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Accounting for cellular heterogeneity is critical
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Abstract

a very different DNA methylation profile.

\

Background: Epigenome-wide association studies of human disease and other quantitative traits are becoming
increasingly common. A series of papers reporting age-related changes in DNA methylation profiles in peripheral
blood have already been published. However, blood is a heterogeneous collection of different cell types, each with

Results: Using a statistical method that permits estimating the relative proportion of cell types from DNA
methylation profiles, we examine data from five previously published studies, and find strong evidence of cell
composition change across age in blood. We also demonstrate that, in these studies, cellular composition explains
much of the observed variability in DNA methylation. Furthermore, we find high levels of confounding between
age-related variability and cellular composition at the CpG level.

Conclusions: Our findings underscore the importance of considering cell composition variability in epigenetic
studies based on whole blood and other heterogeneous tissue sources. We also provide software for estimating
and exploring this composition confounding for the Illlumina 450k microarray.

Background

Epigenome-wide association studies (EWAS) of human
disease are becoming increasingly common. DNA methy-
lation (DNAm) is of particular interest because it is dy-
namic across the lifetime, affected by environmental
insults, and previously implicated in developmental disor-
ders and cancer [1]. In these studies, DNAm levels are
measured genome-wide at thousands to millions of sites
in hundreds of individuals to identify loci where these
levels are associated with quantitative traits or disease
[1,2]. Because existing cohort studies that extensively
characterize participants often store blood samples, the
most widely available tissue for subsequent/retrospective
EWAS is whole blood. Furthermore, many studies meas-
ure genome-wide DNAm in blood as obtaining disease-
relevant tissues is often invasive and/or impossible. With
many of these studies completed, few disease-associated
loci have been reported outside of cancer [3], type 1 dia-
betes [4], and rheumatoid arthritis [5]. Instead a series of
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papers reporting age-related changes of DNAm profiles
have been published [6-14].

Age-related changes in DNAm have been previously re-
ported and functionally described by Chu et al. [15]. In this
carefully designed study, fluorescence-activated cell sorting
(FACS) was used to separate peripheral blood into pure cel-
lular populations. DNAm was measured in four genomic
regions, selected using biological insight, and modest age-
related changes were found in CD4+ and CD8+ T cells. In
contrast, the above-mentioned EWAS measured DNAm
for all CpGs selected by the array manufacturers and used
whole blood as a source tissue. Whole blood is a heteroge-
neous collection of different cell types, each with a very dif-
ferent DNA methylation profile [16,17]. Observed whole
blood DNAm profiles are therefore mixtures of the cell
type profiles. In a seminal paper, Houseman et al. [16] de-
scribe a statistical method that can accurately estimate rela-
tive proportions of cell type components in whole blood.
Using practically the same statistical approach, Guintivano
et al. [18] describe a method for estimating neuron and
non-neuron components in brain samples. However, cur-
rently there are no published statistical solutions to parsing
age effects by cell type from observed whole blood DNAm
measurements.
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We examined data from five publicly available studies
(Additional file 1) and found strong evidence of cell
composition changes across age. Furthermore, we find
high levels of confounding between age-related variabil-
ity and cell composition. We report findings that under-
score the importance of accounting for cell composition
variability in epigenetic studies based on whole blood
and other heterogeneous tissue sources.

Results and discussion
DNAm profiles show large between cell type differences
We downloaded Illumina HumanMethylation450 Bead-
Chip (Ilumina 450k) data from flow-sorted neutrophils
(granulocytes), lymphocytes (CD8+ and CD4+ T cells,
CD56+ natural killer cells and CD19+ B cells) and CD14+
monocytes from six adult male samples (mean age 38 +
13.6 years) as previously described [17] and confirmed that
sorted blood cell types have unique DNAm profiles
(Figure S1 in Additional file 2). In fact 63.5% of the CpGs
on the Illumina 450k array showed differences with P < 0.05
across these cell types (Figure S1C in Additional file 2).

We used these data to adapt the statistical method
developed by Houseman et al. [16] for the Illumina
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HumanMethylation27 BeadChip (Illumina 27k) array to
estimate cell composition from DNAm profiles obtained
with its successor, the Illumina 450k. We select a subset
of 600 cell-type-specific CpGs (Figure 1) and then use
these to estimate proportions in whole blood samples
(see Materials and methods). We provide a table with
statistical summaries of cell-type variability for all CpGs
on the Illumina 450k array (Additional file 3).

In sorted samples, cell type explains a larger percentage
of variability than age

Given these results, for the purposes of our analysis, we
assumed that, for the selected 600 CpGs, the cell type-
specific DNAm profiles are the same for all ages. Al-
though we know this assumption does not hold true for
all CpGs [15], the results of this section suggest that it is
reasonable for most CpGs, and our 600 CpG profile in
particular. To demonstrate this, we interrogated two
publicly available datasets - the Reinius et al. [17] [llumina
450k data on 6 men (sample ages were obtained from the
authors) and Illumina 27k data from sorted CD4+ T cells
and monocytes [6] on 24 and 26 subjects, respectively (see
Materials and methods). First, we removed CpG probes
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Figure 1 lllustration of how blood composition drives observed age differences. (A) Heatmap of the cell sorted data shows very clear and
consistent DNAm profiles for each cell type. We show 600 probes selected for estimating composition proportions used to demonstrate
differences here. (B) To simplify the illustration we selected a section of (A) displaying only the two most abundant cell types: CD4+ T cells and
granulocytes. (C) Heatmap of a randomly selected sample of 30 whole blood samples (from the data in Additional file 1) across three age groups
(10 per group): between 1 and 5 years of age, between 30 and 40, greater than 60 years. The same probes as in (B) are used. When the samples
are ordered by their estimated granulocyte proportion, the samples roughly cluster by age and a similar pattern to (B) is observed. The estimated
cell count proportions for each of the samples are shown below. Note the strong confounding between age and cell composition. (D) For the
two samples highlighted with an arrow in (C), we show how a weighted average of the cell type profiles can reconstruct the observed DNAmM
profiles. The numbers shown are the estimated proportions. Note how different weights (cell counts) for old and young result in very different
observed DNAm patterns. Note that the differences in CD4+ T cells and granulocytes drive much of the differences in DNAm. NK, CD56+ natural
killer cells; CD8T, CD8+ T cells; CDAT, CD4+ T cells, Gran, granulocytes; Bcell, CD19+ B cells; Mono, CD14+ monocytes; DNAm, proportion of DNA
methylation at individual CpGs (Illumina 'beta’ values, bound between 0 and 1); Prop, cell count proportion, between 0 and 1 for each
component, such that they sum to 1.
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that showed age associations (at P <0.05) in the Reinius
et al. [17] dataset when picking cell-type-discriminating
probes for the cell composition estimation. Additionally,
in Rakyan et al. [6] (which was a larger sample) we found
that the percentage of variance explained by cell type was
much greater than that explained by age within each cell
type with most CpGs showing no significant association
with age (Figure S2 in Additional file 2). Furthermore,
among the 23 CpGs appearing on the Illumina 27k array
that were among the 600 cell-type discriminating CpGs
(from the Illumina 450k), only one probe (cg03439703)
had a p-value < 0.05 when testing for association with
age in both CD4+ T cells (P=0.003) and monocytes
(P=0.047).

Varying cell composition may explain apparent
age-associated differences

We downloaded all publicly available DNAm studies in
peripheral blood measured with the Illumina 450k array
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(Additional file 1), re-normalized the data, and applied
our method to obtain cell composition estimates for each
sample. Note that only three of the studies were focused
on finding age-related changes in DNAm [8,10,11], but all
studies recorded age information. Figure 1 demonstrates
that peripheral blood samples indeed appear to be a mix-
ture of pure cellular components, and differences in
DNAm may potentially arise merely from differences in
the relative proportions of these components rather
than site-specific changes in specific cellular populations
(Figure 1C).

Cell type proportions change with age following
monotonic patterns

We observed consistent age-related changes for the pro-
portions of each cell type (Figure 2). These results are in
line with previously published findings related to T cells,
namely the involution of the thymus, where T cells in
lymphocytes mature. This process begins very early in
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Figure 2 Cellular composition changes across the lifespan. Estimated cellular composition proportions are plotted against age for (A) CD4+ T cells,
(B) CD8+ T cells, (C) natural killer (NK) cells, (D) monocytes (Mono), (E) B cells, and (F) granulocytes (Gran). Color indicates the data source, which are
described in Additional file 1. The black lines are curves fit to data with local weighted regression (loess) with confidence intervals in grey. Spearman
correlation coefficients are reported for each composition proportion estimate and age.
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life [19] and continues with age - the size of the thymus
drops approximately 3% per year until the mid-60s, and
is approximately 5% the size of the thymus in a newborn
[20], suggesting that the number, and diversity, of T cells
decreases with age. However, we also note these age-
cell count relationships, although monotonic, were non-
linear with an inflection point around 40 years (Figure 2).
While these findings may be partially attributable to
'batch’ effects (given the strong correlation between age
and study/dataset), datasets with overlapping age ranges
(Liu et al. and Hannum et al.) have consistent age com-
position trends (Figure S3 in Additional file 2).

Cellular composition correlates strongly with global
DNAm profiles

Given that blood cell types have very different DNAm pro-
files (Figure S1 in Additional file 2) and that cell type pro-
portions change across age (Figure 2), we assessed if cell
composition was a major source of variability in the five
peripheral blood data sets. We computed the first two
principal components of the epigenome-wide DNAm pro-
files across the five studies and compared them to the
first principal component of the cell proportion estimates
(Figure 3). The correlation between DNAm variance and
composition variance was apparent within each study,
often to a stronger degree (Figure S4 in Additional file 2).
These observed correlations therefore empirically demon-
strate that cell composition is a very large source of vari-
ability in DNAm data derived from peripheral blood.

Confounding between cell composition and age leads to
false positives

To determine the adverse effects at the single locus level
of the observed confounding between age, cell compo-
sition, and DNAm, we reexamined the CpGs reported in
the literature to be associated with age [6-13] across se-
veral different measurement platforms (Additional file 4).
For each of the CpGs reported to associate with age on
the Illumina 450k array (n = 134,489), we tested between-
to-within cell type variability on the sorted DNAm
data and found that 86.7% of these had P<0.05
across cell type (Figure S5 in Additional file 2).

A simple linear regression model including the cell
composition percentages as covariates has been sug-
gested as a way to adjust for the confounding [5]. We
applied this method to the data from Hannum et al.
[10] and Alisch et al. [8] and found that the adjusted
estimates are, on average, closer to 0 (Figure S6A in
Additional file 2). However, at this level of confounding it
is not clear that this naive approach will in fact produce
unbiased adjusted estimates (Figure 4A) [21]. We therefore
tried two alternative approaches. First we applied the
Remove Unwanted Variation (RUV) method [22], an ana-
lysis that estimates and adjusts for unknown surrogate
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Figure 3 Cellular composition is a major source of variability in
DNAm datasets in whole blood. Principal components (PCs) (A) 1
and (B) 2 of the 456,655 DNAmM probes (y-axis) and the first PC of
the empirical cell counts (x-axis) are highly correlated. The first PC of
the DNAm data explains 10.9% of the variance, and the second
explains 9.3% of the variance. Color indicates data source, which are

described in Additional file 1.

variables as done by Leek and Storey [23]. This resul-
ted in much greater, but not complete, attenuation of
the age association estimates (Figure 4B; Figure S6B
in Additional file 2). Next we obtained age association
estimates from fitting the model to data from sorted
CD4+ T cells and granulocytes. Note that in these
data, cell composition is not a confounder and we see
minimal evidence of age association (Figure 4C,D;
Figure S6C,D in Additional file 2). We did not imple-
ment the adjustment approach suggested by Guintivano
et al. [18] because mathematical derivations demon-
strated their solution adjusts for confounding in
special situations (see Materials and methods).
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Figure 4 Confounding between cellular composition and age at the CpG level. Comparisons between resulting t-statistics for age on DNA
methylation levels in Hannum et al. [10] using (A) naive (for example, including cell composition estimates as covariates in regression models), (B)
two-step Remove Unwanted Variation (RUV), (C) flow-sorted CD4+ T cells and (D) flow-sorted monocytes compared to the effect of age on
DNAm in a univariate model. The univariate and naive models also adjusted for processing plate, which was a very strong confounder. Here,
analysis with RUV attenuates the association between DNAm and age. The solid lines indicate the resulting t-statistic cutoff for false discovery
rate <5% - no probes were significant at this threshold in the cell sorted data. All panels contain probes present on both the Illumina 450k and

27k (n=24,692) to facilitate comparisons to age associations in the flow-sorted cellular populations.

Improved biological interpretation after composition filtering
We removed results from Johansson et al. [14] (which
reporting one-third of the array was differentially me-
thylated) then mapped the remaining 5,237 age-associated
CpGs (Additional file 4) to human genes using the database
provided by Triche [24]. For each Gene Ontology category
[25] with more than 25 annotated gene IDs we counted
the number of CpGs associated with a gene in that ca-
tegory and formed an observed count to expected count
ratio (see Materials and methods). We then filtered this
list by removing CpGs associated with cell composition
and recomputed the observed to expected ratios. With
the unfiltered list, 10 of the top 20 enriched categories
were clearly related to the immune system while only
three were related to development, whereas in the fil-
tered list 9 of the top 20 were associated with deve-

lopmental processes and only 4 to immune response
(Additional file 5).

Conclusions
Whole blood has been one of the most widely used
source tissues in EWAS. Here we demonstrate that, in

these studies, cellular composition explains much of the
observed variability in DNAm. Therefore, when the out-
come of interest correlates with cell composition, as age
does, failure to account for cellular heterogeneity may
result in many false positives. For binary outcomes, for
example, we may observe differences between cases and
controls, not due to the real differences in DNAm, but
rather due to cases and controls having different blood
cell counts (Figure 1).

While our re-analysis of publicly available data does not
necessarily suggest that all reported age-related DNAm
changes in blood are false positives, it certainly suggests
that one should account for cellular composition. We
therefore recommend that users of the Illumina 450k array
studying whole blood perform the cell composition esti-
mation (using, for example, the estimateCellCounts func-
tion we have added to the minfi Bioconductor package)
and check for possible confounding. If confounding is
present, we recommend the use of our table (Additional
file 3; also available in the FlowSorted.Blood.450k Biocon-
ductor package) that summarizes cell-type variability for
each CpG. Those CpGs with methylation values highly
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associated with cell-type variability should be treated with
skepticism, and we strongly recommend that CpGs
associated with both composition and the covariate
of interest be validated using FACS-derived cellular
populations.

Note that due to the high levels of confounding we
currently do not recommend regression approaches for
adjustment purposes, but we note that RUV performed
best for reducing the composition-based confounding.
However, when there is no or minimal confounding, the
added unaccounted variability may result in false nega-
tives. In such cases popular factor-based 'batch’ correc-
tion methodology, like surrogate variable analysis [23],
and RUV [22] can empirically estimate and control for
cell-type composition.

Note that these confounding problems are not confined
to blood, but rather any tissue source that contains a mix-
ture of cell types. Here, careful study design, via targeted
validation employing cell sorting within the tissue of inter-
est, can help isolate cell type-specific changes, such as
age-related DNAm changes in the pure cellular popula-
tions of blood beyond the preliminary negative findings in
CD4+ T cells and monocytes from Rakyan et al. [6]. These
may better explain observed biological effects, specifically,
which epigenetic marks mediate risk for disease or associ-
ate with a trait. Characterizing and exploring the effects of
cellular heterogeneity is therefore a necessary step in the
analysis of genome-wide DNAm data in any heteroge-
neous tissue source, especially peripheral blood.

Materials and methods

Sample and study selection

There were five publicly available datasets on the Illu-
mina 450k platform [5,8,10,11,26] performed on blood
samples in the Gene Expression Omnibus (GEO) avail-
able through the National Center for Biotechnology In-
formation (NCBI) as of February 2013 [27]. We also
downloaded cell sorted data described in the Results sec-
tion from Reinius et al. [17] (GSE35069). Because study
and age were almost perfectly confounded, and because
there were very strong effects of study in the processed
GEO data, we required 'raw' methylated (M) and
unmethylated (U) channels from the Illumina 450k to
preprocess and normalize all of the samples together, in-
cluding the cell-sorted dataset. One study, Horvath et al.
[12], was not included in the manuscript because the
GEO entry lacked raw data. Samples were dropped ac-
cording to three criteria: 1) missing an age in the data-
base (N =11); 2) known to be cell-sorted, according to
published manuscripts (N =2, from Heyn et al. [11]);
and 3) hypothesized to be cell-sorted, based on granulo-
cyte count values (Figure S7 in Additional file 2), includ-
ing all centenarian samples from Heyn et al (N =19), as
all appeared to be only granulocytes, and 21 samples
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from Harris et al. [26], which appeared to be granulocyte-
depleted (the manuscript refers to a subset of samples be-
ing sorted, but it was not available information in the
GEO entry). This left 1,098 samples across 5 studies.

We performed across-array quantile normalization
within the M and U channels separately to normalize in-
tensities across samples. Before normalization, we dropped
probes on the sex chromosomes (chromosome X = 11,232
and chromosome Y =416) and also probes that contained
an annotated SNP (via dbSNP 137 Common database) in
the CpG site (N = 16,756) and at the single base extension
site (N =7,880). This left 456,655 autosomal probes across
the epigenome. After normalization, DNAm measure-
ments on the logit scale were calculated as log,(M/U), and
then transformed to Illuminas 'beta' scale (proportion
methylation, between 0 and 1). This approach is similar to
the 'ABNorm' approach described by Sun et al. [28], but
we use the logit transform described above rather than the
Mumina approach [M/(M + U + 100)] for calculating the
beta values.

Empirically estimating cellular composition using the
lllumina 450k microarray

We tailored the algorithm designed by Houseman et al.
[16] for the Illumina 27k array to the Illumina 450k array.
Briefly, the Houseman algorithm identified 500 CpGs that
discriminated cellular composition in flow-sorted cell pop-
ulations (consisting of CD4+ and CD8+ T cells, B cells,
monocytes, natural killer cells, and granulocytes). The al-
gorithm then fits a nonlinear random effects model at
each of these CpGs, estimating the coefficient for each cel-
lular component, and then uses these coefficients to pre-
dict the relative proportion of each cellular component in
peripheral blood samples.

However, there were several reasons that prevented the
direct use of Houseman et al’s algorithm on the 1,098
blood samples obtained on the Illumina 450k. First, while
473 of the 500 composition-discriminating CpGs were
present on the Illumina 450k, these probes exhibited
slightly different behavior in the two arrays (Figure S8 in
Additional file 2). Second, 291 CpGs used by Houseman
et al’s algorithm contained an annotated SNPs (by rs
number in the dbSNP137 database) at the CpG site of
interest (N = 57), at the single base extension site following
the CpG (N =34) or in the probe sequence itself (N =
200). Problems detailing the inclusion of SNPs in the de-
sign of the Illumina 450k have been discussed previously
[29,30], and given our data are from a genetically hetero-
geneous population, we elected to exclude some of these
probes.

We therefore obtained flow-sorted data, including the
same six cellular components on six adult male subjects on
the Illumina 450k platform [17], and derived our own simi-
lar blood composition algorithm using linear modeling
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across 600 composition-discriminating probes. We com-
puted t-statistics for each cell type after removing probes
that associated with age (at P <0.05), comparing that par-
ticular cell type with all others, and selected among the
CpGs showing differences at P < 10® the 100 most differ-
entially methylated probes by effect size, 50 hypermethy-
lated and 50 hypomethylated. One outlying CD8+ T cell
was excluded for the sake of composition estimation. The
choices of 50 and 10® were somewhat arbitrary, but in-
sample cross-validation (via leaving out one sample per
cell type, training the model on the remaining 30 samples,
and then predicting the 6 left out samples) demonstrated
nearly perfect concordance between our estimates of
cellular composition and the true values (Figure S9 in
Additional file 2).

We also validated the overall algorithm using publicly
available brain data from Guintivano et al. [18], which
consisted of flow-sorted NeuN +and NeuN- cellular
populations from the dorsolateral prefrontal cortex as
training data, and then mixture data containing 10%
NeuN+/90% NeuN-, 20% NeuN+/80% NeuN-, ..., 90%
NeuN+/10% NeuN- and bulk tissue data with FACS-
derived counts of NeuN + cells as testing data. We proc-
essed the data (quantile normalization, dropping probes
with SNPs and on sex chromosomes), picked 50 hypo-
and hyper-methylated probes, and implemented the
algorithm. The algorithm successfully recovered the mix-
ture experiment (correlation=0.9995; Figure S10A in
Additional file 2) and predicted the FACS-derived counts
from bulk tissue with moderate accuracy (correlation =
0.786). Lastly, we expect similar accuracy in blood (<10%
on the Illumina 27k) as Houseman et al. [16], as we have
adapted the algorithm to the Illumina 450k without chan-
ging the regression calibration approach.

Software to implement the estimation of cellular com-
positions from cell-sorted DNAm data is available in the
minfi Bioconductor package [31]. Publicly available cell-
sorted data, to be used in conjunction with the minfi
package, are available in the FlowSorted.Blood.450k Bio-
conductor package.

Previously published solution does not generally adjust
for confounding

Guintivano et al. [18] also provide software that imple-
ments a method that they claim can transform data to
eliminate (or at least reduce) the confounding effect of
cell type heterogeneity on methylation profiles. Although
the software is developed for brain, and only for two cell
types, one could envision extensions applicable to cases
with more cell types such as blood.

However, we offer a mathematical proof demonstrating
that the solution offered in the paper only adjusts for con-
founding in a very special case. To understand the trans-
formation we downloaded the accompanying software
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package CETS (version 0.99.2) and deciphered it from the
R code. Here is a mathematical description of what the
transformation does.

Let Y; be the observed methylation profile for the ith
individual, a mix of glia (G) and neurons (N). Then we
can write:

Y= ﬂi,ui?N + (l—ﬂi)//lin + &

where 71; is the proportion of the ith sample that comes
from neurons, y; and y; g are the profiles for neurons
and glia, respectively, and ¢; is measurement error. In
their software, Guintivano et al. [18] provide neuron and
glia profiles based on an average across many cell-sorted
samples, which we will denote with z,, and z . It is im-
portant to note that these are averages and thus different
from the individual profiles. The transformation pro-
posed by Guintivano et al. [18] is:

T(Y:)) =Y+ (1-m)(an—ig)

They claim that this will recover the pure neuronal
signal ;. But we can do some arithmetic to note that
the above can be rewritten as:

iy + (1-1;) KﬁN‘#i,N) - (ﬁG‘P‘i,G)} +é&

Thus, the signal is recovered only when the difference
between the individual profiles and the average profiles
are the same across cell type, which is not a reasonable,
nor useful, assumption.

Variability in sorted cell populations

We downloaded publicly available data from Rakyan et al.
[6] at GEO accession GSE20242, which consisted of sorted
adult blood samples for monocyte and CD4+ T-cell popu-
lations. Linear regression models including i) age, ii) cell
type, iii) both age, cell type, and their interaction term
were fit at every probe. We summarized each fit with the
adjusted R? (coefficient of determination) . We then exam-
ined the P-values for the age terms within each cellular
population at our 600 probes from the Illumina 450k used
to estimate cellular composition that were also present on
the Illumina 27k (n = 23).

Analysis of reported age-associated differentially methylated
regions

We downloaded tables for statistically significant age-
associated differentially methylated probes or regions
(DMRs) from the supplementary material of published
manuscripts listed in Additional file 4. For each reported
age-associated DMR, we identified the F-statistic (and
resulting marginal P-value) for that probe for the effect
of composition in the publicly available sorted Illumina
450k data [17].
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We applied naive regression adjustment (for example,
adjusting for cell type estimates) and two-step RUV
using k =10 (principal components) in Alisch et al. [8]
and k=30 in Hannum et al. [10], which were deter-
mined using diagnostic plots across a range of k values.
Univariate regression modeling for Hannum et al. [10]
included a categorical 'plate’ adjustment variable, as plate
and age were strongly associated, and plate and DNAm
estimates were also associated. The RUV method re-
quires control probes that are affected by the con-
founder (cell composition) but not the outcome of
interest. We therefore used our 600 probes used to esti-
mate cell type proportion since we showed these had no
relation to age in at least two cell types. While it is pos-
sible that they are age associated in other cell types the
results summarized in Figure S2 in Additional file 2 sug-
gest that this is a useful approximation. With these con-
trol probes in place we then let the algorithm estimate
the surrogate variables.

We assessed functional significance through enrich-
ment using pre-defined gene sets with the Gene Ontol-
ogy database. First we mapped each CpG to its Entrez
Gene ID [24] for background enrichment (311,817/
456,655 probes had an annotated Entrez Gene ID). For
each gene set with 25 or more genes, we assessed the
number of CpGs that mapped to each gene set. Then we
assessed the number of reported age DMR CpGs in the
existing gene sets, before (n =4,691/5,237 mapped to an
Entrez ID) and after (n=1,090/1,209 mapped to an
Entrez ID) removing probes that correlated with com-
position (f-statistic P-value <1 x 10* and DNAm range
>10%). The observed verses expected ratios were com-
puted for every gene set before and after this compo-
sition filtering, and are presented in Additional file 5.

Data availability
All datasets are publicly available in the GEO database

[27] at the accessions available in Additional file 1.

Additional files

Additional file 1: Table S1. Studies included in the cellular
composition analyses. 'Dataset’ refers to each study used in the paper,
followed by its citation (see References for full citation); 'N' is the number
of samples included from each study; 'GEO ID" is the Gene Expression
Omnibus identifier; 'Primary Outcome' is the main disease or trait
reported by the referenced article - note that only some datasets were
primarily focused on age; 'Median Age [IQR] (yrs)' is the median age of
the study participants, followed by their interquartile range (25" percent-
ile, 75" percentile), in years.

Additional file 2: Figure S1. Differential DNA methylation by cell
composition. Figure S2. Contributions of age and cell type to cell-sorted
DNAm data. Figure S3. Age versus cell type for Liu et al. [5] and Hannum
et al. [10] studies. Figure S4. Global variation in DNA methylation by
composition, by study sample (Additional file 1). Figure S5. Composition
P-values from previously reported age-associated differentially methylated
regions. Figure $6. Composition confounding in Alisch et al. [8]. Figure S7.
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Removal of samples with outlying granulocyte counts. Figure S8. Differences
between sorted profiles on the lllumina 27k versus the lllumina 450k.

Figure S9. Cross-validated cell counts. Figure S10. Validation of algorithm
using brain data.

Additional file 3: Table S2. Association of each probe on the lllumina
450k with blood cell composition. Note that probes on the sex
chromosomes and those that contain annotated SNPs have been filtered
(see Materials and methods). We recommend using the CpG identifiers to
match each probe from a user's differential methylation analysis in their
whole blood data to obtain the corresponding composition P-value - if
there are many small P-values for significant differentially methylated
sites for the exposure/outcome/trait of interest, this may be a sign of
confounding via composition differences, in which case we recommend
estimating cellular components using the minfi Bioconductor package,
and formally exploring this potential correlation between the trait,
composition, and DNAm. 'Name' refers to the CpG identifier from the
lllumina 450k; 'Fstat' and 'p.value’ are the f-statistic and corresponding
P-value for composition from the ANOVA containing six samples/biological
replicates per cell type across six cell types (n = 36; see Materials and
methods); 'CD8T_mean' is the mean DNAmM across the six CD8+ T cell
replicates, on the beta/proportion methylation scale; 'CD4T_mean' is the
mean DNAm across the six CD4+ T-cell replicates, on the beta/proportion
methylation scale; 'NK_mean' is the mean DNAm across the six natural killer
cell replicates, on the beta/proportion methylation scale; 'Bcell_mean' is

the mean DNAm across the six B-cell replicates, on the beta/proportion
methylation scale; 'Mono_mean' is the mean DNAm across the six monocyte
replicates, on the beta/proportion methylation scale; 'Gran_mean' is the mean
DNAm across the six granulocyte replicates, on the beta/proportion methylation
scale; 'DNAmM_min' and 'DNAmM_max' are the minimum and maximum beta
values, respectively, across the 36 samples at each loci; ' DNAM_range' is the
range of beta values.

Additional file 4: Table S3. Previously published results for age-associated
differential methylation in blood. 'Study (Reference)' refers to a particular study,
along with its reference, that reported age-associated differentially methylated
regions (@DMRs); 'Platform’ is the DNA methylation microarray platform used
by the study - '450k" is the Illumina 450k, 27k’ is the lllumina 27k and 'CHARM
20'is the second generation of the Comprehensive High-Throughput Arrays
for Relative Methylation platform. '# of aDMRs' reports the number of
differentially methylated loci associated with age - the number left of the
backslash is the number reported at genome-wide significance (determined
by respective publication) and to the right, the number of significant sites
available as a Supplementary Table obtained from each respective manuscript;
'SVA?" displays whether surrogate variable analysis was used in the paper,
which may have partially adjusted for blood cell composition effects.

Additional file 5: Table S4. Gene Ontology (GO) enrichment before
and after removing lllumina 450k probes associated with cellular
composition. 'GO ID' refers to the GO identifier; '‘Background' refers to all
of the probes on the Illumina 450k that mapped to an Entrez Gene ID;
‘Before' refers to age-associated probes that were not filtered by whether
they associated with cellular composition; 'After' refers to age-associated
probes after those probes associated with cellular composition were
filtered from the analysis; 'Number of Probes Enriched' is the number of
probes that mapped to that GO category for each condition; 'Expected
Number of Probes' is the expected number of probes, assuming no
enrichment, for each category; 'Observed/Expected Ratio' is the ratio of
observed to expected counts, a.ka. the odds ratio; 'GO Term' is the
biological term corresponding to each GO ID; 'Set Size' is the number of
genes for each GO set. 'Ontology' refers to the three GO classifications -
molecular function (‘MF'), biological processes ('BP'), and cellular
component ('CCY); 'Rank' refers to the P-value rank, smallest to largest,
before and after filtering age-associated probes also associated with

cellular composition.

Abbreviations

DNAm: DNA methylation; EWAS: epigenome-wide association study;
FACS: fluorescence-activated cell sorting; GEO: Gene Expression Omnibus;
M: methylated; RUV: Remove Unwanted Variation; SNP: single-nucleotide
polymorphism; U: unmethylated.


http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r31-S1.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r31-S2.pdf
http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r31-S3.zip
http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r31-S4.xlsx
http://www.biomedcentral.com/content/supplementary/gb-2014-15-2-r31-S5.xlsx

Jaffe and Irizarry Genome Biology 2014, 15:R31
http://genomebiology.com/2014/15/2/R31

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AEJ and RAI conceived the study, performed data analysis, and wrote the
manuscript. AEJ implemented the analysis and wrote the code. Both authors
read and approved the final manuscript.

Acknowledgements

We thank Tomas Ekstrom and Lars Klareskog for providing age information
from the EIRA study, associated with the Liu et al. dataset [5]. We also thank
E Andrés Houseman for providing the code used in his manuscript [16].

Funding sources

Lieber Institute for Brain Development Intramural Research Fund, National
Institute of Health (NIH): National Institute of General Medical Sciences
(2RO1GMO083084) and National Human Genome Research Institute/Center
for Inherited Disease Research (1X01HG006605-01).

Received: 16 October 2013 Accepted: 4 February 2014
Published: 4 February 2014

References

1. Rakyan VK, Down TA, Balding DJ, Beck S: Epigenome-wide association
studies for common human diseases. Nat Rev Genet 2011, 12:529-541.

2. Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, Irizarry RA:
Bump hunting to identify differentially methylated regions in epigenetic
epidemiology studies. Int J Epidemiol 2012, 41:200-209.

3. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA,
Apostolidou S, Jones A, Lechner M, Beck S, Jacobs 1J, Widschwendter M:

An epigenetic signature in peripheral blood predicts active ovarian
cancer. PLoS One 2009, 4:e8274.

4. Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D, Daunay A,
Busato F, Mein CA, Manfras B, Dias KR, Bell CG, Tost J, Boehm BO, Beck S,
Leslie RD: Identification of type 1 diabetes-associated DNA methylation
variable positions that precede disease diagnosis. PLoS Genet 2011,
7:21002300.

5. LiuY, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L,
Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J,
Alfredsson L, Klareskog L, Ekstrom TJ, Feinberg AP: Epigenome-wide
association data implicate DNA methylation as an intermediary of
genetic risk in rheumatoid arthritis. Nat Biotechnol 2013, 31:142-147.

6.  Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P,
McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD: Human
aging-associated DNA hypermethylation occurs preferentially at bivalent
chromatin domains. Genome Res 2010, 20:434-439.

7. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ,
Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA,
Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner
W, Laird PW, Jacobs 1J, Widschwendter M: Age-dependent DNA methyla-
tion of genes that are suppressed in stem cells is a hallmark of cancer.
Genome Res 2010, 20:440-446.

8. Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren
ST. Age-associated DNA methylation in pediatric populations. Genome
Res 2012, 22:623-632.

9. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G,
Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman
AK, Nica A, Small KS, Dermitzakis ET, McCarthy MI, Mill J, Spector TD,
Deloukas P: Epigenome-wide scans identify differentially methylated
regions for age and age-related phenotypes in a healthy ageing population.
PLOS Genet 2012, 8:21002629.

10.  Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B,
Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse |, Friend S, Ideker
T, Zhang K Genome-wide methylation profiles reveal quantitative views
of human aging rates. Mol Cell 2013, 49:359-367.

11. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-
Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J,
Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A,
Gut IG, Wang J, Esteller M: Distinct DNA methylomes of newborns and
centenarians. Proc Natl Acad Sci USA 2012, 109:10522-10527.

Page 9 of 9

12. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den
Berg LH, Ophoff RA: Aging effects on DNA methylation modules in
human brain and blood tissue. Genome Biol 2012, 13:R97.

13. Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, Aryee MJ,
Irizarry RA, Herbstman J, Witter FR, Goldman LR, Feinberg AP, Fallin MD:
DNA methylation shows genome-wide association of NFIX, RAPGEF2
and MSRB3 with gestational age at birth. Int J Epidemiol 2012, 41:188-199.

14.  Johansson A, Enroth S, Gyllensten U: Continuous aging of the human DNA
methylome throughout the human lifespan. PLoS One 2013, 8:e67378.

15. Chu M, Siegmund KD, Hao QL, Crooks GM, Tavare S, Shibata D: Inferring
relative numbers of human leucocyte genome replications. B8r J Haematol
2008, 141:862-871.

16.  Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, Wiencke JK, Kelsey KT: DNA methylation arrays as surrogate
measures of cell mixture distribution. BMC Bioinformatics 2012, 13:86.

17. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D,
Soderhall C, Scheynius A, Kere J: Differential DNA methylation in purified
human blood cells: implications for cell lineage and studies on disease
susceptibility. PLoS One 2012, 7:e41361.

18.  Guintivano J, Aryee MJ, Kaminsky ZA: A cell epigenotype specific model
for the correction of brain cellular heterogeneity bias and its application
to age, brain region and major depression. Epigenetics 2013, 8:290-302.

19. Steinmann GG, Klaus B, Muller-Hermelink HK: The involution of the ageing
human thymic epithelium is independent of puberty. A morphometric
study. Scand J Immunol 1985, 22:563-575.

20. Boyd RL, Tucek CL, Godfrey DI, Izon DJ, Wilson TJ, Davidson NJ, Bean AG,
Ladyman HM, Ritter MA, Hugo P: The thymic microenvironment. /mmunol
Today 1993, 14:445-459.

21, Montano CM, Irizarry RA, Kaufmann WE, Talbot K, Gur RE, Feinberg AP, Taub
MA: Measuring cell-type specific differential methylation in human brain
tissue. Genome Biol 2013, 14:R94.

22. Gagnon-Bartsch JA, Speed TP: Using control genes to correct for
unwanted variation in microarray data. Biostatistics 2012, 13:539-552.

23, Leek JT, Storey JD: Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genet 2007, 3:1724-1735.

24, Triche T Jr: lluminaHumanMethylation450k.db: lllumina Human Methylation
450k annotation data, version 2.0.7. [http.//www.bioconductor.org/packages/
release/data/annotation/html/llluminaHumanMethylation450k db.html]

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G:

Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 2000, 25:25-29.

26. Harris RA, Nagy-Szakal D, Pedersen N, Opekun A, Bronsky J, Munkholm P,
Jespersgaard C, Andersen P, Melegh B, Ferry G, Jess T, Kellermayer R:
Genome-wide peripheral blood leukocyte DNA methylation microarrays
identified a single association with inflammatory bowel diseases. Inflamm
Bowel Dis 2012, 18:2334-2341.

27. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res 2002,
30:207-210.

28, Sun Z, Chai HS, Wu' Y, White WM, Donkena KV, Klein CJ, Garovic VD, Therneau
TM, Kocher JP: Batch effect correction for genome-wide methylation data
with lllumina Infinium platform. BMC Med Genomics 2011, 4:84.

29. Zhang X, Mu W, Zhang W: On the analysis of the illumina 450k array data:
probes ambiguously mapped to the human genome. Front Genet 2012, 3:73.

30. Beyan H, Down TA, Ramagopalan SV, Uvebrant K, Nilsson A, Holland ML, Gemma
C, Giovannoni G, Boehm BO, Ebers GC, Lernmark A, Cilio CM, Leslie RD, Rakyan
VK: Guthrie card methylomics identifies temporally stable epialleles that are
present at birth in humans. Genome Res 2012, 22:2138-2145.

31, Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD,
Irizarry RA: Minfi: A flexible and comprehensive Bioconductor
package for the analysis of Infinium DNA Methylation microarrays.
Bioinformatics 2014 [Epub ahead of print].

doi:10.1186/gb-2014-15-2-r31
Cite this article as: Jaffe and Irizarry: Accounting for cellular heterogeneity
is critical in epigenome-wide association studies. Genome Biology 2014 15:R31.



http://www.bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation450k.db.html
http://www.bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation450k.db.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	DNAm profiles show large between cell type differences
	In sorted samples, cell type explains a larger percentage of variability than age
	Varying cell composition may explain apparent age-associated differences
	Cell type proportions change with age following monotonic patterns
	Cellular composition correlates strongly with global DNAm profiles
	Confounding between cell composition and age leads to false positives
	Improved biological interpretation after composition filtering

	Conclusions
	Materials and methods
	Sample and study selection
	Empirically estimating cellular composition using the Illumina 450k microarray
	Previously published solution does not generally adjust for confounding
	Variability in sorted cell populations
	Analysis of reported age-associated differentially methylated regions
	Data availability

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Funding sources
	References

