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Differential DNA methylation with age displays
both common and dynamic features across
human tissues that are influenced by CpG
landscape
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Abstract

Background: DNA methylation is an epigenetic modification that changes with age in human tissues, although the
mechanisms and specificity of this process are still poorly understood. We compared CpG methylation changes
with age across 283 human blood, brain, kidney, and skeletal muscle samples using methylation arrays to identify
tissue-specific age effects.

Results: We found age-associated CpGs (ageCGs) that are both tissue-specific and common across tissues. Tissue-specific
ageCGs are frequently located outside CpG islands with decreased methylation, and common ageCGs show the opposite
trend. AgeCGs are significantly associated with poorly expressed genes, but those with decreasing methylation are linked
with higher tissue-specific expression levels compared with increasing methylation. Therefore, tissue-specific gene
expression may protect against common age-dependent methylation. Distinguished from other tissues, skeletal muscle
ageCGs are more associated with expression, enriched near genes related to myofiber contraction, and closer to
muscle-specific CTCF binding sites. Kidney-specific ageCGs are more increasingly methylated compared to other tissues as
measured by affiliation with kidney-specific expressed genes. Underlying chromatin features also mark common and
tissue-specific age effects reflective of poised and active chromatin states, respectively. In contrast with decreasingly
methylated ageCGs, increasingly methylated ageCGs are also generally further from CTCF binding sites and enriched
within lamina associated domains.

Conclusions: Our data identified common and tissue-specific DNA methylation changes with age that are reflective of
CpG landscape and suggests both common and unique alterations within human tissues. Our findings also indicate that
a simple epigenetic drift model is insufficient to explain all age-related changes in DNA methylation.
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Background
Methylation is a major biochemical alteration that governs
multi-tiered epigenetic regulation of gene expression.
Methylation of specific lysine resides within core histones
such as H3 and H4 induce conformational modifications
in chromatin structure that are associated with regulation
of transcriptional activity [1]. Direct methylation of DNA
itself is one foundational epigenetic modification that
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typically involves conversion of cytosine to 5′-methyl-
cytosine catalyzed by DNA methyltransferases [2]. DNA
methylation in adult tissues usually occurs within the con-
text of CpG dinucleotide sequences (CpGs) clustered in
regions known as CpG islands (CGIs) that are most often
found proximal to promoters of housekeeping genes [3].
For the majority of genes, hypermethylation of CpG
islands is linked with transcriptional silencing. During em-
bryogenesis, DNA is passively demethylated during early
cell divisions until de novo DNA methylation establishes
the CpG methylation marks within dividing cells that
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guide restriction of gene expression patterns associated
with tissue-specific lineages [4,5]. During maintenance of
tissues, CpG methylation marks must also be maintained
by DNA methyltransferases during DNA replication in
dividing adult stem cells to preserve the identity and func-
tion of differentiating cell types and for self-renewal of
adult stem cell populations [6-8].
The context of DNA methylation in relation to CGIs

has emerged as a defining feature within genome-wide
DNA methylation studies. Approximately 65 to 70% of
promoters are associated with CGIs, and these promoter
types are generally hypomethylated, while promoters that
contain a low CpG density are hypermethylated [9,10].
Comparison of differential DNA methylation patterns be-
tween induced pluripotent stem cells and their parental fi-
broblasts showed an overlap of CpGs with tissue- and
cancer-specific methylation patterns in regions located
within 2 kb of CGIs known as CpG shores (CGSs) [11].
Intriguingly, the same methylation changes in CpGs dur-
ing cellular differentiation overlap with those most fre-
quently altered in cancer cells, and suggests that aberrant
DNA methylation could be an underlying factor in the
genesis of cancer stem cells [12-14]. Outside of CGIs and
CGSs, including gene bodies, DNA methylation is often a
characteristic of active transcription with sharp transitions
in methylation between exon and intron boundaries
[15,16].
Early epigenetic studies showed an effect of aging on

the stability of X-linked chromosome gene inactivation
[17]. An increase in DNA methylation differences be-
tween young and old monozygotic twin pairs established
a strong link between phenotypic discordance, epigenet-
ics, and aging [18]. This relationship between DNA
methylation and age raises questions of how epigenetic
changes may specifically influence different tissue types
over time, especially in adult tissues composed mainly of
postmitotic cells such as neurons and multinucleated
myofibers. It has been proposed that epigenetic changes
with age, including DNA methylation, may be a stochas-
tic process of random epigenetic 'drift' [19,20]. Compari-
sons of DNA methylation between normal versus cancer
tissue or between epithelial to mesenchymal cell transi-
tions during development suggest shared methylation
'noise' within the same CpGs is indicative of some level of
modulated cellular plasticity [21]. Furthermore, subtle
methylation changes may be functionally important, as has
been shown in the adult brain where stimulus-induced
methylation may be related to neuronal plasticity [22]. All
of these findings suggest a highly dynamic epigenome, even
within fully differentiated, post-mitotic cells.
Here we compare DNA methylation alterations with age

across brain, blood, kidney, and skeletal muscle tissues
with array-based DNA methylation profiling that interro-
gated 26,486 autosomal CpGs covering approximately
14,000 genes. We found a significant number of age-
associated CpGs (ageCGs) near genes that are commonly
involved in developmental processes, transcription, and
morphogenesis. The majority of these CpGs are increas-
ingly methylated with age (positive ageCGs) and posi-
tioned within CGIs. However, ageCGs that were found
within non-CGIs mostly displayed decreasing methylation
with age (negative ageCGs) and were enriched in tissue-
specific ageCGs. Skeletal muscle exhibited negative ageCGs
that were found within non-CGIs and associated with
genes that code for components required for myofiber con-
traction. In three of the tissues, ageCGs were enriched in
genes that are not highly expressed in that tissue, according
to Illumina Body Map 2.0 data. However, the strongest re-
lationship between ageCGs and genes that are expressed
was within skeletal muscle. Genes near negative ageCGs
generally had higher expression levels than positive
ageCGs. Analysis of tissue-specific chromatin states gener-
ated using Roadmap Epigenomics project data showed
marks associated with bivalent and active chromatin
encompassing positive or negative ageCGs, respectively.
Negative ageCGs are also generally closer in genomic dis-
tance to tissue-specific CTCF binding sites. We also find
an enrichment of ageCGs within lamina-associated do-
mains (LADs) that are involved in attachment of chroma-
tin to the inner nuclear membrane. We further validated
the observed array-based age effects in the kidney by
targeted capture bisulfite sequencing of select promoter re-
gions and demonstrate a more widespread effect across
multiple CpGs in these age-sensitive regions. Our data
show that aging has both dynamic and common influences
on DNA methylation.

Results
Common and distinct features of age-dependent
methylation among tissues
We bisulfite converted genomic DNA isolated from hu-
man blood, brain, kidney, and skeletal muscle tissue sam-
ples collected from different ages (Additional file 1). To
identify ageCGs across tissues, we performed genome-
wide DNA methylation profiling using Illumina beadchips
that query 26,486 autosomal CpGs. Beta scores (percent-
age methylation; β-scores) were calculated and quality fil-
tered followed by ComBat batch normalization across
samples for each tissue separately (Materials and methods)
[23]. We used a linear regression model in each tissue sep-
arately to test for associations between β-scores and age,
with gender as a covariate. The resulting P-values were ad-
justed by the false discovery rate method (q, Benjamini
and Hochberg method). CpGs that exhibited q < 0.05 were
considered ageCGs (Additional files 2, 3, 4, 5, 6). CpGs
that did not exhibit an age effect (q > 0.5) were defined as
nonageCGs used for further comparisons to ageCGs for
each tissue.
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Uniform quantile-quantile (Q-Q) plots of negative log
P-values from our linear regression results revealed
many P-values that were smaller than expected and im-
plied strong, widespread associations between age and
DNA methylation in each tissue (Figure 1A). The major-
ity of ageCGs showed a positive correlation (increasing
DNA methylation with age; positive slope) as shown by
representative regression plots of the five most signifi-
cant ageCGs in each tissue (Figure 1B). Some of our
samples were from both normal and disease subjects, but
none of these disease phenotypes were strongly correlated
with DNA methylation patterns in our samples when
covariates for disease phenotypes were used to correct
for any differences between groups (Additional file 7:
Figure S1). Neighboring ageCGs that were proximal to
the same gene region within a tissue showed approxi-
mately 91% agreement in their slope direction with age
irrespective of their genomic distance in base pairs from
one another (Additional files 8, 9, 10, 11). However,
Figure 1 Linear regression results showed an association between DN
quantile-quantile (Q-Q) plots of -log P-values from linear regression tests fo
and skeletal muscle tissue samples. (B) Scatterplots for the top five stronge
tissues. Illumina CpG ID, P-value, and R-squared results are depicted above
the absolute value of the differences (delta) between
the slopes of the regression models at neighboring
ageCGs was generally much smaller when they were
within a distance of 100 bp from each other compared
to those that were at least 500 bp apart (Additional file 7:
Figure S2).
We compared our list of ageCGs from blood and brain

with independent studies of age-dependent methylation.
Approximately 48% of age-related, differentially methyl-
ated regions in whole blood that were validated with in-
dependent samples using sorted CD4+ and CD14+ cells
were also found in our ageCG list from blood [24].
Seven out of seven Methylation27 CpGs from a recent
report that used blood-specific, age-dependent methyla-
tion to build a predictive model of human aging rates
from Methylation450 array data (89 CpGs total in the
model; 7 CpGs are also found on the Methylation27
array) were in our ageCG list from blood and exhibited
the same slope trend with age [25]. In another recent
A methylation and age across four human tissues. (A) Uniform
r associations between β-score and age within blood, brain, kidney,
st associations between β-score and age across each of the four
each scatterplot.
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study that reported the top 100 CpGs that showed changes
in methylation in dorsolateral prefrontal cortex brain re-
gions with age across individuals greater than 10 years old
using Methylation27 arrays, 68 of these CpGs were also
found in our brain ageCG list [26]. We found that the
slopes determined for these CpGs between our study and
Numata et al. [26] were highly correlated (Pearson correl-
ation, r = 0.92; Additional file 7: Figure S3).
We classified ageCGs according to positive or nega-

tive correlation with age (positive or negative ageCGs),
and whether they were positioned within a CGI or non-
CGI context. Pearson’s Chi-squared tests confirmed
an association between CGI or non-CGI context and
positive or negative ageCGs, respectively, in all tissues
(P < 2.2 × 10-16; Figure 2A-C). Profiling of ageCGs lo-
cated within CGIs, CGSs, or CpG other (CpGs located
outside of islands or shores, CGOs) according to UCSC
genome browser definition of CGIs showed that ageCGs
from each tissue generated CpG context profiles that
were different from non-ageCGs [3] (Table 1). A greater
Figure 2 Bar graphs displaying the percentages of ageCGs classified
across four human tissues. (A) Percentage of total ageCGs that exhibited
Percentage of positively associated (B) and negatively associated ageCGs (
positively or negatively associated ageCGs each classified within CpG island
bar graphs that resulted from Pearson’s Chi-squared tests between numbe
CpG context.
percentage of ageCGs was found within CGIs compared
to non-ageCGs with the exception of kidney ageCGs,
which were enriched within CGOs. The strongest differ-
ences in the proportions of positive or negative ageCGs
between tissues were found in CGSs and CGOs (Pearson’s
Chi-square tests, P < 2.2 × 10-16; Figure 2D-F). The major-
ity of ageCGs within CGIs were hypomethylated across all
samples and all tissues (β-scores < 0.3; Additional file 7:
Figure S4). Comparisons of the 10 youngest and oldest
samples confirmed that the greatest tissue-specific vari-
ation in methylation involved negative ageCGs outside of
CGIs (Additional file 7: Figure S5). Negative ageCGs were
also generally larger in magnitude than positive ageCGs
(Additional file 7: Figure S6). We normalized slope
magnitude distributions using Box-Cox power transfor-
mations to compare slope magnitudes across tissues
and found a significant three-way interaction between
CpG context, tissue type, and slope trend (ANOVA,
P < 5.4 × 10-5; Figure 3). These results suggest that common
age-dependent methylation (mostly increasing) occurs
by CpG context and positive or negative association with age
a positive or negative association with age in each tissue. (B,C)

C) positioned within CpG islands, shores, or other. (D-F) Percentages of
s (D), CpG shores (E), or CpG other contexts (F). P-values are below
r of positive or negative associations across tissues in each respective



Table 1 CpG context profiles of ageCGs and non-ageCGs
across tissuesa

AgeCGsb Non-ageCGsc P-valued

Blood:

Island 533 (57.7%) 8,106 (45.2%)

Shore 217 (23.5%) 5,915 (33.0%) 2.48 × 10-13

Other 174 (18.8%) 3,923 (21.9%)

Brain:

Island 646 (54.1%) 7,486 (49.4%)

Shore 351 (29.4%) 5,132 (33.9%) 3.16 × 10-3

Other 198 (16.6%) 2,532 (16.7%)

Kidney:

Island 987 (36.8%)e 6,005 (46.2%)

Shore 859 (32.1%) 4,086 (31.5%) <2.2 × 10-16

Other 833 (31.1%) 2,898 (22.3%)

Muscle:

Island 476 (48.6%) 5,978 (41.6%)

Shore 242 (24.7%) 5,038 (35.1%) 3.14 × 10-10

Other 262 (26.7%) 3,353 (23.3%)
aPercentage of total CpGs for each tissue indicated in parentheses.
bAge-associated CpGs (q < 0.05 with linear regression model).
cNon-age-associated CpGs (q > 0.5 with linear regression model).
dResulting P-values from Pearson’s Chi-squared tests (3x3 contingency tables
containing ageCGs and non-ageCGs).
eAgeCGs from kidney tissue are less frequently found in islands compared to
other tissues.
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primarily within CGIs, and tissue-specific patterns
(mostly decreasing) reside outside of CGIs, with differ-
ent rates of methylation both within and among tissues.
To further validate our identification of common and

tissue specific methylation changes with age, we compared
the intersection of the same ageCGs that overlapped be-
tween at least two tissues. As expected, most overlapping
ageCGs between tissues were found in CGIs with increas-
ing methylation (Additional files 7: Figure S7). There was
an overlap of 29 CpGs among all four tissues, but at least
half of all ageCGs in each tissue were not common with
other tissues (Additional file 7: Figure S8). We found a
maximum overlap of only four CpGs among all four tis-
sues by chance by comparing overlap of the same number
of randomly selected CpGs from the Methylation27 array
as the number of ageCGs found for each tissue and veri-
fied that the overlap is an effect of aging (P < 1 × 10-4).
Overlapping ageCGs in the 10 youngest samples showed
the least variation in methylation between tissues for those
with increasing methylation in CGIs, as expected (all
β-scores < 0.1; Additional file 7: Figure S9). Analysis of sig-
nificant Gene Ontology (GO) term enrichments (q < 0.05)
for positive and negative ageCGs linked with genes
(ageCGs/genes) for each tissue showed that approximately
77% of GO terms for positive ageCGs/genes overlapped
between at least 2 tissues, but only approximately 10% of
GO terms for negative ageCGs/genes overlapped (only be-
tween kidney and blood). Shared terms for positive
ageCGs/genes were related to morphogenesis and tran-
scription, and unique terms for positive ageCGs/genes in a
single tissue were often closely related to terms that over-
lapped (Table 2; Additional files 12, 13, 14, 15, 16, 17, 18).
Regardless of increasing or decreasing methylation, half of
all shared GO terms between two tissues (two-way shared)
were between kidney and blood. The only shared terms for
negative ageCGs/genes were between kidney and blood in
terms related to immune response. Skeletal muscle nega-
tive ageCGs/genes showed the strongest tissue-specific en-
richments in GO terms related to muscle contraction
(Table 2).

CpGs affiliated with tissue-specific gene expression are
protected from common methylation changes with age
Given our observation of tissue-specific age effects, we
hypothesized that tissue-specific gene expression might
influence the likelihood of age-dependent DNA methyla-
tion. We used Illumina Human Body Map 2.0 Project
RNA-Seq data and determined fragments per kilobase of
exon per million fragments mapped (FPKM) for Methyla-
tion27 array genes across white blood cells, kidney, brain,
and skeletal muscle tissues. We compared the enrichment
of ageCGs/genes and non-ageCGs/genes according to their
proximity to non-expressed (FPKM < 0.05) or expressed
(FPKM > 0.25) genes for each tissue. With the exception of
skeletal muscle, ageCGs/genes were enriched in non-
expressed genes compared to non-ageCGs/genes (Table 3).
Blood held the fewest ageCGs/genes affiliated with gene
expression, and ageCGs positioned within CGIs and CGSs
were affiliated with non-expressed genes with the excep-
tion of skeletal muscle, which showed no significant differ-
ence in expression between ageCGs and non-ageCGs
positioned within CGSs (Table 3). Kidney and skeletal
muscle ageCGs/genes within CGOs were significantly as-
sociated with tissue-specific gene expression compared to
non-ageCGs/genes. These results suggest that the further
ageCGs were positioned from CGIs, the more likely these
ageCGs were positioned near tissue-specific, expressed
genes.
Other nonparametric tests of nonzero expression levels

between ageCGs/genes and nonageCGs/genes produced
similar results to our expressed/non-expressed thresholds
(Additional file 7: Figure S10). With the majority of
ageCGs exhibiting increased methylation within CGIs (as-
sociated with non-expression), we also compared expres-
sion levels connected with positive and negative ageCGs/
genes. Negative ageCGs/genes showed higher gene expres-
sion levels compared to positive ageCGs/genes, with kid-
ney showing the weakest difference (Additional file 7:
Figure S10). Based on our findings of strong overlap be-
tween GO terms generated for kidney and blood, especially



Figure 3 Boxplots of slope magnitude grouped according to positive (+) or negative (-) ageCGs and CpG context across four tissues.
Vertical red and green lines mark the smallest and largest median slope magnitude, respectively, across all four tissues. A significant three-way
interaction between CpG context, tissue type, and positive or negative slope trend was found among slope magnitude values (ANOVA on
Box-Cox power transformed slope values, P = 5.4 × 10-5).
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immune-related terms for negative ageCGs/genes, we
analyzed significant differentially expressed genes (using
Student’s t-tests built into Cufflinks software) between
blood and kidney for kidney positive and negative
ageCGs/genes [29]. Negative kidney ageCGs/genes were
enriched in blood-specific gene expression levels, and
the opposite effect was observed for blood versus
muscle, and blood versus brain (Additional file 7: Figure
S11). These data suggested that more kidney-specific
methylation (as assessed by kidney-specific ageCGs/
genes) might be found within positive ageCGs com-
pared to other tissues. Therefore, we used a more strin-
gent approach to identify the strongest tissue-specific
ageCGs/genes by isolating ageCGs/genes that uniquely
held strong age associations in one tissue (q < 0.05)
while these same CpGs were considered not significant
(non-ageCGs; q > 0.5) in the other three tissues (unique
ageCGs/genes). We used the smallest age-associated
P-value for representative genes affiliated with CpGs in
each tissue to determine unique ageCGs/genes. There
were 28, 32, 144, and 132 unique ageCGs/genes in
blood, brain, kidney and muscle tissues, respectively
(Additional file 19). Among all 4 tissues, 41 ageCGs/
genes showed a shared, strong age effect (q < 0.05 for
ageCGs within the same gene identified in all 4 tissues).
Unique ageCGs/genes were significantly enriched in ex-

pression compared to shared ageCGs (with the exception
of brain), and the strongest enrichment was observed in
skeletal muscle (Table 4). As anticipated, approximately
90% or greater of shared ageCGs/genes compared to ap-
proximately 30% of unique ageCGs/genes were positive
ageCGs within CGIs. No clear trend was associated with
ageCGs/gene expression and CpG context (Additional file
7: Figure S12). Intercepts from regression results (that is,
predicted methylation level at age 0) among all tissues
across shared ageCGs/genes were very similar regardless
of affiliated gene expression (hypomethylated <0.2), but
blood and kidney both had significantly greater slope mag-
nitudes for these shared ageCGs/genes compared to brain
and muscle (ANOVA, P < 0.003; Additional file 7: Figure
S13). These results suggested some variability in rates of
methylation between tissues within shared ageCGs. There
was greater variability in intercept values and slope magni-
tudes among tissues within unique ageCGs (Additional
file 7: Figure S13). Unique ageCGs/genes affiliated with
expressed genes exhibited a trend towards hypomethylation



Table 2 Summary of Gene Ontology terms associated with positive and negative ageCGs affiliated with genes across tissuesa

GO termb Tissue Count P-value q-value Fold

Positive unique

GO:0030054 - cell junction Blood 42 5.2 × 10-10 7.0 × 10-7 3.1

GO:0048754 - branching morphogenesis of a tube Brain 18 1.6 × 10-7 3.0 × 10-4 5.0

GO:0048878 - chemical homeostasis Kidney 87 4.9 × 10-15 9.0 × 10-12 2.6

GO:0003713 - transcription coactivator activity Muscle 15 6.6 × 10-7 1.0 × 10-3 5.6

Positive two-way shared

GO:0000902 - cell morphogenesis Blood 37 2.3 × 10-14 4.0 × 10-11 4.9

GO:0003002 - regionalization Brain 41 5.3 × 10-15 9.6 × 10-12 4.6

GO:0000902 - cell morphogenesis Kidney 73 2.9 × 10-16 6.1 × 10-13 3.1

GO:0003712 - transcription cofactor activity Muscle 23 3.2 × 10-9 4.9 × 10-6 4.9

Positive three-way shared

GO:0007267 - cell-cell signaling Blood 56 8.9 × 10-28 1.6 × 10-24 6.5

GO:0007267 - cell-cell signaling Brain 64 4.3 × 10-21 7.8 × 10-18 4.2

GO:0030182 - neuron differentiation Kidney 117 4.5 × 10-37 8.2 × 10-34 4.1

GO:0016563 - transcription activator activity Muscle 29 5.0 × 10-10 7.5 × 10-7 4.2

Positive four-way shared

GO:0005886 - plasma membrane Blood 169 1.2 × 10-23 1.6 × 10-20 2.1

GO:0031226 - intrinsic to plasma membrane Brain 119 1.7 × 10-36 2.5 × 10-33 3.8

GO:0031226 - intrinsic to plasma membrane Kidney 209 1.3 × 10-60 1.9 × 10-57 3.7

GO:0006350 - transcription Muscle 102 1.5 × 10-18 2.6 × 10-15 2.6

Negative uniquec

GO:0006952 - defense response Kidney 58 5.8 × 10-30 1.0 × 10-26 6.8

GO:0005887 - integral to plasma membrane Kidney 68 2.0 × 10-22 2.7 × 10-19 4.0

GO:0006954 - inflammatory response Kidney 30 7.3 × 10-15 1.3 × 10-11 6.5

GO:0009611 - response to wounding Kidney 39 2.2 × 10-14 3.8 × 10-11 4.6

GO:0005886 - plasma membrane Kidney 138 9.1 × 10-14 1.2 × 10-10 1.8

GO:0006936 - muscle contraction Muscle 15 1.5 × 10-11 2.5 × 10-8 13.0

GO:0003012 - muscle system process Muscle 15 7.6 × 10-11 1.3 × 10-7 11.5

GO:0006941 - striated muscle contraction Muscle 10 1.3 × 10-9 2.2x10-6 21.3

GO:0015629 - actin cytoskeleton Muscle 15 3.6 × 10-6 4.7 × 10-3 4.8

GO:0003009 - skeletal muscle contraction Muscle 5 5.0 × 10-6 8.3 × 10-3 44.3

Negative two-way shared (kidney and blood only)d

GO:0006955 - immune response Kidney 66 2.6 × 10-32 4.5 × 10-29 6.3

GO:0031226 - intrinsic to plasma membrane Kidney 69 2.1 × 10-22 2.7 × 10-19 4.0

GO:0005576 - extracellular region Kidney 105 1.8 × 10-15 2.3 × 10-12 2.2

GO:0044459 - plasma membrane part Kidney 95 7.5 × 10-13 9.9 × 10-10 2.1

GO:0002684 - positive regulation of immune

system process Kidney 24 1.3 × 10-10 2.3 × 10-7 5.5
aDAVID v6.7 was used with all genes represented on the Methylation27 beadchip as background and gene lists associated for each tissue according to minimum
age-associated P-value and positive or negative ageCGs. Enrichment tests were done independently for each tissue. Complete results are shown in supplemental
data. All results shown are below q < 0.05 as generated by DAVID analysis [27,28].
bResults were first sorted by shared GO terms among tissues according to whether they overlapped among all four tissues (four-way), among three tissues (three-way),
between two tissues (two-way), or unique in only one tissue. GO terms were then sorted by tissue and lowest q-values. The top GO term is shown for each tissue using this
sorting scheme.
cThe top five genes affiliated with unique negative ageCGs in each tissue shown here do not include genes from brain because results did not meet q < 0.05for blood tissue
see below.
dAll genes affiliated with negative ageCGs in blood were shared with kidney. Results are only shown here for kidney tissue.
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Table 3 AgeCGs and nonageCGs affiliated with gene expression within tissues classified by CpG contexta

AgeCGs/genesb Non-ageCGs/genesc P-valued

Expressed Non-expressed Expressed Non-expressed

Blood

All 271 (46.2) 315 (53.8) 4610 (78.4) 1270 (21.6) <2.2 × 10-16 *

Island only 121 (36.1) 214 (63.9) 2251 (89.0) 277 (11.0) <2.2 × 10-16 *

Shore only 101 (72.7) 38 (27.3) 1610 (83.5) 317 (16.5) 1.5 × 10-3 *

Other only 49 (43.8) 63 (56.2) 749 (52.6) 676 (47.4) 0.09

Brain

All 591 (78.8) 159 (21.2) 4404 (89.3) 528 (10.7) 3.5 × 10-16 *

Island only 328 (79.4) 85 (20.6) 2243 (97.0) 70 (3.0) <2.2 × 10-16 *

Shore only 184 (85.6) 31 (14.4) 1564 (95.0) 82 (5.0) 1.2 × 10-7 *

Other only 79 (64.8) 43 (35.2) 597 (61.4) 376 (38.6) 0.53

Kidney

All 1209 (77.4) 354 (22.6) 4046 (89.9) 456 (10.1) <2.2 × 10-16 *

Island only 402 (71.2) 163 (28.8) 2089 (97.5) 54 (2.5) <2.2 × 10-16 *

Shore only 440 (85.8) 73 (14.2) 1362 (95.0) 71 (5.0) 1.1 × 10-11 *

Other onlye 367 (75.7) 118 (24.3) 595 (64.3) 331(35.7) 1.6 × 10-5 *

Muscle

Allf 515 (77.2) 152 (22.8) 2784 (71.8) 1095 (28.2) 4.2 × 10-3

Island only 258 (78.4) 71 (21.6) 1262 (87.3) 184 (12.7) 5.2 × 10-5 *

Shore only 142 (86.1) 23 (13.9) 1065 (82.0) 233 (18.0) 0.24

Other only 115 (66.5) 58 (33.5) 457 (40.3) 678 (59.7) 1.6 × 10-10 *
aExpressed genes, FPKM > 0.25; non-expressed genes, FPKM < 0.05. Parentheses indicate percentage of total in each CpG context category.
b,cGenes in proximity to an ageCG or non-ageCG according to the smallest age-associated P-value for representative genes in each tissue.
dResulting P-values from Pearson’s Chi-squared tests between numbers of ageCGs and non-ageCGs within each classification.
eAgeCGs/genes found within CGOs from kidney showed a significantly greater number of expressed genes compared to non-ageCGs in kidney.
fMuscle was the only tissue that showed a greater number of total ageCGs/genes expressed compared to non-ageCGs/genes regardless of CpG contextthis same
effect was observed within the CGO category.
*Significant P-values meet Bonferroni correction for multiple testing.
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(median intercepts < 0.2), and with the exception of
blood, a range of intercepts that extended toward
hypermethylation were affiliated with non-expressed
genes. We found the unique ageCGs/genes PLAT,
PROM1, KCNJ1, and PCK1 to be uniquely and signifi-
cantly expressed only in kidney, and the MB gene in
skeletal muscle (Additional files 20, 21, 22, 23). Altogether,
different approaches to isolate common and tissue-specific
changes with age revealed the importance of local gene ex-
pression on the propensity of a CpG to show a common
age-effect among tissues.

Regional chromatin landscapes affiliated with common
and tissue-specific methylation changes with age
We were interested in chromatin signatures affiliated with
positive and negative ageCGs across all four tissues. We
automated development of learned chromatin state pa-
rameters and chromatin state assignments with publicly
available ChIP-seq data sets for histone modifications
from the Roadmap Epigenomics Project (peripheral blood
mononuclear cells, brain hippocampus, fetal kidney, and
adult skeletal muscle) using ChromHMM software [30].
The repressive H3K27Me3 mark played a critical role in
discerning diversity in states; without this mark included in
the model only 2 to 3 main states were observed even when
using between 5 and 10 input states. With model parame-
ters that assigned 10 chromatin states across tissues, we de-
termined relative fold enrichments for positive and negative
ageCGs (Figure 4A-C). Comparison of enrichments of posi-
tive and negative ageCGs within chromatin states across
tissues in general showed tissue-specific differences in
underlying chromatin states connected with age-dependent
methylation that were most noticeable in blood. Positive
ageCGs were most enriched in the bivalent/poised pro-
moter defined state containing repressive H3K27Me3
marks present with other active H3K4Me1, H3K4Me3, and
H3K9Ac marks (Figure 4A, C) [31-33]. The bivalent pro-
moter state and repressed state 1 frequently transitioned
between each other, with the repressed state containing
only the H3K27Me3 mark by itself (Figure 4B). Both active
and bivalent promoter states were strongly enriched in
RefSeq transcriptional start site positions (Figure 4D).



Table 4 Number of unique and shared ageCGs/genes affiliated with genes expressed within tissuesa

Unique ageCGs/genesb Shared ageCGs/genesc P-valued

Expressed Non-expressed Expressed Non-expressed

Blood 13 (65.0) 7 (35.0) 8 (22.9) 27 (77.1) 0.003 *

Brain 16 (72.7) 6 (27.3) 27 (75.0) 9 (25.0) 0.766

Kidney 82 (78.8) 22 (21.2) 17 (56.7) 13 (43.3) 0.019

Muscle 84 (88.4) 11 (11.6) 11 (42.3) 15 (57.7) 3.40 × 10-6 *
aExpressed genes, FPKM > 0.25; non-expressed genes, FPKM < 0.05. Parentheses indicate percentage of total in each CpG context category.
bUnique ageCGs/genes had q < 0.05 from linear regression results in one tissue and q > 0.5 for the same affiliated gene in the other three tissues.
cShared ageCGs/genes had q < 0.05 in all four tissues.
dResulting P-values from Fisher’s exact tests between the number of unique and shared, expressed or non-expressed ageCGs/genes within tissues.
*Significant P-values meet Bonferroni correction for multiple testing.
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Negative ageCGs were enriched in weak/active pro-
moter and enhancer-related chromatin states compared
to positive ageCGs. Enhancer-related states 3 and 4 had
the highest level of H3K4Me1 mark with the lowest co-
occurrence of H3K4Me3, which is linked to active or
poised enhancers [34,35]. The underlying defined chroma-
tin states for positive and negative ageCGs were consistent
with gene expression results even when we stratified by ex-
pression (data not shown). We also found that CTCF
ChIP-seq peaks from ENCODE data (CD14+/CD20+ cells,
kidney tissue, myotubes) were enriched in similar chroma-
tin states as negative ageCGs (Figure 4C, brain unavailable).
We found very few ageCGs that overlapped with CTCF
binding sites, and CTCF sites were generally greater than 5
kb in genomic distance from ageCGs compared to
non-ageCGs, again with the exception of skeletal muscle,
which showed the opposite effect (Pearson’s Chi-squared
tests blood, P = 0.024, kidney, P = 5.88 × 10-12, muscle,
P = 0.002). With the exception of kidney, negative ageCGs
were closer to CTCF binding sites than positive ageCGs
(Additional file 7: Figure S14). Positive ageCGs alone were
significantly further away from a CTCF site compared to
non-ageCGs, with the exception of skeletal muscle (>5 kb
Pearson’s Chi-squared tests blood, P = 0.001, kidney, P = 2 ×
10-7, muscle, not significant). Only muscle negative ageCGs
exhibited significantly closer proximity to CTCF sites com-
pared to non-ageCGs (P = 2.5 × 10-5). We found a negative
correlation between the distance of a CTCF binding site to
a Methylation27 CpG and FPKM values (data not shown).
As expected, the relationship of the CTCF binding site dis-
tance was similar to our gene expression results for positive
and negative ageCGs.
We also identified an enrichment of ageCGs within

LADs [36]. Approximately 75% of these ageCGs were
positive ageCGs, and 20 to 30% of total ageCGs were
within LADs, except for muscle (Additional file 7: Figure
S15). LADs-associated ageCGs were found within
chromatin states enriched in H3K27Me3 compared
to nonageCGs. Previous studies demonstrated that
H3K27Me3 enriched chromatin is usually located closer
to LAD edges [36]. We oriented ageCGs within LADs
according to gene direction to a LAD edge (going to-
ward or away from a LAD). Distributions of the genomic
distance between a CpG to a LAD edge (normalized by
the LAD length) were bifurcated, and suggested a near-
ness of LAD-bound CpGs to LAD edges. CTCF binding
sites are also associated with LAD edges. Tissue-specific,
CTCF binding sites also oriented according to gene dir-
ection showed close distance to a LAD edge (also nor-
malized by LAD length) for sites both upstream and
downstream of CpGs. The distributions of ageCG dis-
tance to a LAD edge did not vary much from
nonageCGs, although slightly more nonageCGs were
centrally located. Therefore, a fraction of increasing,
age-dependent methylation is associated with LAD
boundaries.

Methylation changes with age extend beyond single
CpGs
We were also interested in how extensive methylation
changes were around identified age-sensitive sites by
Methylation27 arrays. We developed custom biotinylated
RNA capture probes and bisulfite sequenced (Bis-seq)
approximately 83 sites representing 77 gene regions/pro-
moters and validated ageCGs in the 9 youngest and 10
oldest kidney samples (Additional file 24; Materials and
methods). Out of 3,734 sequenced CpGs, 128 covered
between both methods were well correlated with regard
to percentage methylation across all samples, with indi-
vidual Pearson correlation values that ranged from
r = 0.93 to 0.71 (Figure 5A). Approximately 86% of CpGs
across all samples differed by less than 15% methylation,
and 71% differed by less than 10% methylation between
method platforms. As expected, agreement within 95%
confidence limits, as shown by Bland-Altman plot
(depicts the differences in agreement between two
methods), was relatively stronger for hypomethylated
CpGs (<20% methylated) compared to hypermethylated
CpGs (Figure 5B). Calculation of delta between median
percentage methylation values at each CpG for young
and old groups validated both ageCGs and non-ageCGs
within target sites observed by arrays along with



Figure 4 Jointly learned tissue-specific chromatin states across four human tissues and functional enrichments within positive and
negative ageCG positions. Ten input chromatin states using Roadmap Epigenome ChIP-seq data for six histone modifications across four
human tissues were used with ChromHMM software. (A) Heatmap/table shows learned emission parameters based on genome-wide
combinations of histone marks. Values indicate observed frequencies of histone modifications found at genomic positions corresponding with
chromatin states. (B) Transitional parameter heatmap/table shows probabilities of transitions between states (multiplied by 100). Rows show the
'from' chromatin state and columns show the 'to' chromatin state, that is, a 17% probability that chromatin state 7 transitioned into state 8. (C)
Heatmap/table depicts percentage of the genome for each chromatin state (topmost row) and relative fold functional enrichments of genome
category (that is, vista enhancers, lamin B1 laminB1lads, CpGs within CGIs, CGSs, CGOs, positive (+) and negative (-) ageCGs and non-ageCGs).
Enrichments for chromatin states underlying ChIP-seq CTCF binding sites were determined using ENCODE data for CD14+ and CD20+ cells
(merged peaks blood), kidney tissue, and myotubes (brain data not available). Overlap enrichments were determined separately for each tissue
using tissue-specific segmentation files generated from the jointly learned model. Values across rows indicate relative fold enrichment, and blue
color scale is based on subtraction of the minimum value in the row divided by the maximum row value for each tissue separately (vertical black
lines divide table enrichments per tissue). (D) Neighborhood enrichments for RefSeq transcriptional start site annotations (TSS) within chromatin
states determined using default 0-based anchor coordinates for each start site position. Fold enrichment values and color scale are according to
rows. In all panels, the lower axis shows chromatin state colored to match chromatin state descriptions (1 to 10).
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neighboring CpGs not covered by arrays (Figure 5C, D).
Most sites showed increasing methylation with age, but
some sites showed fluctuations between positive and
negative deltas that were also observed by Methylation27
arrays. Often we observed that the magnitude of delta
values at neighboring CpGs were greater than the
ageCGs originally identified by the Methylation27 array.
Linear mixed models were used to test the association

of widespread methylation changes with age at single
targets across multiple CpGs. An autoregressive correl-
ation structure was used in which CpGs located in close
proximity to one another were considered more strongly
correlated than CpGs that were further apart. Out of
60 separate targets that contained a strong age effect
(q < 0.05) for single CpGs determined by linear regres-
sion model by array data across all kidney samples, 38
showed a strong widespread age effect across multiple
CpGs by Bis-seq (Figure 5C; Additional file 7: Figure
S16, Additional file 24). Some targets barely missed our
significance threshold (q < 0.05) such as DKK1 presum-
ably because the age effect was isolated at a few CpGs
within the target, and other targets showed oscillation in
the direction of the age effect between closely neighbor-
ing CpGs such as RLN1 (Figure 5D; Additional file 7:
Figure S17 and Figure S18, Additional file 24). We in-
cluded 14 negative control targets where we did not ex-
pect to find an age effect by Bis-seq, but 3 of these
targets did show a widespread age effect (Additional file



Figure 5 Validation of ageCGs by targeted capture and bisulfite sequencing of genomic regions encompassing ageCG sites. (A)
Scatterplots of percentage methylation by bisulfite sequencing (Bis-seq) versus Methylation27 β-score and correlation of methylation values
between the two methods across 19 kidney samples used for validation. (B) A representative Bland-Altman plot for comparison of Bis-seq and
Methylation27 methylation values. Points depict the average percentage methylation between both methods plotted against the differences in
methylation between the methods. Dotted lines show limits of agreement (average difference ± 1.96 standard deviation of the difference). (C, D)
Comparison of methylation delta values (median percentage methylation of young minus old samples) at CpGs covered by Bis-seq (top panels)
and Methylation27 arrays (middle panels). Red points represent ageCGs, and delta values shown for Bis-seq are only for the 9 youngest and 10
oldest samples. False discovery rate (q) values indicate significance level of a widespread age effect by linear mixed model results with Bis-seq
data at these target regions. The DKK1 target just missed the significance threshold (q < 0.05), and the RLN1 target demonstrates an example
region that contained abrupt changes in direction of delta values among neighboring CpGs. Bottom panels depict labeled gene regions (blue
boxes, exons blue lines, introns), CpG islands (green boxes), and fetal kidney chromatin states (colors correspond with definitions in Figure 4).
Greater details and examples of all Bis-seq targets are available in Additional files 7 and 24.
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Table 5 Descriptive features and enrichments of
differentially methylated sites with age across human
blood, brain, kidney, and skeletal muscle tissues

Positive ageCGs Negative ageCGs

Within CGIs Within CGSs, CGOs

Generally hypomethylated Generally hypermethylated

Smaller relative slope magnitude Larger relative slope magnitude

Greater enrichment in H3K27Me3 Less enrichment in H3K27Me3

More shared sites across tissues More unique sites across tissues

Genes with lower relative FPKM Genes with higher relative FPKM

Near development-related genes Near tissue-specific regulated genes

Generally further from CTCF sites Generally closer to CTCF sites

Enriched within LADs Not enriched in LADs
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7: Figure S19 and Figure S20, Additional file 24). There
were also nine Bis-seq targets we intentionally captured
where there were no Methylation27 CpGs or where
Methylation27 CpGs were removed by quality filtering, and
four of these targets showed an age association by Bis-seq
(Additional file 7: Figure S21, Additional file 24). Lastly, we
also found cases where we captured regions where an age
effect bordered groups of CpGs that showed no difference
in methylation between young and old (Additional file 7:
Figure S22).
We found our linear mixed models were limited for de-

tection of widespread age effects within the regions where
the direction of the effect oscillated abruptly between
neighboring CpGs as described above. In order to investi-
gate these more complicated regions, additional mixed
models were constructed to test for an interaction be-
tween age and chromosomal position, which would indi-
cate a change in the slope of the age effect at different
regions within the target. These models, however, did not
lead to the identification of any widespread age-associated
targets beyond what was already identified in the primary
mixed model. Overall, Bis-seq revealed a more widespread
age effect across the majority of promoter region targets
with coverage of neighboring CpGs near our identified
ageCGs, and confirmed our array findings.

Discussion
Our parallel analysis of age-dependent methylation in
four human tissues demonstrates specific epigenetic pat-
terns near ageCG sites identified across adult tissues.
Throughout our analysis, we found that skeletal muscle
was unique as this tissue showed age-dependent methy-
lation linked with tissue-specific expressed genes and
proximity to CTCF binding sites. Our results further in-
dicate distinct landscapes of negative ageCGs that are
enriched in tissue-specific methylation differences com-
pared to positive ageCGs, which were more often shared
among tissue types (Table 5). In an analysis of 1,413
CpGs among tissues that did not include skeletal muscle,
a study similar to ours also found a relationship between
increasing and decreasing methylation with age and
CpG context [37]. Our analysis of DNA methylation in
brain is consistent with other studies that showed
enrichment of larger slope magnitude and negative cor-
relation with age in non-CGIs, but the majority of the
age-effect was increasing methylation with a relatively
smaller slope magnitude typically within CGIs [26,38].
Other studies also found age-associated methylation
changes using Methylation27 arrays within normal tissues
such as dermal fibroblasts [39], whole blood [13,24], CD4+

T cells and CD14+ monocytes [13], hematopoietic pro-
genitor cells [7], and mesenchymal stromal and stem cells
[40,41]. Common and tissue-specific, age-related changes
were also identified in various rodent tissues [42,43]. Recent
whole genome bisulfite sequencing comparisons of cord
blood from newborns and CD4+ T cells from centenarians
also demonstrated hypomethylation in non-CGIs near
tissue-specific genes and hypermethylation within CGIs
[44]. A predictive model for age based on Methylation450
data from blood samples showed that this model was less
predictive for other tissues, and tissue-specific predictive
models each contained different CpG markers [25]. There-
fore, the mechanistic basis for both common and tissue-
specific DNA methylation changes over time is unclear.
Increased DNA methylation near non-expressed genes

related to developmental processes, and decreased methyla-
tion within tissue-specific, differentiation-related genes that
are expressed may suggest an age effect that is driven by
the activity of progenitor populations. The traditional role
of maintenance DNA methylation activity occurs within
the context of cell division as DNA methyltransferase 1
(DNMT1) detects hemimethylated DNA [45]. DNA methy-
lation errors with age were shown to be associated with in-
creased methylation within mitotic cells, while non-mitotic
tissue remained unchanged [46]. In a highly mitotic tissue
such as epidermis, DNMT1 was expressed in epidermal
progenitors, lost during differentiation, and required for
sustained repression of differentiation [47]. DNMT1 also
was required to repress CDKN2A and CDKN2B genes, two
cyclin-dependent kinase inhibitor genes that may inhibit
adult stem cell self-renewal [47,48]. CDKN2A/B are two
major sites of age-dependent methylation that we ob-
served in multiple tissues. DNMT1 depletion or Gadd45-
dependent, DNA demethylation led to upregulation of
differentiation-related genes such as actin, tropomyosin,
and myosin heavy chain genes in skeletal muscle [47].
Therefore, it is possible that age-related methylation
changes we observe could be signatures of adult stem cell
activity. In mice, maintenance of DNA methylation was
required for hematopoietic stem cell self-renewal [49].
Analysis of DNA methylation within hematopoietic stem
cells showed age-dependent demethylation within a subset
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of CpGs near myeloid-specific, differentiation-related
genes [7]. Transplanted hematopoietic stem cells from old
mice also demonstrated a bias toward the myeloid lineage
[50]. In summary, maintenance of tissues by adult stem
cells may be one explanation of age-dependent methyla-
tion, and will require future emphasis of investigation
within sorted cell populations.
Some methylation changes with age may also be signa-

tures of minor changes in tissue composition. Inflamma-
tion and fibrotic infiltration of tissues are common features
in solid tissues such as kidney and muscle with age [51-54].
Interestingly, negative kidney ageCGs produced many GO
terms affiliated with immune response and more blood-
specific gene expression compared to positive ageCGs/
genes linked with relatively more kidney-specific gene ex-
pression. These results may be reflective of immune cell in-
filtration in kidney. Muscle-specific GO terms linked to
negative ageCGs could, therefore, be associated with skel-
etal muscle fiber type changes. Previous analyses of gene
expression in muscle and kidney tissues along with hist-
ology of skeletal muscle demonstrated tissue-remodeling
changes with age [54,55]. We have also found histological
changes in skeletal muscle fibers with age in conjunction
with gene expression studies from the same muscle sam-
ples used to isolate DNA for this study (manuscript in
preparation). The use of nuclei enrichment methods to iso-
late native differentiated cell types from infiltrating cells
and adult stem cells may help to more clearly define the
possibility of genuine age-related methylation changes in
non-mitotic cells.
Age-related DNA methylation may also be explained

by potential changes in chromatin structure. In addition
to our study, other groups have identified enrichment of
age-dependent methylation within repressive or bivalent
chromatin [24,41]. A recent study showed DNMT1 oc-
cupancy within hypermethylated gene bodies of tran-
scribed genes and bivalent chromatin states [56]. It has
been proposed that breakdown of chromatin boundaries
at the transcriptional start and end sites may lead to ab-
errant spreading of methylation into promoters and re-
duction of gene body methylation [56]. Therefore, it is
conceivable that partitioning of positive ageCGs in bi-
valent or repressed chromatin, and negative ageCGs
enriched in tissue-specific methylation changes in
enhancer-related chromatin could be related to chroma-
tin boundary breakdown and aberrant DNMT1 activity.
CTCF is associated with boundary formation between
active and repressed chromatin [57]. Variable CTCF oc-
cupancy was also shown to be influenced by differential
DNA methylation [58]. We found very few CTCF bind-
ing sites directly covering ageCGs, but sites were gener-
ally closer to negative ageCGs near genes that were
expressed, and proximity of CTCF to a Methylation27
CpG was associated with higher FPKM. Therefore, it is
possible that tissue-specific, decreasing methylation
changes with age could be linked to nearby CTCF bind-
ing. The enrichment of some ageCGs within LAD edges
may also suggest age-related epigenetic influences on chro-
matin boundary structure in relation to the nuclear mem-
brane. Some studies have shown that nuclear architecture
could be altered during normal aging beyond just modifi-
cations connected with premature aging syndromes [59].
The methyl CpG binding protein MeCP2 was shown to
interact with the lamin B receptor and may connect DNA
methylation with nuclear architecture [60]. Similar to our
findings, whole-genome bisulfite sequencing showed that
approximately 36% of identified age-associated, differen-
tially methylated regions were within LADs [44]. Al-
together, future studies of DNMT1 binding and the
influence of chromatin boundaries may provide explana-
tions for some aspects of age-dependent methylation.
While our results indicate that age-dependent methyla-

tion changes cannot be completely explained by stochastic
alterations, we have not eliminated the potential role of
stochastic mechanisms at work. The majority of ageCGs
(except skeletal muscle) were mostly associated with genes
that are not expressed within these tissues, and may sug-
gest that these ageCG sites are subject to epigenetic drift
more often within silenced or bivalent chromatin. It has
been proposed that the chromatin domains surrounding
these age-dependent methylated sites may contribute to
epigenetic 'control' of cellular plasticity as a result of noise
that could connect epigenetic changes with age to pre-
neoplastic conditions [13,21]. We found that the majority
of shared methylation changes across tissues were increas-
ing with age in CGIs. Whole genome bisulfite sequencing
of newborns and centenarians also showed that decreasing
methylation with age outside of CGIs (also enriched near
tissue-specific genes) is more prevalent than increasing
methylation [44]. Thus, our results yielding greater num-
bers of positive ageCGs that were often shared among tis-
sues may be due to emphasis of Methylation27 CpG
selection within CGIs. Greater coverage of CpGs across
the genome by bisulfite sequencing therefore should ex-
pose more widespread tissue-specific regions associated
with aging.

Conclusions
Our results indicate that age-dependent methylation
changes cannot be completely explained by stochastic
events, although positive ageCGs are enriched for com-
mon effects among tissues that could reflect stochastic
processes. In contrast, sites containing negative ageCGs
are enriched in tissue-specific differences in methylation,
so we suspect that some aspect of age-dependent methyla-
tion is regulated. Our findings concerning DNA methyla-
tion and age in skeletal muscle and kidney are of major
interest. Skeletal muscle showed the least overlap in total
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ageCGs with other tissues, had the strongest association
of ageCGs related to tissue-specific gene expression, and
generally showed a difference throughout our compari-
sons to blood, brain, and kidney in our analysis. Kidney
tissue showed the largest number of ageCGs outside of
CGIs and many negative ageCGs were shared with blood-
specific genes related to immune response. Therefore, we
conclude that there are multifaceted influences of aging
on whole tissue DNA methylation changes.

Materials and methods
Ethics statement regarding human tissue samples
All tissue samples were collected according to protocols
and guidelines at their respective institutions. Iron defi-
cient anemia buffy coat samples were commercially avail-
able and collected by Conversant Bio (Huntsville, AL,
USA). Blood DNAs were isolated using the Agencourt
Genfind v2 kit (Beckman Coulter, Indianapolis, IN, USA)
at HudsonAlpha Institute for Biotechnology (HAIB). Fro-
zen post-mortem brain tissues from Brodmann area 19 of
the cerebral cortex were obtained from the Harvard Brain
Bank, the NICHD Brain Bank at the University of
Maryland, and the Autism Tissue Program. All brain bank
specimens were designated as not human subjects (NHS)
by relevant institutional review boards of both sending
and receiving institutes. Resected normal kidney tissue
samples and DNAs were collected at Stanford in accord-
ance with approved institutional review board protocol
(6208, Panel: 8) for the purpose of a larger paired sample
study with kidney tumors (manuscript in preparation).
Signed patient consent for use of kidney tissue states that
clinical and pathological data (including patient age) can
be associated with their clinical samples and tissue would
otherwise be discarded after processing for clinical care.
Consent forms are stored at Stanford University and avail-
able for review according to local, state, and federal regula-
tions. Vastus lateralis muscle samples were collected at the
Department of Physiology and Biophysics and the Center
for Aging at the University of Alabama at Birmingham as
part of an approved institutional review board exempt, de-
identified tissue bank. Muscle DNA was isolated at
HAIB and the University of Alabama at Birmingham
using a Fastprep automated homogenizer (MP Biologi-
cals Solon, OH, USA) and DNeasy tissue kit (Qiagen,
Germantown, MD, USA) optimized for DNA extraction
from skeletal muscle.

HumanMethylation27 BeadChip data analysis
Isolated genomic DNA (0.5 to 1 μg) was bisulfite con-
verted according to manufacturer’s protocol using the
EZ-96 DNA Methylation Kit (Zymo Research Corpor-
ation, Irvine, CA, USA). Bisulfite-converted genomic
DNA was whole-genome amplified and hybridized to
Infinium HumanMethylation27 BeadChips according to
standard protocol (Illumina, San Diego, CA, USA).
Green and red signal intensity data for autosomal CpGs,
negative control probe data, and detection P-values
were exported from Genome studio (Illumina) and
imported into R for data handling and analysis. Signal
intensity data were divided between probes that used ei-
ther green or red detection (each unmethylated/uncon-
verted and methylated bead type is designed to query a
single CpG using single color detection). Median green
and red background fluorescence intensities calculated
from negative control probes were subtracted from
probe signal intensity data. Signal intensities that did
not have detection P-values (<0.01) that were significant
above the average background for negative control
probes in addition to samples and probe sets that had
greater than 10% missing values were removed from the
data set. Percentage methylation values (β-scores) were
calculated by dividing probe B intensity (detection of
unconverted, methylated DNA) by probe B plus probe
A (detection of converted, unmethylated DNA) intensities.
Negative β-scores (values where the methylated probe was
originally below median background intensity) were ad-
justed to a value of zero and β-scores >1 (values where the
unmethylated probe was originally below median back-
ground intensity) were adjusted to a value of 1. Calcula-
tions of β-scores by Illumina-based software, Genome
Studio, included the addition of a correction factor of 100
in the denominator to prevent values that are below 0 or
above 1. However, we found that the addition of this cor-
rection factor distorted some β-scores for probes that
yielded lower intensities so we opted to exclude 100 in the
β-score calculation (Additional file 7: Figure S23). Raw
microarray data have been submitted and are available
from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) repository
(accession number [GEO: GSE49909]).
β-Scores were also filtered based on target probe se-

quences that did not uniquely map to a single site in the
human genome, or that contained a SNP with a minor al-
lele frequency of 3% or greater (according to HapMap
data) within 15 bp of the queried CpG. To adjust β-scores
for batch effects among beadchips for each tissue type sep-
arately, missing values were imputed and β-scores were
normalized by nonparametric empirical Bayes framework
method within an R package called ComBat [23,61], with-
out the inclusion of any additional covariates. Imputed
values were used during normalization only because Com-
Bat does not permit missing values in the data set, and im-
puted values were set back to missing after normalization.
ComBat normalization was run separately for each tissue
because tissue sample collections and arrays were run at
different times as separate experiments. Therefore, batch
effect across arrays would be completely confounded with
tissue, and methylation differences between tissues would
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be suppressed in the normalization process. Accordingly,
we felt it was inappropriate to normalize tissues together.
We found that background intensity subtraction followed
by normalization across beadchips by ComBat method pro-
duced the highest correlation among β-scores for 23 tech-
nical replicates from brain tissue for probes containing a
low to high range of CpG content (Additional file 7: Figure
S24). To determine age associations, linear regression ana-
lysis was performed using separate models for each tissue
with β-scores as outcomes. Resulting P-values were ad-
justed by the false discovery rate method. CpGs that
exhibited a q-value <0.05 were considered to be ageCGs.
Comparisons between tissues were made in parallel with
regression model results rather than β-scores generated
from each tissue because data from each tissue were nor-
malized and analyzed separately.

Targeted bisulfite sequencing
Forward and reverse primer sets were designed to flank
ageCGs and nonageCGs as determined by beadchip re-
sults (Additional file 24). All forward primers contained
integrated T7 promoter sequences. Probe templates
were amplified by PCR using 25 ng of blood genomic
DNA (Conversant) with AmpliTaq polymerase (Applied
Biosystems, Foster City, CA, USA) using the following
reaction conditions: 95°C for 2 minutes, 30 to 35 cycles
of 95°C for 30 s, 55°C for 30 s, 72°C for 2 minutes, and
72°C for 5 minutes. Reactions that had a low yield were
reassembled using Titanium Taq polymerase (Clontech,
Mountain View, CA, USA with the following condi-
tions: 95°C for 1 minute, 30 to 35 cycles of 95°C for
30 s, 68°C for 2 minutes, and 68°C for 3 minutes. PCR
products were purified using Qiaquick PCR spin col-
umns (Qiagen) and re-amplified using the same PCR
conditions with Titanium Taq. Final PCR products were
vacuum purified using 96-well PCR purification plates
(Qiagen) and quantified by the PicoGreen method
(Invitrogen, Carlsbad, CA, USA). PCR products were di-
luted and pooled equally (approximately 125 ng each) in
groups of eight to nine, and biotinylated capture probes
were synthesized by in vitro transcription using a T7
MAXIscript kit (Ambion, Woodlands, TX, USA) with
Biotin-11-UTP (Life Technologies, Grand Island, NY,
USA). Unincorporated nucleotides were removed using
NucAway gel filtration columns (Ambion). Individual
probe pools were quantified by Qubit RNA fluorometry
(Invitrogen), and mixed equally in a final probe pool
based on RNA concentration.
Multiplexed Illumina sequencing libraries containing

inline methylated barcoded adapters (iXpressGenes,
Huntsville, AL, USA) were constructed from 1 to 1.5 μg
kidney DNA samples that represented the 9 youngest
(35 to 47 years old) and 10 oldest (74 to 86 years
old) individuals that were previously analyzed on
HumanMethylation27 BeadChips. Genomic DNAs
were sheared to a size range of 100 to 500 bp with a
Bioruptor XL sonicator (Diagenode, Denville, NJ, USA)
with a refrigerated recirculator containing 50% ethyl-
ene glycol solution. Samples were sheared using four
cycles of 30 s on and 30 s off for 10 minutes each. Gen-
omic DNAs were end-repaired, adenylated, and ligated
according to the standard protocol. Barcoded libraries
were quantified by Qubit HS DNA fluorometry
(Invitrogen) and pooled in 4-plex (125 ng each).
In preparation for solution hybridizations, stock hu-

man Cot-1 DNA (Invitrogen) was ethanol precipitated,
resuspended in nuclease-free water and 20 μg was mixed
with library DNAs. Library DNA solutions were concen-
trated to 7.5 μl by SpeedVac (Thermo Scientific, Asheville,
NC, USA). Probe solution was prepared by dilution of 14
ng of biotinylated probe in a final volume of 6 μl
containing nuclease-free water with 20 U of Superasin
(Ambion). Library DNA solutions were heated on a ther-
mal cycler to 95°C for 5 minutes followed by 65°C for 5
minutes and mixed with 13 μl of 2× hybridization buffer
(10× SSPE, 10× Denhardts, 10 mM EDTA, and 0.2% SDS)
and 6 μl of probe solution that were pre-warmed to 65°C
for 5 minutes. After 24 h incubation at 65°C, 20 μl of pre-
washed MyOne Steptavidin C1 Dynabeads (Invitrogen)
were mixed with hybridizations. After frequent agitation
of beads with hybridizations for 30 minutes, beads were
collected on a magnet and washed twice in 0.5 ml wash
buffer 1 (1× SSC, 0.1% SDS) at room temperature for 15
minutes each with frequent mixing. Beads were collected
and washed three times in 0.5 ml pre-warmed wash buffer
2 (0.1× SSC, 0.1% SDS) at 65°C for 10 minutes each on a
heat block. Beads were resuspended in 40 μl EB buffer and
captured libraries were bisulfite converted according to
manufacturer’s protocol suggested for small amounts of
fragmented DNA using the Epitect Bisulfite Kit (Qiagen).
DNA was eluted in 40 μl of EB buffer and a second round
of bisulfite conversion was performed. Final bisulfite
converted, captured 4-plex libraries were amplified by
PCR in a 50 μl reaction volume containing 5 μl 10× PCR
buffer, 2 μl of 50 mM MgCl2, 2.5 μl of 10 mM dNTPs,
1 μl of 25 μm PE1 and PE2 amplification primer mix, 5 μl
of 5 M betaine, and 1 μl of Platinum Taq polymerase
(Invitrogen) using the following reaction conditions: 98°C
for 1 minute, 22 cycles of 95°C for 30 s, 62°C for 3 mi-
nutes. PCR reactions were cleaned up and 4-plex library
concentrations were determined by Qubit HS DNA fluor-
ometry (Invitrogen). Final 12-plex libraries were assem-
bled by pooling equal concentrations of three 4-plex
libraries. Final Illumina library preparation and sequencing
was performed according to standard protocol for 2 × 72
bp paired-end runs on an Illumina GAIIx sequencer.
The pass filter sequence attributed to each barcode

was demuxed and assigned to each individual using the



Day et al. Genome Biology 2013, 14:R102 Page 16 of 19
http://genomebiology.com//2013/14/9/R102
Barcodes software [62], which was also used to design
inline barcoded adapter sequences. Human hg19 DNA
sequence was bisulfite converted in silico and a reference
for mapping was built in Bowtie [63]. In preparation for
mapping (solution hybridization captured library for-
ward strand), forward reads were bisulfite converted in
silico, and reverse complement sequence from reverse
reads was made before conversion. Bowtie was used for
mapping converted reads to the converted reference
with -ff and --norc options and SAM file output parame-
ters. Following alignment, mapped genomic coordinates
associated with SAM files were reestablished with the
original unconverted sequence reads. Duplicate reads
were removed, sorted by coordinate with respect to ref-
erence, and BAM files were created for GATK input
[64]. Pileups were assembled across unique reads and
percentage methylation was calculated at individual
CpGs. Base reads exhibiting phred quality scores below
30 were filtered from the analysis and only final percent-
age methylation values with 20× minimum depth cover-
age were used for correlations with β-scores generated
from beadchip analysis. Median percentage methylation
for all 10 old samples were subtracted from the median
percentage methylation of the 9 young samples at indi-
vidual CpGs to generate delta values for genome plots
depicting bisulfite sequenced targets.
Linear mixed models were used to model association of

methylation changes with age at multiple CpGs within 83
bisulfite-sequenced targets using a single model for each
target. An autoregressive correlation structure was used,
providing for a model in which CpGs located in close prox-
imity to one another were more strongly correlated than
CpGs that were further apart. Models were run using the R
package 'nlme' with the correlation structure 'corCAR1',
which represents an AR(1) autoregressive correlation struc-
ture for continuous covariates. Fixed effects included in the
model were age and chromosomal mapping position.
Mixed models were fit on data from 84 targets. For one
gene (ELOVL4), two targets overlapped in covered CpGs,
so the data from both targets were combined into a single
model, leading to 83 models rather than 84.

Gene expression and chromatin state analysis
Human tissue RNA-Seq data were generated at Illumina
and are publicly available through the Human Body Map
2.0 Project [65]. These libraries were constructed from
poly-A selected mRNAs isolated from kidney, brain, white
blood cells, and skeletal muscle. One run for each tissue of
2 × 50 bp paired-end data sets were used for gene expres-
sion analysis. Sequence reads were mapped with TopHat
[66], and expression FPKM values and differences among
tissues across genes were determined by Cufflinks [29]
with hg19 human gtf reference. Publicly available ChIP-
seq bed files for all histone modifications, including ChIP-
seq input control, were downloaded for peripheral blood
mononuclear primary cells, brain middle hippocampus,
fetal kidney day122, and skeletal muscle at the Roadmap
Epigenomics project website at the NCBI [67].
ChromHMM is a publicly available java-based software
package that binarizes histone modification signatures
as either present or absent and integrates multiple chro-
matin datasets across tissues to develop learned chro-
matin states via a multivariate hidden Markov model
[68]. An input of 10 chromatin states was used with de-
fault parameters. Overlap enrichment of chromatin
states with genomic coordinates of interest included our
hg19 genomic coordinates of ageCGs. CTCF ChIP-seq
peak data sets for CD20+ cells, monocytes (Monocytes-
CD14 + _RO01746), kidney tissue (kidney_OC) and
myotubes (HSMMtube) were downloaded from the EN-
CODE ChIP-seq experiment matrix [69]. Genomic dis-
tance from CpGs or LAD edges to the middle of CTCF
peak coordinates were calculated in R. LAD genomic
coordinates were downloaded from Guelen et al. [36].
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Additional file 21: Brain unique ageCGs/genes only expressed
within brain.

Additional file 22: Kidney unique ageCGs/genes only expressed
within kidney.

Additional file 23: Muscle unique ageCGs/genes only expressed
within muscle.

Additional file 24: Target regions and primer sets used to
synthesize probes for capture bisulfite sequencing to validate
ageCGs identified by Methylation27 arrays, and linear mixed model
results for each target containing coefficients, P-values, and
q-values. Also included are Methylation27 CpGs that were covered by
Bis-seq, associated IlluminaIDs, and q-values resulting from linear
regression with age across all CpGs, and indication as to whether these
same CpGs were significantly associated with age with linear regression
results only across the same 19 samples that were bisulfite sequenced.
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