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Abstract

expression at the post-transcriptional level.

group is inversely correlated with prognostic impact.

Background: RNA-binding proteins (RBPs) play important roles in cellular homeostasis by controlling gene

Results: We explore the expression of more than 800 RBPs in sixteen healthy human tissues and their patterns of
dysregulation in cancer genomes from The Cancer Genome Atlas project. We show that genes encoding RBPs are
consistently and significantly highly expressed compared with other classes of genes, including those encoding
regulatory components such as transcription factors, miRNAs and long non-coding RNAs. We also demonstrate that a
set of RBPs, numbering approximately 30, are strongly upregulated (SUR) across at least two-thirds of the nine cancers
profiled in this study. Analysis of the protein—protein interaction network properties for the SUR and

non-SUR groups of RBPs suggests that path length distributions between SUR RBPs is significantly lower than those
observed for non-SUR RBPs. We further find that the mean path lengths between SUR RBPs increases in proportion to
their contribution to prognostic impact. We also note that RBPs exhibiting higher variability in the extent of
dysregulation across breast cancer patients have a higher number of protein—protein interactions. We propose that
fluctuating RBP levels might result in an increase in non-specific protein interactions, potentially leading to changes in
the functional consequences of RBP binding. Finally, we show that the expression variation of a gene within a patient

Conclusions: Overall, our results provide a roadmap for understanding the impact of RBPs on cancer pathogenesis.

Background

RNA-binding proteins (RBPs) have been identified as
key regulatory components interacting with the RNA
within a cell. Their function is largely dependent on
their expression and localization within a cell. They may
be involved in processes ranging from alternative spli-
cing to RNA degradation. Combining together, RBPs
form dynamic ribonucleoprotein (RNP) complexes, often
in a highly combinatorial fashion that can affect all as-
pects of the life of RNA [1-3]. Due to their central role
in controlling gene expression at the post-transcriptional
level, alterations in expression or mutations in either
RBPs or their binding sites in target transcripts have
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been reported to be the cause of several human diseases
such as muscular atrophies, neurological disorders and
cancer (reviewed in [4-7]). These studies suggest there is
precise regulation of expression levels of RBPs in a cell.
In fact, a recent system-wide study of the dynamic ex-
pression properties of yeast RBPs showed that RBPs with
a high number of RNA targets are likely to be tightly
regulated, since significant changes in their expression
levels can bring about large-scale changes in the post-
transcriptional regulatory networks controlled by them
[8]. RBPs have also been shown to autoregulate their
expression levels. Fluctuations in the expression of auto-
regulatory RBPs are significantly decreased [9]. These re-
sults show that a low degree of expression noise for
RBPs is a characteristic feature of their normal state.
Cancer is a complex genetic disease and many of its
regulatory factors have been identified as being irregu-
larly expressed. In particular, changes in the normal
expression of RBPs have been shown to alter their func-
tion leading to a cancer phenotype [10]. Enhanced elF4E
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and HuR expression levels have been implicated in initi-
ating translation of mRNAs encoding mostly for pro-
oncogenic proteins and other cancer-promoting processes.
For instance, Sam68 regulates the alternative splicing of
cancer-related mRNAs [10]. Yet another example is the
cell-specific alternative splicing of FAS (Fas cell surface
death receptor, a member of the TNF receptor superfam-
ily) mRNA. This has been linked to cancer predisposition
depending on whether the pro- or anti-apoptotic protein
form is produced as a result of the interplay between vari-
ous RBPs on the FAS transcript [11-14]. In some cases,
disruption of the functionality of RBPs, although without
directly acting on oncogenic genes, has been shown to
affect alternative splicing regulation or the regulation of
alternative cleavage mechanisms on transcripts, which can
lead to the development of cancer [15,16].

In a recent study, Castello and co-workers [17] uti-
lized cross-linking and immunoprecipitation (CLIP) and
photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP)
to isolate and validate, via proteomics, a set of approxi-
mately 850 high-confidence RBPs in humans. These ap-
proaches can be used to catalogue and study RBPs and
their post-transcriptional networks in healthy and diseased
states. By knowing the low degree of expression variation
that is tolerated by RBPs in a healthy state and identifying
them in mammalian systems, we can begin to investigate
their dysregulation profiles in various disease conditions.

In this study, we analyzed the expression patterns of
RBPs in a set of 16 healthy human tissues and compared
their fold change in expression levels in nine human can-
cers using the high-resolution expression profiles based
on RNA sequencing (RNA-seq) available from the Human
BodyMap (HBM) [18] and the Cancer Genome Atlas
(TCGA) [19] (see Figure 1, which outlines the different
steps, and Materials and methods). We also compared the
network properties of a set of 31 RBPs, which were found
to be strongly upregulated (SUR) for most of the cancers
studied. The network properties may help to determine
the cause of the altered expression for the RBPs. Finally, a
subset of RBPs was identified based on their expression
profiles and network metrics and their contribution to the
survival of patients with breast cancer was investigated.

Results and discussion

RNA-binding proteins show significantly higher
expression than non-RNA-binding proteins and other
regulatory factors for 16 human tissues

In eukaryotes, transcription and translation occur in
different compartments. This gives a plethora of options
for controlling RNA at the post-transcriptional level,
including splicing, polyadenylation, transport, mRNA
stability, localization and translational control [1,2]. Al-
though some early studies revealed the involvement of
RBPs in the transport of mRNA from the nucleus to the

Page 2 of 16

translation site, increasing evidence now suggests that
RBPs regulate almost all of these post-transcriptional
steps [1-3,20]. RBPs have a central role in controlling
gene expression at the post-transcriptional level. Alter-
ations in expression and mutations in either RBPs or
their RNA targets (the transcripts that physically associ-
ate with the RBP) have been reported to be the cause of
several human diseases, such as muscular atrophies,
neurological disorders and cancer [4-6,21].

Therefore, we first chose to study the mRNA expres-
sion levels of a repertoire of approximately 850 experi-
mentally determined RBPs for all 16 human tissues
for which expression data are available from the Human
BodyMap 2.0 Project [18,22] (see Materials and methods).
This analysis clearly showed that RBPs are significantly
more highly expressed (P <2 x 10™'°, Wilcoxon test) than
non-RBPs in all of the tissues (Figure 2). Closer inspection
of the trends also revealed that some tissues, such as those
from the testes, lymph and ovary, had particularly high
RBP expression compared to non-RBPs. To determine the
regulatory effect of RBPs at the post-transcriptional level
compared to other regulatory factors, such as transcrip-
tion factors (TFs), microRNAs (miRNAs) and long non-
coding RNAs (IncRNAs), their expression levels were
compared for different human tissues (see Additional
file 1: Figure S1, Additional file 2: Table S1 and Materials
and methods). This analysis further revealed that the
expression levels of RBPs are significantly different for
these 16 tissues compared to these families of regulatory
factors (P <2 x 107%, Kruskal-Wallis test). Further ana-
lysis to compare the expression levels of RBPs and TFs
across tissues revealed that except for the heart, kidney,
ovary and testis, RBPs are significantly more highly
expressed than TFs (P <0.05, Wilcoxon test) (Additional
file 2: Table S1). These observations suggest that in most
tissues, the magnitude of expression of RBPs is more
prominent than even TFs, possibly indicating their central
role in controlling gene expression than previously an-
ticipated. Our observation that RBPs are not signifi-
cantly more highly expressed than TFs in heart, kidney
and gonadal tissues like the testis and ovary suggests
that both transcriptional and post-transcriptional regu-
lators are equally important in terms of their expression
levels in these tissues. In contrast, tissues like the liver
(P<3.57 x 10'%, Wilcoxon test) and white blood cells
(P < 3.85 x 10, Wilcoxon test) were found to have signifi-
cantly higher expression for RBPs compared to TFs, pos-
sibly indicating the importance of post-transcriptional
regulation in the regenerative capabilities of a tissue or in
monitoring inflammation and immune response.

The fact that RBPs exhibit a particularly high level of
expression in some tissues suggests a need for extensive
post-transcriptional control of gene expression in them.
For example, the coordinated and cyclic processes of
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Figure 1 Flow chart showing the different steps in the analysis of expression levels of RNA-binding proteins for human cancers.

The flow chart shows the acquisition and preparation of data (red), determination of patterns of dysregulation (green), network and interaction
analysis (light blue), and survival analysis (dark blue). KM, Kaplan—-Meier; INcRNA, long non-coding RNA; PPI, protein—protein interaction; RBP,
RNA-binding protein; TCGA, the Cancer Genome Atlas; TF, transcription factor.

spermatogenesis in testes necessitate the essential tem-
poral and spatial expression of pertinent genes [23]. In
the human prostate, slight alterations to the androgen
receptor functionality [24] or transcription factors [25]
have been shown to lead to a cancerous state. These
trends suggest that a significant fraction of the RBPome
might play an important regulatory role in diverse hu-
man tissues, although in some gonadal and developed
tissues, RBPs and TFs had similar levels of expression.
Our results show that the high expression of RBPs is
especially important in developmentally important tis-
sues suggesting that any patterns of dysregulation could
strongly effect these tissues [8].

RNA-binding proteins are dysregulated across cancers
and a subset are strongly upregulated across a majority
of cancers

Based on our understanding of the expression landscape
of RBPs in healthy human tissues, we next asked whether
RBPs are dysregulated across cancers (see Materials and
methods). Since expression data for healthy tissue was
available for eight tissues from the Human BodyMap
project corresponding to a set of nine different cancers
profiled in the Cancer Genome Atlas (TCGA), we calcu-
lated the log-ratio of expression levels of RBPs in the
healthy to cancerous states in each of the nine cancers

(Materials and methods). Positive values represent a shift
towards upregulation, or, more generally, increased tran-
script abundance. Negative log-ratios represent a trend of
downregulation or decreased abundance. The log-ratio
expression profile matrix for the nine cancers was hier-
archically clustered to show patterns of similar dysregula-
tion (Additional file 3: Figure S2 and Additional file 2:
Table S1 includes log-ratio expression of RBPs). We
observed that cancers in similar tissues (lung adenocarcin-
oma and lung squamous carcinoma) are clustered to-
gether suggesting a similar degree of dysregulation of
the RBP repertoire. Our analysis also revealed that simi-
lar cancers, such as adenocarcinomas were clustered to-
gether. These trends indicate that expression ratios are
reliable for profiling cancers with unique morphologies in
various body locations.

An analysis of the log-ratios representing the fold
changes in expression of RBPs between healthy and can-
cerous states for nine different cancers allowed us to define
a criterion for classifying RBPs as strongly upregulated
(SUR) or not (non-SUR) (Figure 3, Materials and methods).
If an RBP, across six of the nine cancers, was found to have
a log-ratio for expression level change of at least nine,
it was classified as highly dysregulated, otherwise it was
not considered to be a significantly dysregulated RBP. This
also corresponded to the RBPs that belonged to the upper
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Figure 2 Comparlson of expression levels of RNA-bmdmg proteins and non-RNA-bmdlng proteins for 16 tissues from 80 healthy
individuals studied in the Human BodyMap project. Each of the 16 plots illustrates the significant differences in expression levels in RBPs
(P<2x10"° Wilcoxon test) across adipose, adrenal, brain, breast, colon, heart, kidney, liver, lung, lymph node, ovary, prostate, skeletal muscle,
testes, thyroid, and white blood cell tissues. The x-axis is the category of the observed factor and the y-axis is the expression level. RBP,

nonRBP nonRBP

quartile of the fold changes in expression across cancers.
According to this criterion, all the RBPs that had at least
a ninefold change in expression were found to be only
upregulated and hence this group was termed SUR RBPs
(Figure 3). Table 1 lists these 31 SUR RBPs (Additional
file 4: Table S2 provides detailed information).

We then asked whether tumor-matched normal ex-
pression data for TCGA samples can further support the
set of SUR RBPs identified here. Although ‘normal’ site
tissue samples from TCGA cannot provide an adequate
control, since these samples are collected from a cancer-
ous tissue and it is entirely feasible that the expression
levels would still be in a state of dysregulation at the
neighboring sites, this analysis can still provide an add-
itional level of support for SUR RBPs. Additionally it

is not possible to control for morphological types of tu-
mors, which, depending on their type, can affect more
than just the site of the tumor growth. Nevertheless,
we profiled the tumor-matched normal expression
levels that are available for eight of the nine cancer types
with varying number of samples for breast (106 pa-
tients), colon (20 patients), kidney (69 patients), liver
(49 patients), two types of lung cancers (57 and 50
patients), prostate (45 patients) and thyroid (58 patients).
As suspected, we found the fold changes in expression
for all the genes across eight cancers to be minimal (me-
dian [IQR] 0.055 [-0.28-0.39]), suggesting that tumor-
matched normal expression data may not reflect a true
healthy control. However, when we compared the fold
changes in expression levels for RBPs and non-RBPs in
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the tumor-matched samples across cancers, we found that
RBPs exhibited significantly higher fold changes compared
to non-RBPs (median [IQR] 0.104 [-0.07:0.29] for RBPs
versus median [IQR] -0.034 [-0.39:0.25] for non-RBPs,
P <22 %10, Wilcoxon test) clearly indicating that RBPs
are still significantly upregulated in tumors.

Further analysis to test for the enrichment of RBPs in
the top quartile of upregulated genes across cancers
revealed that RBPs are strongly over-represented in
this list (P =1.62 x 10", hypergeometric test). We also
found that all the SUR RBPs are significantly dysregu-
lated (P<0.001, t-test comparing tumor and matched
normal samples) in at least four of the eight cancers pro-
filed (Additional file 2: Table S1). When we raised the
stringency to identify an RBP to be dysregulated in at
least six or more cancer types, we still found 24 of the
original 31 SUR RBPs to be detected at P <0.001. Very
few SUR RBPs from the cancer types Kidney renal cell
carcinoma (KIRC) and Liver Hepatocellular Carcinoma
(LIHC) were found to be significantly altered in the
tumor-matched analysis. While most of the SUR RBPs
were found to be upregulated in the tumor-matched
analysis, we also found cases of downregulation (Additional
file 2: Table S1). Nevertheless, SUR RBPs as a group were
also found to be strongly over-represented in the top

quartile of the upregulated set in the tumor-matched
analysis (P =2.16 x 10, hypergeometric test), further sup-
porting the notion that SUR RBPs identified using an exter-
nal healthy control across a broad range of cancers are a
confident set of dysregulated RBPs.

Non-RBP log-ratios showing the expression changes
were also calculated using the external healthy data
to determine if the proportion of strongly upregulated
genes (SURs) in RBPs is significantly enriched. We found
that the proportions were significantly different (P < 0.05,
hypergeometric test) with RBPs having a higher propor-
tion of SURs than non-RBPs. Several of these SUR RBPs
were annotated to function in important biological pro-
cesses, such as regulation of gene expression, transcrip-
tional regulation and transport of biomolecules, although
very few studies have explored their role in the context of
post-transcriptional control, suggesting that their func-
tional roles are far more diverse than previously under-
stood and appreciated.

Of these RBPs classified as SUR RBPs, we note several
that have already been implicated in complex genetic
disorders and cancer or in cellular regulation and prolif-
eration (Additional file 4: Table S2). Identified RBPs,
such as NONO, are involved in RNA biogenesis and
DNA double-strand break repair, and have been found
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Table 1 Strongly upregulated RNA-binding proteins
identified from nine cancers in humans and their cancer
relevant references

Associated  Description References
gene name
CCDC124 Coiled-coil domain containing 124
CSTF2 Cleavage stimulation factor, 3" pre-RNA, [26]
subunit 2, 64 kDa
DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide [27-29]
3, X-linked
DKC1 Dyskeratosis congenita 1, dyskerin [30-32]
EIFTAX Eukaryotic translation initiation factor 1A,
X-linked
FAM120C Family with sequence similarity 120C
FLNA Filamin A, alpha [33-36]
FMR1 Fragile X mental retardation 1
GNL3L Guanine nucleotide binding protein-like [37,38]
3 (nucleolar)-like
GSPT2 G1 to S phase transition 2
HNRNPH2 Heterogeneous nuclear ribonucleoprotein
H2 (H")
HTATSF1 HIV-1 Tat specific factor 1
HUWE1 HECT, UBA and WWE domain containing [39]
1, E3 ubiquitin protein ligase
LASTL LAS1-like (Saccharomyces cerevisiae)
MBNL3 Muscleblind-like splicing regulator 3
MECP2 Methyl CpG binding protein 2
(Rett syndrome)
MEX3C Mex-3 homolog C (Caenorhabditis elegans)
NKRF NFKB repressing factor [40]
NONO Non-POU domain containing, [41,42]
octamer-binding
PHF6 PHD finger protein 6 [43-45]
RBM10 RNA-binding motif protein 10
RBM3 RNA-binding motif (RNP1, RRM) protein 3 [46-49]
RBMX RNA-binding motif protein, X-linked [50]
RBMX2 RNA-binding motif protein, X-linked 2
RPGR Retinitis pigmentosa GTPase regulator
RPL10 Ribosomal protein L10
RPS4X Ribosomal protein S4, X-linked
SLC25A5 Solute carrier family 25 (mitochondrial
carrier; adenine nucleotide translocator),
member 5
UBA1 Ubiquitin-like modifier activating [51,52]
enzyme 1
UPF3B UPF3 regulator of nonsense transcripts
homolog B (yeast)
UTP14A UTP14, U3 small nucleolar

ribonucleoprotein, homolog A (yeast)
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to be regulated by other factors, when dysregulated
potentially promote carcinogenesis [41]. DDX3X, a
member of the DEAD box RNA helicase family, has
been shown to affect Wnt pathways, which leads to the
developments of cancers [27]. DDX3X has also been
demonstrated to promote growth and neoplastic trans-
formation of breast epithelial cells [28]. Another SUR
RBP, LAS1L was identified to interact with PELP1, which
is implicated in pancreatic cancers [53]. HUWELI is a
member of the HECT family of E3 ubiquitin ligases,
which has been identified as being overexpressed in
breast, lung and colorectal cancers [54]. Indeed, increas-
ing evidence now points to the role of novel ubiquitin-
protein ligases in binding to RNA [55,56]. For instance,
ubiquitin-like fold has been recently shown to be inde-
pendently enriched in novel unconventional RBPs identi-
fied in the yeast genome [57]. The RNA-binding protein
RBM3 is associated with cisplatin sensitivity, the prob-
ability of a patient becoming resistant to cisplatin treat-
ment and a positive prognosis in epithelial ovarian
cancer [46]. RBM3 has seldom been found expressed in
normal tissues, but it is more expressed in common can-
cers, particularly for the nuclear expression of Estrogen-
Receptor (ER) positive tumors. These findings suggest
the possible utility of the gene as a positive prognostic
marker [47,48].

PHF6 encodes a plant homeodomain (PHD) factor
containing four nuclear localization signals and two im-
perfect PHD zinc-finger domains and it has been pro-
posed that it has a role in controlling gene expression
[58]. Inactivating mutations in PHF6 cause Borjeson-
Forssman-Lehmann syndrome, a relatively uncommon
type of X-linked familial syndromic mental retardation
[58-60]. Recent studies show that mutations of this gene
are implicated in the development of T-cell acute
lymphoblastic leukemia and mutations have been de-
tected in other forms of leukemia as well, suggesting a
strong role in tumorigenesis [43,61]. For other nucleolar
proteins such as dyskerin (DKC1), which is responsible
for the biogenesis of ribonucleoproteins and telomerase
stability, the loss or gain of functions is associated with
tumorigenesis [30-32]. Filamin A (FLNA) is an actin-
binding protein, which interacts with a number of pro-
teins including signaling molecules and membrane re-
ceptors, and its expression has been correlated with
metastases in prostate and lung cancers [33,34]. A recent
study demonstrated the role of FLNA as a nucleolar
protein that associates with the RNA polymerase I
(Pol I) transcription machinery to suppress rRNA gene
transcription [62]. Although further confirmation of how
the global RNA-binding role of unconventional RBPs,
like the E3 ubiquitin ligase HUWEI, contribute to can-
cer is needed, increasing evidence suggests that several
enzymes and kinases bind to RNAs to control numerous
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cellular processes [57,63]. Recent genome-wide screens
for novel RBPs further support these observations, sug-
gesting that unconventional RBPs are enriched for enzym-
atic functions [57,64]. Functional enrichment analysis of
SUR RBPs using the DAVID functional annotation system
[65] revealed that RNA splicing, nucleotide binding and
ribosome biogenesis were the common biological pro-
cesses associated with these proteins, with a significant
fraction of them associated with nucleolus and nuclear
lumen cellular components (Additional file 4: Table S2).

Our observations combined with the existing corpus of
literature in support of the roles for several of these SUR
RBPs in cancerous states, suggest that their dysregulation
could be the cause or result of the cancer phenotypes, es-
pecially given that even slight alterations in the expression
levels of RBPs can bring about large-scale changes in the
RBP-RNA interaction networks that they control [8]. It is
important to note that although some of these SUR genes
shown in Table 1 have been described in relation to cancer,
there is little evidence in support of their contribution to
either being RBPs or their post-transcriptional network as
a contributing factor for the cancer phenotype. Our results
in this study implicate them as a strongly upregulated set
of RBPs across multiple cancers. Our analysis also corrob-
orates that these significantly dysregulated RBPs are not
an artifact of aberrations in calculations, or due to variabil-
ity in patient expression data mainly because: (1) most of
our patient sample sets are at least of the order of 100 for
the cancers studied and (2) fold changes in expression
levels between healthy and cancerous states for each pa-
tient were used to calculate the median fold change in ex-
pression of an RBP to account for extreme outliers. Our
results also emphasize that these high expression levels
may be indicative of a major dysfunction of these RBPs in
addition to dysregulation. For example, the mutated form
of PHF6, which is implicated in various forms of leukemia,
has higher expression. Alternatively, the change in expres-
sion may be a result of an upstream alteration in the regu-
latory mechanisms, for example NONO; another example
is that NKRF expression is regulated by miR-301a [40].
The high expression of some of these RBPs may be the re-
sult of their normal physiological levels being too low
compared to a cancer context, as is the case for the pro-
posed positive prognostic marker, RBM3. So a natural
question to ask is whether RBPs have some prognostic im-
pact for cancer, starting from the trends that have been
observed in this expression analysis.

Strongly upregulated and non-strongly upregulated
RNA-binding proteins exhibit significantly different
within-group path lengths and variability in expression

is related to the number of interactions

To identify further characteristics that differentiate SUR
RBPs in cancer, we calculated the network properties of
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all the RBPs using a network constructed from the ex-
perimentally reported set of protein—protein interactions
in the human genome obtained from the BioGRID data-
base [66] (see Materials and methods). In particular, we
computed the shortest paths between pairs of proteins
within SUR and non-SUR RBP groups (that is, distances
from SUR RBPs to SUR RBPs and distances from non-
SUR RBPs to non-SUR RBPs) (Figure 4A). SUR RBPs
were found to have significantly shorter path lengths
to each other when compared to non-SUR RBP path
lengths (P<2x107'%, Wilcoxon test). Other network
metrics such as normalized degree distribution, normal-
ized closeness, normalized betweenness and mean path
lengths for RBPs in each group were also calculated (see
Materials and methods). However, we found no signifi-
cant difference between SUR and non-SUR RBPs for
these properties (Additional file 5: Figure S3). This sug-
gests that the interaction properties of an individual RBP
(whether it is a hub and so on) do not relate to its dys-
regulation but rather the set of SUR RBPs are closely
intertwined in the physical interaction network com-
pared to the non-SUR RBPs. Although our observations
on dysregulation are at the RNA level, it is possible to
speculate, from the shorter path lengths observed, that
the interaction network and crosstalk between SUR
RBPs could also be perturbed in cancer genomes, with
one or more of the SUR RBPs predominantly contribut-
ing to this perturbation.

Since our analysis of the shortest path lengths between
RBPs from SUR and non-SUR groups suggested that the
particular protein interaction partners of RBPs might
play an important role in mediating or cascading the ef-
fect of dysregulation, we rationalized that the protein
complex size and a RBP’s occurrence frequency in pro-
tein complexes would be related to their sensitivity to
dysregulation. RBPs long have been known to form pro-
tein complexes, and if a key component within a com-
plex is dysregulated or malformed, it would affect its
overall functionality. If a SUR RBP was very prolific we
would expect that many patterns of dysregulation would
occur downstream as a result of the formation of a faulty
complex. Furthermore, if these SUR RBPs participate in
smaller complexes, it may be that their dysfunction will
not be regulated or counteracted by other members
within the complex. From the CORUM data [67] (see
Materials and methods), five SUR RBPs were identified
and 172 non-SUR RBPs were identified. We found that
for the two classifications of RBPs (SUR vs non-SUR),
there were no significant differences in distributions for
either complex size or complex frequency nor was there
any correlation with expression levels (Additional file 6:
Figure S4 and Additional file 7: Figure S5). While the
current coverage of the experimentally characterized
human protein complexes is very limited, these results
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Figure 4 Interaction profiles of RBPs. (A) Distribution of shortest path lengths between every pair of RBPs belonging to SUR and non-SUR RBP
groups using the protein—protein interactions documented in the BioGRID database [66], shown as violin plots. The width of each plot is the
frequency distribution and the diamond is the median value for the category. SUR RBPs were found to have significantly shorter path lengths

Variance versus BioGrid Interactions
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amongst themselves in comparison to non-SUR RBPs (P < 2 x 107'®, Wilcoxon test). (B) Box plot showing the number of interactions identified in
BioGRID data for RBPs classified by variability levels defined by observed percentiles. The higher the variability for a RBP, the higher the observed
number of protein interactions (P=9.247 x 10", low vs medium; P < 2.226 x 10°"'®, low vs high; P=6.6556 x 10°'®, medium vs high, KS test). RBP,

RNA-binding protein; SUR, strongly upregulated; Kolmogorov-Smirnov test (KS test).

indicate that SUR and non-SUR RBPs do not have sig-
nificant differences in terms of their protein complex
membership.

We next asked whether the variability in expression
levels of an RBP across cancer patients is different be-
tween SUR and non-SUR RBPs. To address this ques-
tion, we choose breast cancer as our disease model due
to the fact that it is the cancer with the most patient
samples in TCGA and would naturally be the most ro-
bust dataset for identifying variation in the fold changes
in expression levels of a RBP. We found that SUR and
non-SUR RBPs did not exhibit significantly different
expression variation (P=0.1212, KS test), which was
measured as the median absolute deviation (MAD) in
the expression fold changes between healthy and cancer-
ous tissue across all the patients (see Materials and
methods). However, an analysis to test the relation be-
tween expression variation and the number of protein
interactions of an RBP revealed that the higher the
expression variation, the higher the number of protein
interaction partners of the RBP (Figure 4B). Indeed,
we noticed a significant difference in the number of in-
teractions in the classified levels of variability for RBPs

(P =9.247 x 107'%, low vs medium; P < 2.226 x 107'¢, low
vs high; P =6.6556 x 10'°, medium vs high, KS test). In
contrast, TFs did not exhibit such significant differences
in the number of interactions with the classified levels of
variability (P = 0.8931, low vs medium; P = 0.0014, low vs
high; P=0.01, medium vs high, KS test). However, for
non-RBPs a significant difference was found between
medium and high as well as between high and low levels
of variability (P =0.7519, low vs medium; P<2.2 x 10°*¢,
low vs high; P<2.2x10"°, medium vs high, KS test).
The observation that the higher the variability in expres-
sion of a RBP the more interactions it has, suggests
that fluctuating RBPs whose expression is not tightly
controlled might have more promiscuous (non-specific)
protein interactions (and protein complexes) thereby
leading to RNA off-targets at post-transcriptional level.
Our results also suggest that such dysregulation may be
suppressed or is minimal due to the lower number of in-
teractions for RBPs with less variability in expression.
Our analysis here has focused on the RNA expression
levels of RBPs though it is likely that there will be influ-
ences from diverse post-transcriptional regulatory phe-
nomena like alternative splicing, translation control and
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post-translational modifications, which will affect the
ultimate protein levels. Our observations do provide
evidence that RBPs with high variability in expression
have a higher number of protein interactions.

Survival contributions of RNA-binding proteins in breast
cancer is related to network proximity to strongly
upregulated RBPs and variability in expression

across patients

Based on our observation that SUR and non-SUR RBPs
significantly differ in their within-group shortest path
lengths, we questioned whether the path length of an
RBP within the protein—protein interaction network
might contribute to its prognostic impact for a cancer.
We ranked each RBP in each classification based on the
mean path lengths to all connected nodes in the Bio-
GRID protein interaction network and also computed
the mean shortest paths to other nodes belonging to
SUR RBPs and non-SUR RBPs. This allowed the con-
struction of profiles for overall mean path lengths,
lengths within-group for members of the SUR and non-
SUR groups, and between the groups. The top five genes
with the shortest and longest mean path lengths, and
a randomly selected set of genes with intermediate
mean path lengths, were selected for the survival ana-
lyses (Figure 5) (see Materials and methods). We found
that as the mean path lengths between SUR RBPs in-
creased, their contribution to prognostic impact in-
creased. This suggests that SUR RBPs with longer path
lengths, that is, those with higher network distances with
respect to other SUR RBPs, are more likely to contribute
independently to survival as they might influence a lar-
ger fraction of the dysregulated network of SUR RBPs.
On the other hand, when non-SUR RBPs were sorted by
rank based on their mean path lengths with respect to
SUR RBPs, we found the opposite trend. This suggests
that non-SUR RBPs with shorter distances to SUR RBPs
contribute to the perturbation of an important section
of the RBP protein interaction network. In particular, if a
non-SUR RBP has a shorter path length, it has a good
prognostic impact on survival for patients with breast
cancer due to its lower expression. SUR RBPs are poten-
tially in a malfunctioning state, and the closer a RBP is
to them, the more the prognostic impact influenced by
the SUR RBP interactions.

We then compared the overall significance of the
Kaplan—Meier P values (-log[P]) for groups of RBPs
classified by their level of dysregulation (SUR versus
non-SUR) and their levels of variability in expression
across patients (high, medium and low variability deter-
mined by quartiles, see Materials and methods) in breast
cancer (Figure 6). We observed that for both RBPs
and non-RBPs, there was no significant difference be-
tween SUR and non-SUR genes in terms of prognosis
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for survival (P=0.12 and P =0.06, KS test) (Figure 6A,B).
However, when we compared the significance of the
P values for survival between SURs from RBP and non-
RBP groups we found them to be significantly different
(P=0.05 KS test). We noted that in the comparison
between variability levels of genes in RBPs, there was no
significant difference between the Kaplan—Meier (KM)
analysis significance levels (P=0.945, low vs medium;
P =0.3566, low vs high; P=0.1478, medium vs high, KS
test) (Figure 6C). For non-RBPs, we found that the levels
of variability did have a very significant difference in the
significance of KM-plotter survival P values (P <2226 x
10, low vs medium; P<2.226x 107 low vs high;
P=6.6556 x 10°, medium vs high, KS test) suggesting
that, in general, the higher the expression variation of a
group of genes, the smaller is their contribution to prog-
nosis for survival (Figure 6D). While there was no signifi-
cant difference in RBPs we did observe a similar weak
trend where the lower the variance in expression across
patients, the greater the KM-plotter significance. A highly
variable RBP has less effect on survival because it could
potentially be regulated by a number of other factors and
could be the result of an indirect effect, whereas low vari-
ability RBPs have a less but more direct effect on the prog-
nosis for an individual and hence could be the actual
drivers. This also corroborates our notion after observing
variability versus the number of protein interactions
(Figure 4B). More generally, our results suggest that while
we observe a larger proportion of SUR RBPs, their ele-
vated expression alone does not necessarily mean they
have a direct effect on positive or negative prognoses.

Conclusions

In this study, we investigated the gene expression pro-
files of RBPs in healthy humans for 16 tissues and found
that RBPs are consistently and significantly highly expressed
compared to other classes of genes (non-RBPs) as well
as in comparison to well-documented groups of regula-
tory factors like transcription factors, miRNAs and
IncRNAs. This, in concordance with previous research,
emphasizes their importance in post-transcriptional
regulatory control across all the tissues. To understand
the expression profile changes in a disease state for
hundreds of RBPs in the human genome, we obtained
analogous RNA-sequencing-based expression data for a
total of 2,876 patient samples spanning nine cancers
from TCGA and calculated a log-ratio for expression
between cancer and healthy states. We showed that
there is a unique signature of approximately 30 RBPs
that had significantly increased expression levels across
six out of nine (two-thirds) cancers profiled. These
could be clearly labeled as a set of SUR RBPs delineat-
ing them from the rest of the RBPs based on the change
in expression levels. This proportion of SUR RBPs in
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Figure 5 Survival of patients with breast cancer for different expression levels and path lengths for within and between expression
groups of RNA-binding proteins. SUR (left) and non-SUR (right) survival for a sample of five RBPs classified by path length (shortest, median
or longest). Curves in red are survival plots for patients with enhanced expression of the selected genes based on more than 1,800 patients’
expression profiles from the KM plot [68]. The within-group path ranking for SUR RBPs suggests that as the mean path lengths increase the
contribution of the SUR RBPs in prognosis tends to increase. While between groups, RBPs having shorter path lengths to a SUR RPB contribute
the most to prognosis. KM, Kaplan—-Meier; RBP, RNA-binding protein; SUR, strongly upregulated; HR, Hazard Ratio.
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the RBP population is greater than the proportion of
SUR non-RBPs suggesting for the first time that the ex-
pression levels of a significant fraction of the RBPs are
affected in cancerous states. Analysis of the protein—
protein interaction network properties for SUR and
non-SUR group of RBPs, suggested that the shortest
path length distributions between SUR RBPs is signifi-
cantly lower than that observed for non-SUR RBPs.
This observation together with survival analysis based
on path lengths suggests that not all the SUR RBPs
might be directly implicated in cancer but rather that a
cause-and-effect relation might hold between some of

the SUR RBPs. This observation was further supported
by the fact that the higher the expression variation of a
RBP in breast cancer patients, the higher the number of
protein—protein interactions. This indicates that fluctu-
ating RBPs whose expression is not tightly controlled
(with differing fold changes in expression levels across
patients) might be involved in more promiscuous (non-
specific) protein interactions thereby leading to variable
RNA off-targets at the post-transcriptional level.

To further determine the prognostic impact in breast
cancer patients we ranked the SUR and non-SUR RBPs
based on path length. The two RBP groups had different



Kechavarzi and Janga Genome Biology 2014, 15:R14
http://genomebiology.com/2014/15/1/R14

Page 11 of 16

Prognostic Significance distributions of RBPs
by expression level

[
10.0 - @

7.5-

50-

KM-Plotter significance -log(p-value)

0.0-

non—ISUR
Dysregulation Type

[
SUR

Prognostic Sig. distributions of RBPs
by variation level

-

High

10.0 -

75-

5.0-

25-

KM-Plotter significance -log(p-value)

0.0-
Medium
Variation Level

Low

protein; Sig, significance; SUR, strongly upregulated.

Figure 6 Comparison and distribution of prognostic impact based on expression dysregulation and expression variability in breast
tissue. RNA-binding proteins (A, C) and non-RNA-binding proteins (B, D) were categorized based on their level of dysregulation as healthy or
cancer expression (SUR or non-SUR) and the variability of expression levels (high, medium or low) in patients with breast cancer. The statistical
significances for the differences in the distributions of prognostic impact are discussed in the main text. KM, Kaplan—-Meier; RBP, RNA-binding

Prognostic Significance distributions of nonRBPs
by expression level

a

©
1

@
1

KM-Plotter significance -log(p-value)
w

SLIJR non—‘SUH
Dysregulation Type

Prognostic Sig. distributions of nonRBPs

100- by variation level .
a

o
o
1

o
=]
1

KM-Plotter significance -log(p-value)
b
1

0.0-
Medium

Variation Level

Low

High

distributions. We found that as the mean path lengths
between SUR RBPs increased their contribution to prog-
nostic impact increased, suggesting that SUR RBPs with
higher network distances with respect to other SUR
RBPs, are more likely to contribute independently to
survival as they might influence a larger fraction of the
dysregulated network of SUR RBPs. In contrast, when a
non-SUR RBP had a shorter path to a SUR RBP, there
was a significant prognostic impact. This suggests that
they are closer to the actual contributors of pathogenesis
at the post-transcriptional level; however, the longer the

path lengths, the weaker the prognosis. To gain further
insight into the contribution of these subsets of RBPs in
the development of and survival with cancer, we com-
pared the overall significance of the Kaplan—Meier
P values (-log[P]) for groups of RBPs classified by their
level of dysregulation (SUR vs non-SUR). This analysis
revealed no significant differences between groups of
SUR and non-SUR RBPs in terms of their prognosis for
survival. However, we found that, in general, the higher
the expression variation across patients, the lower the
prognostic impact of the protein. Our results suggest
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that RBPs from our signature set with lower variation in
expression levels across patients might be good starting
points for studying the effect of RBPs in cancer patho-
genesis since SUR RBPs with large expression fold
changes might be downstream or there might be indirect
effects (Additional file 8: Figure S6). Additionally, com-
mon factors that are dysfunctional along the shortest
paths in the protein interaction networks of SUR RBPs
could also provide clues for potential drug targets as
they can act as regulators for rewiring the post-
translational landscape of RBPs thereby affecting RNP
complex formation. With increasing efforts to uncover
the binding sites of RBPs in higher eukaryotes using
a variety of high-throughput approaches [69,70], it
should also become possible in the near future to study
the differences in the target RNA pools between healthy
and cancer genomes for several of these SUR RBPs.
This would provide a global picture of the affected
post-transcriptional regulatory networks. The global in-
tegration of networks governed by post-transcriptional
players like miRNAs and RBPs together with signaling
networks can provide a comprehensive picture of the
cause of the dysregulation in these RBPs, which can be
used to tease apart the contributions of local malfunc-
tions and those due to an upstream or downstream
effect in the cellular networks.

Materials and methods

Data for healthy expression of RNA-binding proteins in

16 human tissues

Our general workflow is illustrated in Figure 1. RNA-seq
data for 16 different human tissues from ArrayExpress
[71] (Accession no. E-MTAB-513), which is part of the
Human BodyMap (HBM) 2.0 project [18,22], was ob-
tained for expression profiling. This data represents the
healthy RNA transcript levels of male and female indi-
viduals aged 19 to 86, for 16 tissues: adipose, adrenal,
brain, breast, colon, heart, kidney, liver, lung, lymph
node, ovary, prostate, skeletal muscle, testes, thyroid and
white blood cells. Expression data from the HBM project
was quantified per transcript using the current annota-
tions of the human genome from the Ensembl. This is
available as reads per kilobase per millions of reads
(RPKM) for each sample and hence can be compared
across and within tissues. Therefore, each of the 16 tis-
sues has a single RPKM value for the expression level of
each transcript. A total of 850 genes experimentally
characterized as RBPs in the human genome were ob-
tained from a previous publication [17] and 4,647 tran-
scripts associated with these RBPs were identified within
the HBM set. The remaining set of 102,462 transcripts
were classified as non-RBPs in this study. To examine
the other regulatory factors in humans we obtained a set
of 9,440 long non-coding RNAs (IncRNAs) from a
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Gencode study [18,72], 529 microRNAs (miRNAs) from
miRBase [73] and 1,231 transcription factors (TFs) from
the DBD database [74] (Additional file 2: Table S1). For
each of the 16 tissues we compared the distribution of
the RPKM values for transcripts associated with RBPs
and non-RBPs, as well as the distribution of expression
levels of transcripts associated with RBPs with other
regulatory factors to study their relative effect on regula-
tory control at the tissue level.

Data for cancer expression of RNA-binding proteins for
nine cancers in humans

The cancer expression data was downloaded from
TCGA [19]. TCGA provides multi-level data (clinical,
genome sequencing, microarray, RNA sequencing and
so on) procured from a number of institutions, from a
variety of patients, for over 25 cancers. In this study, we
collected RNAseq V2.0 data for 2,876 patients spanning
nine cancers analogous to eight of our tissues in the
HBM dataset: breast (850 patients), brain (175 patients),
colon (193 patients), kidney (481 patients), liver (35 pa-
tients), two for lung (356 and 260 patients), prostate
(141 patients), and thyroid (385 patients). TCGA acces-
sion numbers for the patient samples used in this study
are available in Additional file 9: Table S3. For each can-
cer we collected the expression levels for each gene for
all patients and determined a median representative level
and MAD. This defines the genes’ RNA expression levels
and variability in the relevant cancer state. Likewise, can-
cer expression and variation were determined for the
group of non-RBP genes from HBM as a complementary
group for later network, interaction, and expression ana-
lyses. Hierarchical clustering of RBP expression for these
nine cancers was performed in R, to determine if similar
cancers and tissues group together (Additional file 3:
Figure S2). Clustering results verified that the collected
and amalgamated data are an accurate representation
of their anatomical origin, and can be utilized to draw
further conclusions.

Profiling for dysregulation of RNA-binding proteins and
identification of strongly upregulated RNA-binding
proteins across human cancers

For each gene identified as an RBP, we calculated a me-
dian expression level of its transcript products in the
HBM data when there were multiple protein coding
transcripts. To determine the extent of dysregulation in
RBPs across cancers, we calculated for each cancer the
log-ratio of the median expression in the cancer state
over its expression in the associated healthy state. This
allowed us to determine for the nine cancers if a particu-
lar gene annotated as an RBP is upregulated, downregu-
lated or does not change in expression level in cancer
states. Based on this analysis, if an RBP has a log-ratio of
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expression level greater than 9 across six or more of the
studied cancers, we classified it as being SUR. Otherwise,
it was categorized as non-SUR. We focused mainly on
defining characteristics unique to these SUR RBPs that
differentiate them from other RBPs and non-RBPs. SUR
genes as defined here were also observed in non-RBPs
and a hypergeometric test was performed to examine
potential differences in the proportionality of SUR RBPs
and non-SUR RBPs between the two functional classes.
The genes associated with RBPs and non-RBPs were also
classified by their level of expression variability in a can-
cer, measured as the MAD value of the fold change in
expression for the profiled patients for the cancer. If
a gene’s variability within a cancer was above the 75th
percentile, it was considered highly variable, below the
25th percentile it was considered least variable and the
remainder were considered moderately variable.

Network and interaction properties of dysregulated RNA-

binding proteins in human cancers

The most recent BioGRID [66] protein—protein inter-
action (PPI) information (version 3.2.97) was downloaded
and used to construct an undirected network of interac-
tions documented in humans. These interactions were
used to determine if there were any differences in network
properties between the two classifications of dysregulated
RBPs, that is, SUR and non-SUR RBPs. This allowed the
determination of the potential importance of the classifi-
cations for these RBPs. For example, if an SUR RBP forms
a hub, it could cause patterns of dysregulation in other,
associated interactors. We compared network centrality
measures such as degree, closeness and betweenness as
well as clustering coefficients and shortest paths between
nodes, for different RBP classes utilizing the R package
igraph [75]. For shortest paths, we calculated the mean
shortest paths for a SUR RBP to other SUR RBPs and SUR
RBPs to non-SUR RBPs. We also obtained the overall
average path length between each RBP/non-RBP and SUR
RBP/non-SUR RBP combination.

Manually curated experimentally characterized human
protein complex data was obtained from CORUM [76],
to determine the general promiscuity of RBPs in forming
complexes. Then 5,217 protein complexes were mapped
to the RBPs. We calculated for SUR RBPs and non-SUR
RBPs the frequency of membership in CORUM com-
plexes, as well as the mean complex size. This informa-
tion together with the log-ratios of expression levels
between healthy and cancer states in the tissues, allowed
us to address whether SUR RBPs are enriched in protein
complexes and/or occur in larger or smaller complexes.
This analysis also allowed us to test the relation between
the extent of an RBP’s dysregulation in the context of
its membership.
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Determination of prognostic impact of RNA-binding
proteins for breast cancer

A gene’s prognostic impact is the gene’s ability to impact
positively or negatively patient survival. The prognostic
impact for each gene was determined using data from
the Kaplan—Meier (KM)-Plotter [68], which was deter-
mined from microarray experiments for over 20,000
genes for 1,800 breast cancer patients. For each gene in
the RBP and non-RBP groups, we further categorized
them as SUR or non-SUR and high or low variability in
expression. We compared the significance [-log(KM-
plotter P)] of the prognostic impacts within and between
these groups.

Based on the network analyses, the genes were ranked
in descending order based on their mean path lengths to
the classification of dysregulated genes (SUR vs non-
SUR). Path length calculations were determined from a
distance matrix generated by the network analysis. From
the ranked list of genes we selected five genes with the
shortest and longest mean path lengths, and took a ran-
dom sample of five genes with intermediate mean path
lengths. This provided information on the prognostic
impact associated with increased gene expression.

Additional files

Additional file 1: Figure S1. Expression levels of RNA-binding proteins
(RBPs), non-RBPs, IncRNAs, miRNAs and transcription factors (TFs) for 16
human tissues. Each of the 16 plots illustrates the significant differences
in expression levels of RBPs (P < 2 x 107, Wilcox test) for adipose,
adrenal, brain, breast, colon, heart, kidney, liver, lung, lymph node, ovary,
prostate, skeletal muscle, testes, thyroid and white blood cell tissues,
compared to the other regulatory factors. The x-axis is the category of
the observed factor and the y-axis is the expression level.

Additional file 2: Table S1. Expression values for transcripts from HBM
data for RBPs, IncRNAs, miRNAs and transcription factors. The statistical
analysis compares the expression levels of RBPs and TFs for various tissues.
Included are log-fold changes in expression levels for RBPs across nine
cancers and P values from t-tests comparing tumor and tumor-matched
normal cancer samples. Additionally the statistical significance for interaction
and expression/variation classifications are shown.

Additional file 3: Figure S2. Correlation matrix of overall log-ratio
expression of RBPs across nine cancers. The matrix shows the clustering
of similar tissue sites and similar cancer types.

Additional file 4: Table S2. Strongly upregulated RNA-binding proteins
(SUR RBPs), including functional description, currently annotated disease
associations and additional database identifiers.

Additional file 5: Figure S3. Comparison of normalized network
metrics (closeness, betweenness and degree) between strongly
upregulated (SUR) and non-strongly upregulated (non-SUR) RNA-binding
proteins. The median values for each property are the same and there
are no significant differences (P> 0.05, Wilcox test).

Additional file 6: Figure S4. CORUM complex membership and
complex size distribution for strongly upregulated (SUR) and non-strongly
upregulated (non-SUR) RNA-binding proteins. There were no significant
differences between the two groups (P> 0.05, Wilcox test).

Additional file 7: Figure S5. CORUM complex membership and
complex size distribution vs expression for strongly upregulated (SUR)
and non-strongly upregulated (non-SUR) RNA-binding proteins.
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No trends were observed when comparing the CORUM characteristics
with expression.

Additional file 8: Figure S6. Heat map showing the variation in
expression level measured as median absolute deviation (MAD) values for
SUR RNA-binding proteins for nine types of cancer.

Additional file 9: Table S3. Accession numbers of TCGA patient

samples for all nine cancers analyzed in this study.
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