this study, we found in general that they
allowed a clear separation between the two types of CpG
probes (Figure 9). CpG probes where methylation levels
correlated negatively with gene expression are for the
most part located in regions with marks of regulatory
activity (H3K4me3 or DHS): marks that are less fre-
quent among CpG probes that show no correlation
with expression and even less frequent among those
that show a positive correlation. In contrast, positively
correlated probes were slightly more often seen with
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Figure 8 CpG sites where methylation positively or negatively
correlates with expression differ with respect to chromatin
marks. Proportion of CpG probes having various chromatin marks
in at least one of five ENCODE fibroblast cell lines or located at
various positions with respect to genes, with CpG probes grouped
into three categories based on the type of correlation seen with an
adjacent gene expression values.
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the inactive gene-associated marker H3K27me3 when
compared with negatively correlated probes.

As illustrated in Figure 10, CpG sites in all types of
genomic regions are more likely to be negatively corre-
lated with gene expression if they are located in regions
of DNase I HS in at least one of the five FB cell lines
considered. A similar pattern was seen with the active
transcription mark H3K4me3, with the notable difference
that regions having this mark in all five fibroblast cell lines
considered were under-represented for negatively corre-
lated CpG marks, indicating perhaps that invariably active
regions will also be subject to less consequential variability
in terms of DNA methylation and expression. We also
observe that regions containing H3K27me3 in at least
one of the two fibroblast cell lines where this type of
data was available are more likely to contain positively
correlated CpG sites.

In our samples, the four HOX clusters represent the
densest centers of methylation-expression relationships in
the genome. As seen in Figure 11A-D, each cluster is rich
in both positive and negative methylation-expression
correlations, involving CpG sites both within genes
and within intergenic regions, with many but not all
negatively correlated sites lying in regions marked by
H3k4me3 and/or DHS. Also of interest in HOXA and
HOXD are the topological domains obtained from a
recent Hi-C study in IMR-90 cell lines [28]. In HOXD,
a 40 kb region representing a boundary between the
two domains contains the majority of CpG sites that
have negative correlation with expression, whereas the
boundary between two domains in HOXA also roughly
delimits the positively and negatively CpG sites in this
gene cluster. TBX1 and TBX3 represent other developmen-
tally significant transcription factors having both positively
and negatively correlated probes, whereas the latter largely
coincide with DHS regions (Figure 11E,F).

Overlap between mQTLs and eQTLs

Three main types of relationships have so far been con-
sidered: methylation to sequence (mQTLs), expression
to sequence (eQTLs and aeQTLs) and methylation to
expression. To quantify the degree of overlap between
the various relationships studied, we used genes, rather
than CpG probes or SNPs, as the primary unit of interest.
As seen in Figure 12, genes exhibiting two or three of
the possible relationships form a relatively small but still
non-negligible set. eQTLs and aeQTLs that were also
mQTLs are termed in our report 'expression and methyla-
tion quantitative trait loci' (emQTLs), and correspond
to a total of 52 eQTL-mappable genes and 234 aeQTL-
mappable aeRegions, which together form the set of
emQTL-mappable loci obtained in our analyses. When
emQTL-mappable aeRegions are broken into annotated
genes they overlap with, and merged with the list of
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emQTL-mappable genes obtained via combining eQTLs
and mQTLs, we obtain a set of 242 emQTL mappable
genes, plus 23 emQTL mappable aeRegions not overlap-
ping with any annotated genes. Compared to a random
selection of SNPs matched for minor allele frequency,
we find 5.9 times more mQTLs are also emQTLs than
expected by chance.

One example of an emQTL-mappable gene is C210rf56
(Figure 13A), which had previously been reported as
having mappable CpG probes near the TSS [11]. These
probes overlap with DHS and H3K4me3 regions and are
negatively correlated with expression. Also of note are

positively correlated CpG probes located in the body of
the gene, which are also mappable to a similar set of
mQTLs.

Homeodomain transcription factor PAXS8, transcription
of which has been identified as an important biomarker
in distinguishing various tumor types (reviewed in [29]),
presented another particularly interesting case of overlap
between the various types of relationships (Figure 13B),
where CpG probes located near the gene’s TSS were unex-
pectedly positively correlated with the gene expression
and those located in its body were negatively correlated. A
possible explanation may involve putative uncharacterized
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transcript DKFZP686E10196, antisense to and located
within PAX8, whose expression would be negatively corre-
lated with the CpG methylation at sites near its TSS (but
in the body of PAX8) but positively correlated probes in
the body of the transcript (but near the TSS of PAXS).
Indeed, RNA-seq data obtained from three individuals
with differing genotypes in the cis-associated emQTLs
suggest that the expression of PAX8 and its antisense tran-
script are positively correlated, ruling out an interference

between the two but instead hinting at a possible
chromatin-linked role of DKFZP686E10196 activation in
regulating PAX8 transcription. (For a recent review of
antisense regulation, see [30]).

Gene clusters of glutathione transferase families GSTM
and GSTT also show multiple genes being mappable to
similar sets of CpG probes and SNPs (Figure 13C,D), with
active marks DHS and H3K4me3 located near negatively
correlated CpG probes.
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Figure 12 Overlap of genes with an eQTL, genes with
expression correlated with methylation, and genes adjacent to
mQTLs. Number of genes corresponding to various categories

or relationships.

We estimated the proportion of gene expression variation
that could be explained by either sequence variation
alone or by a combination of sequence variation and
DNA methylation, using a simple linear model and five-
fold cross-validation (Materials and methods). For each
gene, the five SNPs (within 250 kb) jointly explaining the
largest portion of the expression variation on the training
data were sequentially identified and regressed out. In-
dependently of this we regressed out the five CpG sites
explaining the largest portion of the expression variation.
We found a total of 25.5% of gene expression variation to
be explained by sequence variation, whereas methylation
explained only 8.9% of expression variation. We applied a
third model in which the top five SNPs were regressed out
and then the top five CpGs were regressed from the resid-
uals, finding in this case the variation explained by methy-
lation dropped to 5.9%. This suggests that 5.9/8.9 = 66%
of methylation-facilitated gene expression variation was
independent of sequence variation. These figures are
considerably higher than the 1.2% and 3.3% variation of
expression explained, respectively, by DNA sequence and
DNA methylation found by Li et al. in breast tumors [31],
indicative perhaps of much greater variation of gene
expression brought about by other factors in the tumor
micro-environment.

Discussion

We have analyzed the inter-individual variability of and
relationships between one of the most comprehensive
set of biomarkers in untransformed adult cells to date,
including a more expansive assay for DNA methylation
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containing a large and diverse set of CpG dinucleotide
probes; gene expression data; SNP data and allelic expres-
sion data, augmented with publicly available histone mark
and DHS data from other cell cultures.

We chose primary skin fibroblasts as a model system.
These comparatively easy to isolate and cultivate cells are
a readily accessible source of patient material, and are in
use as a model system for complex disease etiological
studies (for example, Parkinson’s disease [32]). Epigenomes
are tissue-specific, however, so the use of primary skin fi-
broblasts is limited to gaining insight into complex diseases
of skin fibroblastic origin, or being a complementary tool
with the requirement of additional studies of (the mostly
more difficult to derive) primary patient tissue material.
Of course, the limited sample size of this study reduced
our ability to detect weak associations. However, comple-
menting eQTL with mapping of AE significantly increases
the sensitivity of our expression mapping [26], resulting in
the discovery of many more expression/methylation QTLs
than reported before.

Although most CpG sites with variable methylation seem
unrelated to variation in gene expression, a non-negligible
portion show significant correlations. Remarkably, the
properties of these relationships appear quite complex,
and the location of CpG probes with respect to the gene
provides relatively little information about the sign of the
correlation. Instead, chromatin states, particularly those
that are representative of active chromatin and transcribed
regions (DHS and H3K4me3) were more strongly indica-
tive of negative correlation. Using the publicly available
ENCODE data, we found in general that negatively corre-
lated probes most strongly overlapped with regions of
constitutive DHS but variable H3K4me3 among the five
fibroblast cell lines considered, whereas positively corre-
lated probes most strongly overlapped with an indicator of
inactive transcription, H3K27me3. Work published in the
ENCODE paper on DHS [8] indicated an inverse correl-
ation of DNA methylation and DHS, and the authors pro-
vided evidence that DNA methylation was excluded as a
consequence of open chromatin, rather than DNA methy-
lation preventing this opening from occurring. H3K4me3
was also previously found to be inversely correlated with
DNA methylation [9], with evidence for causality pointing
in both directions. We have found further signs of intri-
guing links between all of these marks, and hope for ex-
periments in the future more actively measuring these
marks within the same cell lines to give better clues as to
causality and to establish the constitutive and variable
marks included in methylation-expression relationships.

Whether the associations between gene expression and
methylation truly reflect variation in tissues or other differ-
ences acquired after sample collection is an important and
challenging question. One possible source of post-sample
collection variation is differences in cell proliferation rates.
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However, we have found that cell proliferation variation
explained only 8% of the variance in methylation levels of
expression-correlated CpG sites, and 13% of the variance in
expression levels of methylation-correlated genes. Among
mappable CpG sites and genes, the proportion of variance
explained was negligible (0.7% and 5%, respectively).
Relatively high overlap was seen with results from previ-
ous studies in terms of the rare genes where both expres-
sion and methylation could be linked to genetic variation
(emQTLs). In particular, C210rf56, a gene for which we
find many emQTLs in fibroblasts, also exhibits the same
property in whole blood [15] and LCLs [11]. Several other
genes having emQTLs in whole blood [15] (GSTMS3,
NAPRTI, SPG7 and WBSCR27) were also identified in
our assay, indicating that genetic variation leading to both
methylation and expression variation at the same locus is a
relatively rare but reproducible phenomenon, the mechan-
ism and implication of which merit further investigation.
We report a total of 260 annotated genes or aeRegions that,
to our knowledge, have not been previously reported as

having emQTLs, including 23 aeRegions having no overlap
to annotated genes. We attribute these discoveries to the
usage of AE assays as well as a gene expression microarray
experiments, together with use of the relatively recently
developed Illumina Infinium HumanMethylation450 plat-
form, interrogating methylation at a larger and more di-
verse set of CpG sites compared to most previous studies.
As the effect of methylation on gene expression can in
some cases involve cell-specific trans-acting factors [33],
additional emQTLs could be found if we were to extend
our analyses to additional cells or tissues. Future studies
with larger sample sizes, investigating more diverse sets
of cell types and utilizing platforms with even more
comprehensive coverage of CpG sites can only help to
uncover a greater number and potentially more subtle
cases of associated DNA methylation, gene expression
and DNA sequence variation.

Relationships between gene expression and DNA methy-
lation in a population setting have not been investigated as
extensively as sequence-expression or sequence-methylation
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relationships. However, previous high-throughput gene
expression studies in fibroblasts have revealed intriguing
results. In a landmark paper [34] assessing gene expres-
sion in skin fibroblasts derived from various anatomical
sites, genes involved in a) extracellular matrix formation,
b) cell signaling or fate determination, and c) cell migra-
tion signals were found to be expressed in a positional
dependent fashion. Most notably of all, clustering of the
samples based solely on the expression levels of 51 HOX
genes recapitulated their site of origin. Koch et al. [35]
strengthened these results by also finding positional-
dependent DNA methylation at HOX loci in a set of skin
fibroblast samples. In the present study, fibroblast samples
drawn from the same site but from different individuals
show considerable DNA methylation variation in CpG sites
proximal to all four HOX clusters, and a subset of HOX
genes are amongst those with the closest expression-
methylation ties in the genome. However, the HOX genes
with correlations to methylation reported differ from
those previously found to have position-dependent ex-
pression [34], indicating additional layers of complexity
and additional factors affecting fibroblast HOX methyla-
tion/gene expression beyond position in the body. Parents
from several of the trios showed similar HOX expression
and methylation profiles, indicating perhaps an environ-
mental rather than a genetic origin for these characteristic
patterns. Although this was not discussed in their paper,
the data reported by Gutierrez-Arcelus et al. [17] also in-
dicated that all four HOX clusters, as well as PAXS,
showed high levels of methylation/expression correlations
in each of the three cell types they studied. Future studies
taking into account more carefully the environment and
background of unrelated, healthy individuals will be para-
mount in understanding more clearly the factors at play in
DNA methylation and gene expression of these fascinating
loci. Overall, the inter-individual variability in gene expres-
sion seen in this fibroblast dataset, and the relationship
of this variability to DNA methylation shows intriguing
parallels to results seen with positional gene expression
and DNA methylation variability in fibroblasts.

Genetic and methylation variation jointly explain 31%
of gene expression variation in our fibroblast samples.
However, the mechanisms involved appear complex and
diverse, with a close interplay with other epigenetic marks.
Further studies assaying inter-individual variation in
histone marks and chromatin accessibility, ideally in an
allele-specific manner, may bring the context necessary to
the interpretation of sequence and methylation variation.

Conclusions

We report a comprehensive analysis of relationships
between sequence variation, DNA methylation and gene
expression in untransformed adult human fibroblast cells.
Consistent with previous reports showing positional effects
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in fibroblast on HOX gene expression [34] and DNA
methylation [35], we show inter-individual variation and
correlation between DNA methylation and gene expres-
sion in fibroblast cells even when drawn from the same
location in the body. CpG sites with positive and negative
correlations to gene expression show distinctive patterns
with respect to the histone marks and chromatin accessi-
bility seen in their genomic region in other fibroblast cell
lines. We find in general the most remarkable relation-
ships found with these data to be those involving gene
expression and DNA methylation in developmentally
significant regions having little or no discernible involve-
ment of DNA sequence variation.

Materials and methods

Description of cell lines and cell culture

Primary skin fibroblasts were obtained from Coriell
(Camden, NJ, USA) and the McGill Cellbank (Montreal,
QC, Canada). Cells were grown in alpha MEM Medium
(SigmaAldrich, Oakville, ON, Canada) supplemented with
2 mmol/l L-glutamine, 100 U/ml penicillin, 100 mg/ml
streptomycin, and 10% fetal bovine serum (SigmaAldrich)
at 37°C with 5% CO, to 70 to 80% confluence, then
harvested and stored at -80°C until RNA and DNA were
extracted.

DNA and RNA extractions

Genomic DNA (gDNA) for SNP genotyping and DNA
methylation analysis was extracted from cell lysates using
the GenElute DNA Miniprep Kit (SigmaAldrich) and
DNeasy Blood and Tissue Kit (QIAGEN, Valencia, CA,
USA), respectively, according to manufacturer’s protocol.
DNA concentrations were determined using the Quant-iT
PicoGreen kit (Invitrogen, Burlington, ON, Canada). Total
RNA was extracted from cell lysates using the RNeasy
Mini Kit (QIAGEN) according to the manufacturer’s
protocol, and treated with 6 U DNase I. RNA quality
was confirmed to be high for all samples on the Agilent
2100 Bio-Analyzer (Agilent Technologies, Mississauga,
ON, Canada), with an RNA integrity number (RIN) range
of 8.1 to 10, and concentrations were determined
using the Nanodrop ND-1000 (NanoDrop Technologies,
Wilmington, DE, USA).

450 K methylation array

gDNA (500 ng) was used for bisulfite conversion employing
the EZ DNA Methylation Kit (Zymo Research, Irvine, CA,
USA), according to the manufacturer’s protocols. The
modified gDNA was processed as described in the Infinium
Assay Methylation Protocol Guide Rev. C (November
2010), and analyzed on Infinium HumanMethylation450
BeadChips (Illumina; refer to [36] for more details), meas-
uring DNA methylation at single CpG site resolution
based on genotyping of C/U polymorphisms. We excluded
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probes with 290% sequence similarity to multiple genomic
locations, probes with sequence variants in the probe-
binding region and probes located on sex chromosomes,
leaving 392,904 probes for further analyses. For removal
of variant-containing probes HapMap (release 28, 30 CEU
trios) annotated variants were imputed with 1000 Genomes
project variants (pilot), and probes mapping more than one
variant were removed. As a measure of methylation we
chose the beta value, which theoretically ranges from 0,
indicating no methylation at any allele, to 1.0 for complete
methylation of both alleles.

Beta values of CpG probes were quantile normalized
separately for type I and type II probes, with the reference
distribution being the distribution of average per-probe
beta values. Surrogate variable analysis [19] was carried
out using the sva package in Bioconductor [37] and identi-
fied no hidden variables responsible for variation in data.
Furthermore, following a methodology similar to that of
Bell et al. [11], residuals obtained after regressing out up
to five principal components were mapped to candidate
mQTLs, and in none of the cases were a larger number of
mQTLs or mQTL-mappable CpG probes obtained than
with simply using quantile-normalized beta values; there-
fore, quantile normalized beta values were used through-
out for further correlation analyses.

Cell proliferation effects on expression and methylation
DNA concentrations from 8 individuals were used to
obtain a set of 42 developmentally significant genes whose
expression strongly (R > 0.75) correlates with DNA con-
centration. The first principal component of expression
levels for the set of these 42 genes was obtained and
used as a vector estimating the level of cell proliferation
effects in the full set of individuals. For each methylation
probe correlated either to gene expression or sequence
variation, we carried out linear regression with the probe’s
beta values and the cell proliferation vector. The variance
of the residuals was compared with the variance of the
original methylation probe, and done so cumulatively
across probes to obtain the total variation in methylation
of correlated probes explained by cell proliferation effects
(with separate categories for CpG sites correlated to DNA
sequence and gene expression). The process was repeated
with expression probes found to be correlated with eQTLs
and/or methylation of adjacent CpG sites to obtain an es-
timation of the total variation in expression of correlated
genes explained by cell proliferation effects.

Whole genome bisulfite sequencing

Whole genome bisulfite sequencing was carried out for
cell lines GM02316, GM02317, GM02456, and GM02555
as described [38] with the modification that bisulfite
conversion was carried out with the EZ DNA Methylation
Kit (Zymo Research) according to the manufacturer’s
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protocol. We performed 100 bp paired-end sequencing
on the Illumina Hiseq 2000 system; sequencing details
are given in Additional file 13. Reads were mapped to
the bisulfite converted reference genome using BWA
and processed as described by Johnson et al. [39].

Allelic expression measurement

AE measurement was carried out as described previously
[22]. In short, approximately 200 ng gDNA and 50
to 300 ng double-stranded cDNA were genotyped in
parallel on Ilumina Infinium HumanOmnil-Quad, or
HumanOmni2.5-Quad microarrays. The cDNA synthesis
protocol was applied on heteronuclear RNA, allowing the
measure of unspliced primary transcripts. For cDNA
synthesis approximately 150 pg of total RNA was enriched
using the MicroPoly(A)Purist protocol (Ambion Inc.,
Streetsville, ON, Canada). First strand cDNA synthesis
was carried out on 1 pg poly(A)-enriched RNA using
random hexamers, and second strand cDNA synthesis
was performed using the Superscript Double-Stranded
c¢DNA Synthesis Kit (Invitrogen). Data were filtered re-
moving non-expressed SNPs and SNPs where cDNA
arrays were unable to discriminate between homozygous
genotypes, and normalized to compensate observed inten-
sity dependent shift in median beta values of cDNA versus
gDNA. For filtered SNPs obtained in the assay, smoothed
scores of allelic expression were assigned based upon an
eight-state left-to-right hidden Markov model (LTOR-
HMM) as described in [23]. Based upon tests in which a
null distribution was simulated by permuting raw allelic
expression ratios independently within each sample, and
on smoothed AE scores obtained from the LTOR-HMM,
a threshold of 0.2 in at least two samples was identified as
identifying allelically expressed SNPs with an FDR of 5%.
Consecutive aeSNPs (ae-SNPs) having a smoothed AE
value of the same sign and above this threshold in at least
two individuals were aggregated into regions of allelic
expression (aeRegions) and the mean smoothed AE
score was obtained and assigned independently for each
individual, in each aeRegion.

Genotyping

Imputation of HapMap genotypes and phasing of Infinium
HumanOmnil and HumanOmni2.5-derived genotyping
data were done using Beagle [40]. The SNPs used in cor-
relation analysis throughout this study to obtain eQTLs,
aeQTLs, mQTLs and emQTLs are all based upon this
same set of SNPs.

Gene expression arrays and eQTL analysis

Gene expression levels for 58 of the 62 individuals were
determined using the Illumina HumanRef-8 Expression
BeadChip according to the manufacturer’s protocol, giving
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expression levels for 21,916 probes mapping to a total of
16,952 genes.

These expression values were quantile normalized,
the genes filtered such that only those in the top 50%
variance of expression were retained, and expression
values of these genes correlated using Spearman’s cor-
relation coefficient to all SNPs within the gene boundaries
or up to 250 kb upstream of the TSS or downstream of
the TES. Expression values of the top 50% variable
genes were permuted and the correlation analysis re-
peated to obtain a null distribution of P-values, and a
P-value of 1.4 x 107 was obtained as the cutoff yielding
a 5% FDR.

Identifying allelic expression aeQTLs

All HapMap (release 28) SNPs at a distance of £250 kb
flanking each aeRegion and having a minor allele fre-
quency >10% were correlated using Spearman’s correl-
ation coefficient to their respective aeRegion. For each
aeRegion, allelic expression values were permuted amongst
the samples and the regression repeated to obtain an overall
null distribution used in determining the FDR of P-values.
A P-value threshold of 0.0029 was set based upon an FDR
of 5%.

Identifying methylation quantitative trait loci

Only probes having variance across samples in the top
25% were kept for correlation analysis with SNPs.
Spearman’s rho was calculated between the highest 25%
variance probes and HapMap SNPs at a distance of +250 kb
flanking each CpG probe and having minor allele fre-
quency >10%. For each variable CpG probe, the analysis
was repeated with methylation values permuted across in-
dividuals, in order to obtain a P-value of 6 x 10 for an
FDR cutoff of 5%.

Methylation-expression correlation

The same set of top 25% variable methylation probes
and top 50% variable genes in the Illumina HumanRef-8
Expression BeadChip were used, obtaining the Spearman
correlation coefficient between any methylation probe
located within the body of an annotated gene or up to
250 kb on either side. Expression levels for each gene
were permuted across the samples and the same set of
Spearman correlation coefficients obtained, in order to
set the P-value cutoff of 5.132 x 107 for a 5% FDR.

A CpG probe was labeled as being in the "TSS' a gene
if it was £1,500 bp from its TSS. It was labeled as 'body’'
if it was not located within 1,500 bp of any TSS but was
within an annotated transcript. Finally, it was labeled as
'intergenic' if it was neither "TSS' nor 'body'".

The percentage contribution of methylation and sequence
variation to expression variation was assessed using five-
fold cross-validation and step-wise feature selection. For
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the training subset (80% of individuals), a linear model
with expression of a particular gene as the response
variable and genotypes of SNPs in the neighborhood of
that gene as explanatory variables was selected using
the stepAIC function in R [41]; the model was then used
to predict expression values in the testing subset (1/5)
of individuals. The same procedure of training and pre-
dicting was used across all five folds, and the R* between
the expression values and the predicted expression values
using the models was obtained as the percentage of ex-
pression variation explained by sequence variation. The
same procedure was repeated with the residuals of the
gene expression values from the sequence-expression
model as response variables and methylation beta values
of CpG probes in the neighborhood as explanatory vari-
ables, in order to obtain the percentage of expression
variation explained by methylation variation.

Gene Ontology term enrichment

Significantly overrepresented GO categories were obtained
for variable CpG probes and genes correlated to DNA
methylation using Fisher’s exact test via GOStat [42],
using default parameters available on the web server.

In the case of enrichment for highly variable CpG
sites, genes with at least one top 25% variable CpG site
at a TSS £ 1,500 bp were used as the test set; the set of all
autosomal genes overlapping with at least one Illumina
450 K CpG probe was used as the background set. In the
case of methylation-expression correlation, the set of all
genes whose expression correlated significantly at 5% FDR
with methylation of at least one CpG site were used in
the test set; the set of all genes containing at least one
CpG site within 250 kb was used as the background set.
P-values were calculated by the GOStat web server,
whereas fold enrichment was determined by dividing
the proportion of genes in the test set with a given GO
term by the proportion of genes in the background set
with the same GO term.

Overlap with DNase | hypersensitivity and histone markers
Data were downloaded from the ENCODE Data Con-
sortium Center at UCSC at [43] on 15 October 2012,
namely UW Dnase I HS and UW Histone broad peak
data for fibroblast cell lines: Ag04449, Ag04450, Bj, Hff
and Hcfaa (only Ag04450 and Bj were available for
H3k27me3). A genomic locus was defined as having a
given mark if that mark was present in at least one of
the three cell lines. For each variable gene, the sets of a)
positively correlated methylation probes, b) negatively
correlated methylation probes, and c) all probes in a
250 kb neighborhood were obtained. For each category,
the average (across genes) proportion of probes overlap-
ping each type of mark was determined.
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Overlap between mQTLs and aeQTLs

The set of all SNPs that are categorized as correlated
both to gene expression (aeQTL having relationship to
an aeRegion and/or an eQTL correlated to a gene in the
Ref8 array) and to DNA methylation (mQTL) at an FDR
threshold of 5% in both of the respective analyses de-
scribed above are categorized as methylation-regulatory
SNPs (emQTLs).

Data access

Methylation, gene expression, and SNP genotyping data
for this publication have been deposited in NCBI's Gene
Expression Omnibus and are accessible through GEO
SuperSeries accession number GSE53261.
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