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Abstract

The ChIP-seq technique enables genome-wide mapping of in vivo protein-DNA interactions and chromatin states.
Current analytical approaches for ChIP-seq analysis are largely geared towards single-sample investigations, and
have limited applicability in comparative settings that aim to identify combinatorial patterns of enrichment across
multiple datasets. We describe a novel probabilistic method, jMOSAiCS, for jointly analyzing multiple ChIP-seq
datasets. We demonstrate its usefulness with a wide range of data-driven computational experiments and with a
case study of histone modifications on GATA1-occupied segments during erythroid differentiation. jMOSAiCS is
open source software and can be downloaded from Bioconductor [1].

Background
The advent of high-throughput next generation sequen-
cing (NGS) technologies has revolutionized the fields of
genetics and genomics by allowing rapid and inexpensive
sequencing of billions of bases. Among the NGS applica-
tions, ChIP-seq (chromatin immunoprecipitation followed
by NGS) is perhaps the most successful to date. Initial
ChIP-seq studies largely focused on single-sample investi-
gations. However, as we begin to understand the role of
epigenomics in biological variation, detailed comparisons
of transcription factor (TF) binding and epigenomic marks
between different tissues and individuals at single or mul-
tiple time points or developmental stages are becoming
essential to understand the etiology and progression of
many diseases. Therefore, comparative analysis of multiple
ChIP-seq samples to identify combinatorial TF binding or
epigenome profiles are rapidly emerging. Some examples
include: (i) identifying differential binding of a TF or mod-
ification of a histone mark across multiple individuals, for
example, [2] studied variation in binding of NF-�B and
RNA polymerase II (Pol II) across ten individuals; [3] per-
formed a genetic analysis of Ste12 binding in yeast by
studying differential binding across 43 segregants of a
cross between two yeast strains; (ii) genome-wide binding
profiles of multiple TFs in a single tissue or cell line, for
example, comparative analysis of 22 Caenorhabditis

elegans TFs [4]; (iii) time course or multiple developmen-
tal stage ChIP-seq experiments, for example, Pol II binding
at six developmental stages of C. elegans [4]; and (iv) com-
parative analysis of binding profiles of one or more TFs
with Pol II or modifications of histone marks, for example,
[5,6].
Although there are already more than 30 algorithms and

methods for ChIP-seq analysis (reviewed in [7]), all of
them are limited to single-sample analysis and lack the
ability to simultaneously compare multiple ChIP samples.
The small number of available multi-sample ChIP-seq
analysis tools are either specific to ChIP-seq design (for
example, [8] is specifically for identifying chromatin states
from ChIP-seq of histone modifications; [9] focuses on
gene-centric analysis), exploratory [10] or difficult to gen-
eralize to more than two samples [11-13] due to computa-
tional reasons. This presents challenges for biological
interpretation since combining results from individual
analysis of multiple experiments can be a daunting task,
especially for systematically enumerating combinatorial
patterns of enrichment, controlling the overall false dis-
covery rate (FDR), and prioritizing candidate regions for
further experimental validation. A more recent genome
segmentation algorithm, Segway [14], designed for multi-
ple ChIP-seq datasets, utilizes a dynamic Bayesian network
method and offers flexibility by enabling analysis at 1 bp
resolution. However, the current Segway implementation
requires specialized cluster management systems and is
not readily available for running on standard desktops or
computing clusters without a cluster management system.
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We introduce jMOSAiCS (joint model-based one- and
two-sample analysis and inference for ChIP-seq), which is
a probabilistic model for integrating multiple ChIP-seq
datasets to identify combinatorial patterns of enrichment.
The key components of jMOSAiCS are base models for
the sequencing reads of each individual ChIP-seq experi-
ment and a model that governs the relationship of enrich-
ment among different samples. We chose well-developed
models from the ChIP literature for both of these key
components. We evaluate jMOSAiCS with extensive data-
driven computational experiments and compare it to both
a separate analysis approach of multiple datasets and
chromHMM [8]. We show that jMOSAiCS, which is
applicable to both TF and histone ChIP-seq data, has bet-
ter power and provides better false discovery rate control
than the separate approach. We present an application of
jMOSAiCS to multiple histone modifications during ery-
throid differentiation [6]. This analysis identified a cluster
of GATA1-occupied loci exhibiting a pattern of enrich-
ment that is different than that identified by chromHMM
analysis of the same datasets. We support our computa-
tional predictions by experimental validation of the pre-
dicted patterns of histone modifications for a number of
selected loci. These results indicate that jMOSAiCS can
reveal both global and local combinatorial enrichment pat-
terns with high sensitivity.

Results
Model description
The most commonly used NGS platform for ChIP-seq is
the Illumina platform [5,15-17], which works by sequen-
cing 25 to 100 bp from one or both ends of each DNA
fragment in the sample of interest and generates millions
of short reads. Standard pre-processing of reads involves
mapping to a reference genome and summarizing total
counts in each small non-overlapping interval (referred to
as bins). Statistical analysis to detect enriched regions, that
is, peaks, in a single ChIP-seq sample is based on these
counts and is carried out as a one- or two-sample analysis
depending on the availability of a control sample. In con-
trast, inference from multiple samples involves classifying
regions of genome into patterns of enrichment. For D
samples, we can observe up to 2D different enrichment
patterns across genomic regions. For example, for D = 2,
{00, 01, 10, 11} is the set of possible patterns: 00 means
not enriched in either of the samples; 10 enriched only in
sample 1; 01 enriched only in sample 2 and 11 enriched in
both samples.
We consider I genomic regions of possibly different

lengths across a reference genome. These initial set of I
regions can be obtained by analyzing each dataset sepa-
rately with one of the many available ChIP-seq analysis
methods [7] and identifying regions of enrichment at a

liberal FDR level. Let unobserved random variable
Eid ∈ {0, 1} denote enrichment for region i in dataset d.
The overall enrichment pattern Ei is defined as the vec-
tor (Ei1, ..., EiD). Our joint model has three layers, which
are depicted in Figure 1. The first layer, called the E
layer, concerns joint modeling of Eid for inferring com-
binatorial enrichment. This is enabled by defining a
region-level random variable Bi as described below. The
second layer, called the Y layer, concerns observed read
count data for region i across D samples: Yi = (Yi1, ...,
YiD), where YiD = (Yid1, . . . ,YidLi) and Li denotes the
number of bins in region i. In the case of a two-sample
problem, Yidj is vector-valued and denotes both the
ChIP and control counts for the jth bin of the ith region
in the dth sample. We assume that the counts from dif-
ferent samples are independent conditional on the
enrichment pattern:

Yid⊥Yid′ |Ei,∀d, d′ = 1, . . . ,D,

and hence

Pr(Yi) =
R∑
r=1

[
D∏
d=1

Pr(Yid|Ei = r)

]
Pr(Ei = r),

where r = 1, ..., R represents possible enrichment pat-
terns. Note that Pr(Yid | Ei = r) = Pr(Yid | Eid = rd), rd =
0, 1, and only concerns data for the Li bins from the dth
sample. Eid = 0 implies that all the bins in region i are
from the background (unenriched) component in the
dth sample. In contrast, if Eid = 1, one or more bins
show enrichment. The third layer, called the Z layer,
concerns Zidj, which we define as the bin-specific
enrichment variable. If the jth bin in the ith region is
enriched in dataset d, then Zidj = 1 and is 0 otherwise.
We assume that Zidj, j = 1, . . . , Li,∀d, i are independent
and conditional on the region-specific enrichment indi-
cator Eid and hence:

Pr(Zid1, . . . ,ZidLi |Eid = rd) =
Li∏
j=1

Pr(Zidj|Eid = rd)

The key to our joint modeling approach are the
models we utilize for the E and Y layers. For the E
layer, we adopt the joint ChIP-chip model of JAMIE
[18], which facilitates information sharing across
experiments by capturing the correlation among data-
sets. In this model, the broad dependencies among the
D samples are captured via unobserved variable B,
where Bi ∈ {0, 1} denotes whether region i is poten-
tially enriched and Eid is defined to be 1 if region i is
enriched in sample d. We assume that Ei1, ..., EiD are
conditionally independent given Bi. Let Pr(Bi = 1) = τ1,
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Pr(Eid = 1 | Bi = 1) = hd, and Pr(Eid = 1 | Bi = 0) = 0,
that is, the region cannot be enriched in any dataset if
Bi = 0. Then, we have:

Pr(Eid = rd) = τ1η
rd
d (1 − ηd)1−rd + (1 − τ1)I(rd = 0).

The joint probability of (Ei1, ..., EiD) is given by:

Pr(Ei1 = r1, . . . ,EiD = rD) = τ1

D∏
d=1

η
rd
d (1 − ηd)

1−rd + (1 − τ1)I(r1 = 0, . . . , rD = 0).

For the Y layer, we adopt the model-based approach of
MOSAiCS [19] since MOSAiCS provides parametric
models for read counts from both the enriched and
unenriched regions in both the one- (without a control
sample) and two-sample (with a control sample) pro-
blems. At the bin level, Yidj | Zidj = 0 ~ Nidj, where Nidj ~
NegBin (a, a/µidj) are the background read counts.

Its mean µidj is parameterized as logμidj = β0 + β1Xc
idj ,

where Xidj are the bin-level read counts in the control
sample and c is a transformation parameter set data-
adaptively. For one-sample analysis without a control
sample or for two-sample analysis with a shallow

sequenced control sample, MOSAiCS provides a parame-
terization of the bin-level counts that also depends on
mappability and guanine-cytosine (GC) content. For the
enriched bins, Yidj | Zidj = 1 ~ Nidj + Sidj, where Sidj is the
signal due to enrichment, that is, protein binding or epi-
genomic marker modification. The signal Sidj is modeled
either as a single negative binomial distribution or a mix-
ture of two negative binomial distributions. This choice
is based on model fit and is determined through Bayesian
information criterion (BIC) [20] by MOSAiCS. For model
fitting, we utilize the fact that MOSAiCS provides fast
and accurate estimates of the dataset-specific background
and signal distributions. Therefore, as a part of model fit-
ting, jMOSAiCS only needs to infer parameters asso-
ciated with the B and E variables, namely τ1 and hd, d =
1, ..., D. In addition, jMOSAiCS provides posterior prob-
abilities of the B and E variables that facilitate identifica-
tion of region-specific enrichment patterns across the D
datasets. We implemented jMOSAiCS as an R package
and it is available from Bioconductor [1]. Additional Files
1 and 2 provide a freeze of the R package and its vignette.
These are included in the manuscript for archival
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Figure 1 Pictorial depiction of the jMOSAiCS model for a region across two ChIP-seq datasets. Region i consists of three bins. The B
variable governs whether or not the region is enriched in any of the two samples. The E variables denote sample-specific enrichments and are
conditionally independent given the B variable. The Z variables depict enrichment at the bin level and are conditionally independent given the
sample-specific E variables. When Eid = 1, one or more consecutive Z variables are set to 1 to capture enrichment. The observed read count Y
can be scalar or vector-valued depending on the availability of a control input sample. Data fits at the Y layer are obtained by MOSAiCS [19] on
individual samples and evaluated by the goodness-of-fit (GOF) plots. ChIP: chromatin immunoprecipitation; jMOSAiCS: joint model-based one-
and two-sample analysis and inference for ChIP-seq; MOSAiCS: model-based analysis and inference for ChIP-seq data
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purposes only. We recommend that users download the
most recent version of the software from Bioconductor
[1].

Data-driven computational experiments
We evaluated jMOSAiCS with data-driven computa-
tional experiments by simulating multiple ChIP-seq
datasets based on model fits on actual datasets. We uti-
lized ChIP-Seq experiments of STAT1 binding in inter-
feron-g-stimulated HeLa S3 cells by [21], H3K9me3
(repression mark) modification in peripheral blood
mononuclear cells (PBMCs) from two unrelated indivi-
duals (Bresnick Lab, UW Madison), and methyl CpG
binding protein (MeCP2) in mouse cortex (Chang Lab,
UW Madison). The model fits were obtained by
MOSAiCS and the goodness-of-fit plots indicated satis-
factory fits as discussed in [19]. We simulated multiple
ChIP-seq datasets using parameters that matched
observed values in the STAT1, H3K9me3 and MeCP2
ChIP-seq experiments. The density plots of the read
counts from the actual and sample simulated data are
provided in Additional file 3, Figure S1, and indicate
that the simulated data mimics the actual data well. In
what follows, we first compared jMOSAiCS with a com-
monly practiced separate analysis scheme where each
ChIP-seq dataset is analyzed individually and the enrich-
ment patterns are generated by post hoc analysis. Then,
we compared jMOSAiCS to chromHMM [8], which is
currently the state-of-the-art approach for discovering
combinatorial patterns of chromatin states from multi-
ple ChIP-seq data.
jMOSAiCS improves on a separate analysis of multiple
ChIP-seq datasets
Comparisons based on data-driven STAT1 experi-
ments: analysis of multiple ChIP-seq datasets of two
or more TFs under similar biological conditions Data
for this experiment uses the actual input experiment as
the control sample and emulates ChIP-seq of multiple
transcription factors in a single biological condition.
Since we repeated each simulation experiment multiple
times to assess variability, we restricted our data genera-
tion process to chromosome 12 of the human genome to
reduce computational time. We considered two settings
with D = 2 and D = 3 datasets. The actual parameter
values for each setting are summarized in Additional file
3, Table S1. For both settings, jMOSAiCS and the sepa-
rate analysis approach, which identified enrichment for
each individual dataset separately by MOSAiCS, are
employed. Typical output from a ChIP-seq analysis is a
ranked list of enriched regions. The length of the list can
be based on a FDR cutoff, other types of type-I error rate
control or the investigators may choose to consider a cer-
tain number of high ranking regions. We evaluated the
joint and the separate analysis approaches by taking this

variation in reporting of the results into consideration.
Specifically, we considered: (i) accuracy by plotting the
proportion of correctly detected enriched regions
obtained by the B variable and also correctly detected
enrichments obtained by dataset-specific E variables as a
function of top ranking enrichment regions; (ii) sensitiv-
ity by plotting the proportion of the true set of enrich-
ments that are detected as a function of the nominal false
discovery rate (the total number of detected true enrich-
ments identified at different FDR cutoffs divided by the
total number of true enrichments are reported); (iii) false
discovery rate control by plotting the observed FDR as a
function of target nominal FDR. Ranking of regions and
FDR control for jMOSAiCS relied on the posterior infer-
ence with the B variable, which captures whether or not
any given region is enriched in any of the datasets, and
the E variables, which infer whether or not the regions
are enriched in specific datasets. We generated similar
variables for the separate analysis in a post hoc fashion
after individual samples were analyzed with MOSAiCS.
Figure 2 summarizes these results for the D = 2 set-

ting across 20 simulation runs (results for D = 3 are
available in Additional file 3, Figure S2). This setting, on
average, has 85,000 enriched regions, that is, regions
with B = 1. Figure 2(a), which displays the proportion of
top ranking enriched regions that are true positives,
indicates that jMOSAiCS and the separate analysis exhi-
bit similar accuracy for the top 36% of the enriched
regions; however, jMOSAiCS outperforms the separate
approach significantly as we go down the list of top
ranking regions. The differences in performances are
significant both at the region level (B level, based on the
B variable) in detecting whether or not there is any
enrichment in a region in any of the D datasets and also
at the individual dataset level (E1 and E2 levels, based on
the E variables). Beyond the 68% of the top enrichment
regions (≥58,000), the improvement in accuracy due to
the joint analysis is about 10% at the individual dataset
level. In addition, jMOSAiCS exhibits much smaller var-
iation in accuracy compared to the separate analysis as
the number of top ranking regions considered increases.
Since this setting had similar signal strengths for both
datasets, dataset-specific accuracy improvements over
the separate analysis captured by the E1 and E2 variables
are similar.
Figure 2(b) evaluates the two approaches in terms of

sensitivity and illustrates that jMOSAiCS has better sen-
sitivity than the separate approach at every nominal FDR
level. Overall, jMOSAiCS identifies a larger number of
enriched regions and captures a significantly higher pro-
portion of the true set of enrichments compared to the
separate approach at the same FDR level. When FDR is
0.01, the improvement in sensitivity is 9% at the B level
and more than 15% at the E level. At the same FDR
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Figure 2 Computational experiments comparing jMOSAiCS with the separate analysis approach on data simulated from the STAT1
ChIP-seq experiment. jMOSAiCS-B, jMOSAiCS-E1, and jMOSAiCS-E2 are results derived from posterior probability inferences of the B, E1, and E2
variables. Separate-B, Separate-E1, and Separate-E2 are results derived from separate analysis of each dataset. (a) Proportion of top ranking
enriched regions that are true positives. (b) Sensitivity by nominal FDR. (c) Observed FDR by nominal FDR. ChIP: chromatin immunoprecipitation;
FDR: false discovery rate; jMOSAiCS: joint model-based one- and two-sample analysis and inference for ChIP-seq
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cutoff, jMOSAiCS identifies more true enrichments than
the separate analysis. Next, we show how well the FDR is
controlled by the two approaches in Figure 2(c), which
depicts observed FDR across 20 simulations for different
levels of nominal FDR. Overall, we observe that jMO-
SAiCS provides better FDR control than the separate
approach and its FDR estimates at the E level are more
accurate. For the B level, we observe some overestimation
of FDR by jMOSAiCS; however, this still presents signifi-
cant improvement over the separate analysis. Overall
conclusions based on the H3K9me3 simulations, which
emulate data for a single epigenetic mark in two different
conditions (two different individuals), agree with those of
STAT1 results and the detailed results are provided in
Additional file 3, Figure S3.
Comparisons based on data-driven MeCP2 experi-
ments: joint analysis of replicate ChIP-seq experi-
ments ChIP-seq experiments are often carried out with
at least two biological replicates to allow an assessment
of variability. Prior research suggests that non-specific
biases such as GC content can vary significantly between
biological replicates [19,22]. As a result, it is not often
clear whether or not data can be pooled at the biological
replicate level for the purpose of identifying enrichment.
We studied a joint analysis strategy of multiple replicates
with jMOSAiCS for a computational experiment based
on MeCP2 binding in mice. The data consisted of two
biological replicates with five and six lanes of sequencing
reads, respectively. The number of usable reads within a
lane varied between 6.8 and 19.7 million. MOSAiCS pro-
vided adequate fits on each dataset and the simulation
parameters were set according to estimates from the
MOSAiCS fits. Details on the parameter settings are
available in Additional file 3, Table S1. Within this simu-
lation, we varied the sequencing depth of one of the
replicates (replicate 2) at one, three, and six lanes while
keeping the other replicate at five lanes. One- and three-
lane scenarios emulate the cases where one of the repli-
cates has much lower sequencing depth than the other.
This setting can arise in a variety of contexts, for exam-
ple, when multiple samples are multiplexed together in
one lane or when replicates are generated at different
times. Figures 3, 4, and 5 summarize the results for these
experiments.
Figure 3(a) illustrates that, for lower depth scenarios of

replicate 2, jMOSAiCS has significantly higher accuracy
than the separate analysis at the B level when inferring
whether the regions are enriched in any of the replicate
datasets. E-level comparisons of accuracy for replicate 2
(Figure 5(a)) reveal a consistent 15% difference in accu-
racy between jMOSAiCS and the separate approach.
When both replicates have high sequencing depths, jMO-
SAiCS provides a small but significant improvement over

the separate analysis (jMOSAiCS (5-6) vs. Separate (5-6)
across Figures 3(a), 4(a), and 5(a)). The differences in the
sensitivities of the two approaches vary significantly with
the number of lanes of replicate 2 (Figures 3(b), 4(b), and
5(b)). Overall, jMOSAiCS consistently identifies 10% to
15% more of the true enrichments when replicate 2 has
lower depth. In Figure 4, as expected, the sensitivity of
enrichment detection in replicate 1 is not affected by the
number of lanes of replicate 2 in the separate analysis.
However, jMOSAiCS also improves on this replicate as
the number of lanes for the other replicate increases by
sharing information across the two replicates through the
B variable. The largest improvement due to jMOSAiCS is
in the detection of enriched regions in the low depth
replicate when it has only one lane of data (Figure 5(b)).
In this setting, jMOSAiCS identifies 50% more of the
true enrichment regions across all the nominal FDR
levels. In Figures 3(c), 4(c), and 5(c), we observe that
jMOSAiCS generally has more variable but accurate FDR
estimation for both the B and E levels. When replicate 1
has five lanes and replicate 2 only one lane, FDR controls
by jMOSAiCS for the B and E2 levels are less accurate;
however, the overall accuracy of jMOSAiCS is signifi-
cantly better when a fixed number of top ranking regions
are considered (Figures 3(a) and 5(a)).
We also carried out a variation of this experimental

setting by lowering the sequencing depths of both of the
replicates to one and three lanes. The results are
reported in Additional file 3, Figures S4, S5, and S6, and
agree well with the overall conclusions reported here.
Comparison with chromHMM
chromHMM [8] is a hidden Markov model-based
approach for partitioning a reference genome into mul-
tiple chromatin states based on multiple histone modifi-
cation ChIP-seq datasets. The software accepts as input
either aligned read files or enrichment/peak calls for
each dataset. When provided with the aligned reads, it
partitions the genome into 200 bp intervals and assigns
each interval a 1 or 0 based on a local Poisson back-
ground distribution to depict enrichment. chromHMM
aims to identify global patterns of enrichment and
hence it approximates the space of two-dimensional
enrichment patterns with a much smaller number as it
is computationally prohibitive to consider the full state
space with this model. As output, it reports the specific
combination of epigenomic marks (enrichment patterns)
associated with each chromatin state and the frequen-
cies between 0 and 1 with which they occur. We com-
pared jMOSAiCS and chromHMM in three settings
using the data-driven experiments of STAT1 ChIP-seq
data in HeLa cells. Although these initial parameters are
derived from TF ChIP-seq data, they are able to gener-
ate ChIP-seq data with marginal density similar to those

Zeng et al. Genome Biology 2013, 14:R38
http://genomebiology.com/2013/14/4/R38

Page 6 of 18



(a)
� � � � � � � � � � 	 � � � � 
 � � 	 
 � � � � � � � 
 � � � � � � � �

� �
��
���� ��
���
�
���� �

� 
��

��!�
� 

" # $

% # "
� �

● ●●● ●

� &
● ●●●

� '
●●●● ●●●●●

� (
●●●●● ●●●●●

) ) ) *
●

) +
● ●●● ●●●●

& �
●

●●●●● ●●

& ,
●

●●
●

●

& -

●

, �
●●

●

●●●

, &
●●

●

●●

, '
●

●

●
●

, (
●

●

* )
●

●

* *

●

●

●

* +

●

●

●

' �

●
●

●

●

' ,

●

●

' -

●
●

●●

● . / 0 1 2
. / 0 1 2
. / 0 1 2

(b)
3 4 5 6 7 8 9 : ; <

= >
?@ABA CAB D

E F G

E F H

E F I

E F J

K F E L M L N

●

●

●●

●

L M L O

●

●

●●

●

L M L P

●

●

●

●●

●

●

L M L Q

●●

●

●

●
● ●

L M L R

●●

●

●

●●
●

L M L S

●

●

●

●●
●

L M L T

● ●

●
●

L M L U

●

●●
●

L M L V

●

●●

L M N

●

●●

●

L M N N

●

●●

●

L M N O

●

●●

●

●

L M N P

●

●●

●

L M N Q

●

●●

●

L M N R
●

●●

L M N S
●

●●

●

L M N T
●

●●

●

L M N U
● ●●

●
●

L M N V
● ●●

●

L M O
●●

●
●●

W X Y Z [ \ ] Z ^ _ ` K aZ b c d e d f b ^ _ ` K aW X Y Z [ \ ] Z ^ _ ` g aZ b c d e d f b ^ _ ` g aW X Y Z [ \ ] Z ^ _ ` G aZ b c d e d f b ^ _ ` G a

(c)
3 4 5 6 7 8 9 : ; <

hi
@>
jC>

k
lm
n

E F E

E F K

E F o

E F g

E F p
q r q s

●●

●

●●

●

q r q t

●●

●●

●

q r q u

●

●
●

●
●●

●

q r s

●●

●

●
●

q r t

●

●

W X Y Z [ \ ] Z ^ _ ` K aZ b c d e d f b ^ _ ` K aW X Y Z [ \ ] Z ^ _ ` g aZ b c d e d f b ^ _ ` g aW X Y Z [ \ ] Z ^ _ ` G aZ b c d e d f b ^ _ ` G a

Figure 3 Computational experiments comparing jMOSAiCS with the separate analysis approach on data simulated from the MeCP2
ChIP-seq experiment. Comparisons of region level (B) results of jMOSAiCS and separate analysis. jMOSAiCS (x-y) and Separate (x-y) refer to
jMOSAiCS and separate analysis of x lanes of replicate 1 with y lanes of replicate 2. (a) Proportion of top ranking enriched regions that are true
positives. (b) Sensitivity by nominal FDR. (c) Observed FDR by nominal FDR. ChIP: chromatin immunoprecipitation; FDR: false discovery rate;
jMOSAiCS: joint model-based one- and two-sample analysis and inference for ChIP-seq
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Figure 4 Computational experiments comparing jMOSAiCS with the separate analysis approach on data simulated from the MeCP2
ChIP-seq experiment. Comparison of dataset-specific region-level enrichment detection (E1) by jMOSAiCS and separate analysis on replicate 1.
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immunoprecipitation; FDR: false discovery rate; jMOSAiCS: joint model-based one- and two-sample analysis and inference for ChIP-seq
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of histone data. The specific simulation settings are as
follows:

SE1: Same as the STAT1 simulation described in the
earlier section.
SE2: h2 lowered from 0.9 to 0.5 to increase the num-
ber of regions with ten patterns.
SE3: Strengthened the ChIP signal by substituting b1
and b2 with 2 × b1 and 2 × b2.

One of the major differences between chromHMM
and jMOSAiCS is that chromHMM models binary
enrichment indicators as the observable data whereas
jMOSAiCS models the actual read counts (Y layer). In
addition, jMOSAiCS can capture all possible enrichment

patterns even for a large number of datasets (D) because
the joint distribution of the enrichment variables is gov-
erned by the univariate B variable. To investigate the
effect of the binarization in chromHMM, we considered
three versions of chromHMM: (i) original chromHMM;
(ii) chromHMM coupled with true binarization; (iii)
chromHMM where bin-level binarization is based on
peak calling with MOSAiCS at nominal FDR levels of
0.05 and 0.2. Detailed results for setting SE2 are pro-
vided in Figure 6. Figure 6(a) summarizes enrichment
pattern identification results for the 11 and 10 patterns
based on the genome annotations obtained by jMO-
SAiCS and variations of chromHMM. The results for
the 01 pattern are not displayed because there are very
few regions with this pattern and they are mostly
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Figure 6 Comparisons between jMOSAiCS and chromHMM based on data simulated from ChIP-seq experiment of STAT1 in HeLa3
cells (setting SE2). (a) Identification of combinatorial patterns: 11: enriched in both samples; 10: enriched only in sample 1. True: number of
enriched regions; chromHMM: results by original four-state chromHMM; chromHMM-true: four-state chromHMM coupled with true binary data
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misannotated by chromHMM. Overall, these results
illustrate that jMOSAiCS outperforms four-state
chromHMM in this setting. When coupled with true
binary data, chromHMM annotated all chromatin states
accurately. Using peaks called by MOSAiCS increased
the accuracy compared to the original four-state
chromHMM but identified fewer correct regions in the
11 state. Figure 6(b) provides detailed comparison of
jMOSAiCS with the two-state chromHMM where
chromHMM approximates the full state space of dimen-
sion 4 by only two states. A similar comparison between
jMOSAiCS and four-state chromHMM is provided in
Additional file 3, Figure S7. We observe that approximat-
ing the state space of dimension of 4 by two dimensions
leads to significant loss in accuracy for chromHMM. At
the individual dataset level, the difference in accuracy
between two-state chromHMM and jMOSAiCS can be
as large as 20% (comparing jMOSAiCS-E2 with
chromHMM-E2 in Figure 6(b)). The results for simula-
tion settings SE1 and SE3 are similar and provided as
Additional file 3, Figures S8 and S9.

Scalability with large numbers of datasets
We evaluated how well jMOSAiCS scales up to large
numbers of datasets by extending our simulation setting
SE3 with 5b1 and 5b2. We generated D = 20 datasets and
assigned each region of size 250 bp to one of the 76 states
out of 220 possible states, including the 0...0, non-enrich-
ment state. The number of regions assigned to each indi-
vidual enrichment state ranged between 1,048 and 1,212
and, on average, each state had 1,129 assigned regions.
These experiments revealed that because the dataset-spe-
cific background and signal read distributions are esti-
mated separately in the jMOSAiCS framework, it scales
up easily to large numbers of datasets. Thus, for D = 20
datasets, jMOSAiCS runs in 2 hours on a 64-bit machine
with an Intel Xeon 3.0 GHz processor after the back-
ground and signal read distributions are obtained for
each dataset. Dataset-specific estimation with MOSAiCS
requires 30 minutes to an hour; however, since each
dataset can be handled separately, this process can be
run in parallel using multiple CPUs.
Although jMOSAiCS can generate any number of

states for large D, it is important to summarize key states
for any given collection of datasets. One key advantage of
jMOSAiCS is that the model fitting can be carried about
without a priori setting the maximum number of allowed
states. After the model is fit, each region is initially
assigned to the state for which it has the largest posterior
probability. However, if a much smaller number of states
is desired, we consider the top K states with the largest
number of region assignments and reassign each region
to these K states. From the perspective of jMOSAiCS,
summarizing the set of possible states with K states is

analogous to choosing the number of clusters in a clus-
tering problem. We have implemented a penalized aver-
age silhouette based criterion [23], which is widely used
in clustering and seems to work well for our large D
simulations (Additional file 3, Figure S10).
We next evaluated the accuracy and sensitivity for

both jMOSAiCS and chromHMM by varying the maxi-
mum number of allowed states, Kmax, as 30, 76, and 100
(Figures 7(a) and 7(b)). Overall, jMOSAiCS has very
good accuracy and sensitivity when the number of states
is chosen optimally or overestimated. However, when
the number of states is grossly underestimated, the
accuracy is comparable to those of large numbers of
states for the top set of detected enriched regions
(approximately 35%) and then it rapidly deteriorates
since the small number of states simply does not cap-
ture the state of many regions. In order to evaluate

(a)

(b)

Figure 7 Computational experiments for evaluating scalability
of jMOSAiCS to large numbers of datasets using data
simulated from ChIP-seq experiment STAT1 in HeLa3 cells
(extension of setting SE3). (a) Accuracy of enrichment detection
at the combinatorial pattern (state) level for different numbers of
states. (b) Sensitivity at varying numbers of states.
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chromHMM under similar conditions, we performed
chromHMM analysis by requiring 30, 76, and 100 states
and thresholded the resulting emission probabilities to
generate distinct states. This resulted in a total of 27,
63, and 85 distinct states.

Application to mouse ENCODE data of multiple histone
modifications during erythroid differentiation
We applied jMOSAiCS to ChIP-seq data with antibodies
specific to the histone modifications H3K4me3,
H3K4me1, H3K27me3, and H3K9me3 in G1E and G1E-
ER4+E2 cells [6]. These data were generated as part of the
mouse ENCODE project and analyzed by chromHMM to
segment the mouse erythroid genome based on chromatin
modifications in [6]. The original analysis by [6] focused
on segmentation of GATA1-occupied segments since G1E
cells are a GATA-(null) cell line derived from targeted
disruption of GATA1 in embryonic stem cells whereas
G1E-ER4 cells are G1E cells engineered to express a con-
ditionally active estrogen receptor (ER) ligand binding
domain fusion to GATA1 (ER-GATA1). When estradiol is
added to the culture medium (G1E-ER4+E2), the ER-
GATA1 fusion protein gets activated and binds to
GATA1-specific sites. chromHMM analysis approximated
a 24 = 16 dimensional state space with only six states. Our
jMOSAiCS application explored the full state space and,
in addition to the six states identified by chromHMM,
identified five more states to which a significant number
of GATA1-occupied segments were assigned. Figure 8(a)
enumerates the state space for jMOSAiCS and Figure 8(b)
lists the number of GATA1-occupied segments for each
state in the G1E and G1E-ER4+E2 cells. Overall, we
observe that chromHMM captures broad dominating pat-
terns and jMOSAiCS improves resolution for identifying
local structures. In Figure 8(c), we provide normalized
read data for the 311 GATA1-occupied peaks (with width
less than 1,400 bp out of a total of 366) identified to switch
from state 1101 in G1E to state 1111 in G1E-ER4+E2. We
note that the chromHMM output does not include the
1101 or the 1111 pattern and distributes these loci over
the six patterns it utilizes. However, as evidenced from the
heatmaps, these GATA1-occupied segments lack the
repressive mark H3K27me3 in G1E cells and exhibit the
mark upon activation of GATA1 in G1E-ER4+E2.
We annotated these GATA1-occupied segments with

respect to gene location and identified that a large sub-
set of them (48%) map to the immediate 5’ or 3’ end, or
within introns of known genes. We studied expression
profiling data from GATA1-null erythroid precursor
cells that stably express a conditionally active allele of
GATA1 fused to the estrogen receptor ligand binding
domain (G1E-ER-GATA-1). Differential expression ana-
lysis of uninduced and beta-estradiol-induced G1E-ER-
GATA-1 cells [24] identified Elf1, Atp6v1e1, Cmas,

Ech1, Extl3, Rab4a, Casc3, and Lrrf1p2 as significantly
induced upon GATA1 activation with beta-estradiol
treatment for 24 hours (FDR adjusted P value = 0.05).
Although H3K27me3 is conventionally viewed as inhibi-
tory to transcription, [25] recently identified an enrich-
ment profile of H3K27me3 in the promoter of genes
associated with active transcription. The genes we iden-
tified constitute further examples of this class. Several of
these significantly expressed genes have established
functions in stem cell biology and hematopoiesis. For
example, Elf1 is an Ets transcription factor involved in
the control of hematopoiesis through participating in
the transcriptional activation of the Stem Cell Leukemia
(SCL)/T-cell Acute Lymphocytic Leukemia-1 (TAL1)
gene [26,27]. We performed quantitative ChIP analysis
of these four loci and validated the H3K4me1,
H3K4me3, H3K27me3, and H3K9me3 marks at these
loci in beta-estradiol-induced G1E-ER-GATA-1 cells
(Additional file 3, Table S2). We provide detailed read
coverage plots of these regions in Additional file 3, Fig-
ures S11 to S14 along with their chromHMM annota-
tions to further support their jMOSAiCS annotation.
In addition to the above direct comparison of jMO-

SAiCS analysis with the results of [6] for a six-state
chromHMM, we repeated the chromHMM analysis by
requiring 16 states. We cross-tabulated the numbers of
GATA1-occupied segments assigned to each of the 16
states by the two methods in Additional file 3, Figures
S15(a) and (b) for the G1E and G1E-ER4+E2 cell lines,
respectively. Overall, 59% of regions are assigned to the
same chromatin state by both methods in both cell lines
(G1E: 6774/ 11485 and G1E-ER4+E2: 6752/11485). The
largest discordances between the two methods are due
to the modification of the H4K3me3 mark. Most of the
regions that are identified as unenriched for the
H4K3me3 in chromHMM are identified as enriched by
jMOSAiCS. In order to quantify this further, we margin-
ally tabulated the regions according to their enrichment
classification by both chromHMM and jMOSAiCS
(Additional file 3, Table S4). Next, we investigated the
raw data (both ChIP read counts and log base 2 ratios
of ChIP over scaled input read counts) within each of
these classes. Additional file 3, Figures S16(a) and (b)
display boxplots of log base 2 ratios for 11 (detected as
enriched by both jMOSAiCS and chromHMM), 10
(detected as enriched only by jMOSAiCS), 01 (detected
as enriched only by chromHMM), and 00 (not detected
as enriched by either method) groups within each mark
across the two cell lines. For each GATA1-occupied seg-
ment, we used the bin with the maximum log base 2
ratio to generate these plots. Overall, we observed that
regions declared as enriched by both methods showed
the most enrichment of ChIP compared to input and
the regions identified as unenriched by both methods
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showed the least enrichment. Although the differences
between 10 (jMOSAiCS specific) and unenriched
regions did not appear as pronounced as the differences
between 11 (enriched according to both methods) versus
00 (unenriched according to both methods), the
observed differences were highly significant (P values <

1 × e-10 with both the t-test and Wilcoxon rank-sum
test), indicating that these regions are enriched for
H4K3me3. In addition, we observed a relatively small
number of regions identified as enriched exclusively by
chromHMM. Although some of these appear to be true
false negatives for jMOSAiCS, overall, they tend to be

(a) (b)

(c)

Figure 8 Analysis of mouse ENCODE histone ChIP-seq datasets. (a) List of combinatorial patterns identified by jMOSAiCS. Patterns 1 to 6 are
also identified by chromHMM. (b) Changes in chromatin states between G1E and G1E-ER4+E2 cells for DNA segments occupied by GATA1 in
the latter cells. (c) Heatmap of normalized raw data for a group of 311 GATA1-occupied segments identified to switch from 1101 in G1E cells to
1111 in G1E-ER4+E2 cells by jMOSAiCS. Enriched regions (excluding segments longer than 1,400 bp in size) identified across different marks are
aligned and depicted in between the dashed lines.
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regions with relatively low ChIP counts. Additional
file 3, Figure S16(c) displays ChIP versus normalized
input read counts across all the regions, stratified with
respect to their enrichment status by jMOSAiCS and
chromHMM, for the H3K4me1 mark in G1E-ER4+E2
cells. We also evaluated how the performance of
chromHMM changed for the segments that were identi-
fied as changing from 1101 in G1E to 1111 in G1E-ER4
+E2 by jMOSAiCS. Although the 16-state chromHMM
produced concordant results with jMOSAiCS for 58.5%
of these GATA1-occupied loci, including the validated
Atp6v1e and Cmas loci, it still mislabeled both Elf1 and
Extl3 (Additional file 3, Table S5).

Discussion
Integrative analysis of multiple ChIP-seq datasets for
enumerating enrichment patterns is an emerging need.
We introduced jMOSAiCS to enable efficient one- or
two-sample integrative analysis of multiple ChIP-seq
datasets. jMOSAiCS capitalizes on the dataset-specific
accurate model fits by MOSAiCS and efficient encoding
of the joint distribution of the enrichment across multi-
ple datasets by the JAMIE approach of [18]. Diagnostics
is an important component of probabilistic model-based
approaches. jMOSAiCS inherited the goodness-of-fit
plots provided by MOSAiCS for model checking and
diagnostics. In contrast to some of the few available
joint analysis methods for multiple ChIP-seq data (for
example, [11]), jMOSAiCS can efficiently handle multi-
ple datasets and is accurate at both obtaining global and
local structures. A comparison of jMOSAiCS with
chromHMM revealed that jMOSAiCS is better at identi-
fying local structures since it can capture any specific
enrichment pattern and does not rely on approximating
the number of states with a smaller number of patterns.
This observation is further supported by identification
of a considerable number of GATA1-occupied segments
in a different state than was identified by chromHMM.
Our computational experiments indicated that jMO-
SAiCS scales up well with large numbers of datasets and
it can summarize key states with a penalized average sil-
houette criterion [23].
Our analyses illustrated that jMOSAiCS is powerful in

analyzing biological replicates simultaneously when it is
not appropriate to pool them due to non-specific
sequencing biases such as the GC content. When one or
more of the replicates is shallowly sequenced compared
to others, jMOSAiCS boosts the power for these repli-
cates. Another particularly attractive use for jMOSAiCS
is when the TF of interest interacts with the reference
genome through another DNA binding protein. For
example, virus-host interactions are typically facilitated
by virus proteins interacting with the host DNA via host
proteins. Joint analysis of ChIP-seq data for host and

virus proteins has the potential to boost power for
detecting regions enriched for the virus protein (for
example, [28]).
Meta-analysis of multiple samples is another integra-

tive approach to multiple ChIP-seq samples. However,
the focus of such meta approaches (for example, MM-
ChIP [29] and ChIPMeta [30]) is the analysis of ChIP
(-chip or -seq) data of the same protein under similar
biological conditions but by different platforms or
laboratories for the purpose of boosting the power of
peak detection. The focus in jMOSAiCS is combinator-
ial pattern detection across multiple datasets (same TF
in different biological conditions or different TFs or epi-
genomic marks in the same biological conditions).
Therefore, our computational experiments focused on
comparing jMOSAiCS with chromHMM, which is suita-
ble for the latter task. jMOSAiCS can handle multiple
ChIP-seq datasets with varying experimental parameters
such library size and read length because the marginal
distributions of read counts in each dataset are modeled
in a dataset-specific manner.
jMOSAiCS currently implements a naive Bayes model

for the joint distribution of the dataset-specific enrich-
ment indicators. This model captures broad dependen-
cies among the samples via an unobserved variable. A
potential improvement is to consider how enrichment of
a region in a sample depends on its enrichment in other
samples. A general way to induce such a structure is by
Bayesian networks, where a directed acyclic graph repre-
sents the dependencies. Trees, which generalize first-
order Markov chains, and mixtures of trees for which
efficient structure learning algorithms exist [31] are two
appealing, flexible candidates that can encode for increas-
ingly complex dependencies. Furthermore, they can be
tailored for specific characteristics of analyzed samples,
for example, a Markov structure for time course ChIP-
seq experiments.

Conclusion
jMOSAiCS facilitates joint analysis of multiple ChIP-seq
datasets for both identifying enrichment patterns of a
single TF across multiple conditions and characterizing
enrichment patterns of multiple epigenomic marks in
one or more conditions. Given model fits from the
peak/enrichment caller MOSAiCS, a typical jMOSAiCS
run takes about 30 minutes (2 hours) to identify combi-
natorial patterns of four (twenty) datasets across the
whole mouse genome with a single CPU on a 64-bit
machine with an Intel Xeon 3.0 GHz processor.

Materials and methods
Model fitting and parameter estimation in jMOSAiCS
Let f0d and f1d denote read count distributions for unen-
riched and enriched bins in dataset d. We will denote
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estimates of these by MOSAiCS with f̂0d and f̂1d .

When a region is not enriched in dataset d, data for all
the bins within that region are generated from f0d .
Hence:

p0id ≡ Pr(Yid|Eid = 0) =
Li∏
l=1

fod(Yidl).

If region i is enriched in dataset d, then read counts
for one or more consecutive bins within region i are
generated from f1d. This enforces local spatial coherence
and is motivated by the wide range of enriched region
widths observed in ChIP-seq data of histone modifica-
tions. Note that this kind of spatial dependence is also
capture by the chromHMM model. Let Vid denote the
number of enriched bins and Sid ∈ {1, . . . , Li} the start-
ing position of the set of enriched bins in region i.
Then, we have:

p1id ≡ Pr(Yid|Eid = 1)

=
Li∑
v=1

Pr(Yid|Eid = 1,Bi = 1,Vid = v)Pr(Vi = v|Eid = 1,Bi = 1)

=
Li∑
v=1

(
Li−v+1∑
s=1

Pr(Yid|Eid = 1,Bi = 1,Vid = v, Sid = s)Pr(Sid = s|Eid = 1,Bi = 1,Vid = v)
1
Li

)

=
Li∑
v=1

(
Li−v+1∑
s=1

Pr(Yid|Sid = s,Vid = v,Eid = 1,Bi = 1)
1

Li − v + 1
1
Li

)

=
Li∑
v=1

Li−v+1∑
s=1

(
1
Li

1
Li − v + 1

s−1∏
l=1

f0d(Yidl)
Li∏

l=s+v

f0d(Yidl)
s+v−1∏
l=s

f1d (Yidl)

)
,

where we assume that the run of enriched bins can
start anywhere within the region with equal probability
of 1/Li and the length of the run has a uniform discrete
distribution, that is, Pr(Sid = s | Eid = 1, Bi = 1, Vid = v)
= 1/(Li - v + 1), s = 1, ..., Li - v + 1. The likelihood of
full data is a product over I regions:

Pr (Y,E,B) =
I∏

i=1

Pr (Yi,Ei,Bi)

=
I∏

i=1

Pr (Yi|Ei,Bi)Pr (Ei|Bi)Pr (Bi)

=
I∏

i=1

⎛
⎝

[
(1 − τ1)

D∏
d=1

(1 − Eid) p0id

]1−Bi[
τ1

D∏
d=1

(
(1 − ηd) p01d

)1−Eid(
ηdp1id

)Eid]Bi
⎞
⎠.

(1)

We estimate f0d and f1d for each individual dataset
separately using the MOSAiCS algorithm. Therefore, the
quantities p0id and p1id, i = 1, ..., I, d = 1, ..., D are fixed

given f̂0d and f̂1d . Because B, E, S, and V are unob-

served variables, we derive an expectation-maximization
[32] algorithm to obtain maximum likelihood estimators
of τ1 and h = (h1, ..., hd) based on the likelihood in (1).
The full data log likelihood can be written as:

L (τ1, η) =
I∑

i=1

[
(1 − Bi) log (1 − τi) + Bi log τi

]

+
I∑

i=1

D∑
d=1

[
Bi (1 − Eid) log (1 − ηd) + BiEid log (ηd) + C

]
,

where C is a constant that does not contain the para-

meters to be estimated and can be computed given f̂0d
and f̂1d . Taking expectation of the full data likelihood

conditional on observed read counts Y, we obtain the
following E and M steps, where τt1, h

t denote parameter
estimates from the tth iteration:
E step:

a(t+1)i ≡ E
(
Bi|Y, τ t

1, η
t)

=
Pr

(
Yi|Bi = 1, τ t

1, η
t
)
τ t
1

Pr
(
Yi|Bi = 1, τ t

1, η
t
)
τ t
1 + Pr

(
Yi|Bi = 0, τ t

1, η
t
) (
1 − τ t

1

)

=

τ t
1

D∏
d=1

[
ηt
dp1id +

(
1 − ηt

d

)
p0id

]
τ t
1

D∏
d=1

[
ηt
dp1id +

(
1 − ηt

d

)
p0id

]
+

(
1 − τ t

1

) D∏
d=1

p0id

bid
(t+1) ≡ E

(
BiEid|Y, τ t

1, η
t)

=
ηt
dp1ida

(t+1)
i

ηt
dp1id +

(
1 − ηt

d

)
p0id

M step:

τ
(t+1)
1 =

I∑
i=1

a(t+1)i

I

η
(t+1)
d =

I∑
i=1

b(t+1)id

I∑
i=1

a(t+1)i

, d = 1, . . . ,D.

This EM algorithm converged within 100 iterations in
both the computational experiments and the analysis of
ChIP-seq data of histone modifications used in the case
study. We used the posterior probabilities Pr

(
Bi|Yi, τ̂1, η̂

)
and Pr

(
Eid|Yi, τ̂1, η̂

)
for false discovery rate control with

a direct posterior probability approach [33] in the com-
putational experiments.

Computational experiments
All the computational experiments were based on the
following procedure. The reference genome (human for
STAT1 and H3K9me3 or mouse for MeCP2) was
divided into bins (50 bp for STAT1, 250 bp for
H3K9me3, and 200 bp for MeCP2) based on average
fragment size in the actual experiment. Consecutive
n ∈ {3, 5} bins were organized into non-overlapping
regions to facilitate B-level data generation. For each
region i, i = 1..., I, the Bi variable was set to 1 with
probability τ1. If Bi = 0, then all the Eid and Zidj vari-
ables were set to 0 for that region, indicating no enrich-
ment for all the bins in the region across all the
datasets. For regions with Bi = 1, the E variable was
simulated at the dataset level, for example, Eid was set
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to 1 with probability hd. The bin-level Z variables were
generated based on Eid. For Eid = 1, the region i should
have at least one enriched bin in dataset d. To ensure
this, we selected the bin that the enrichment starts
within in a region at random and allowed the number
of consecutive bins with enrichment to vary within each
region. For non-enriched bins, Zidj was set to 0 and the
corresponding Y layer data (read counts) were generated
from the background distribution. For enriched bins,
Zidj was set to 1 or 2 with probabilities p1 and 1 - p1,
and denoted the components of the mixture distribution
for the signal. Specifically, Zidj = 1 implied that Yidj ~
Nidj + NegBin(b1, c1 /(1 + c1)), whereas Zidj = 2 referred
to Yidj ~ Nidj + NegBin(b2, c2 /(1 + c2)). We generated
multiple ChIP-seq datasets by varying the signal compo-
nent parameters b1, b2, c1, c2, and p1 of this procedure
according to the parameters estimated from the actual
ChIP-seq studies (Additional file 3, Table S1).

Separate analysis of multiple ChIP-seq datasets and
annotation of genomes into combinatorial patterns in the
computational experiments
In the separate analysis, we analyzed each dataset by
MOSAiCS [19]. This allowed us to quantify the gain due
to the joint modeling approach rather than differences in
modeling the read count data by different ChIP-seq ana-
lysis methods. MOSAiCS reports bin-level posterior
probabilities of enrichment (posterior probabilities at the
Z layer). For the sensitivity and empirical FDR calcula-
tions, enriched bins were identified at the various levels
of nominal FDR using a direct posterior probability
approach [33]. Then, dataset-specific E variables were set
to 1 if there was at least one enriched bin in a region.
Similarly, region-specific B variables were set to 1 if at
least one of the E variables for a given region was set to
1. The accuracy calculations required ranking of regions
based on the B and E variables. For this purpose, we fol-
lowed a meta-analytic approach and used the maximum
of bin-level posterior probabilities of enrichment within
each region for inference at the E level and the maximum
within each region across D datasets for inference at the
B level. Then, these posterior probabilities were used for
ranking the regions in the accuracy plots. We also con-
sidered FDR control over these meta-analytically defined
B and E variables as an alternative to the above approach
for identifying the set of enriched regions in the separate
analysis; however, this modification yielded similar
results and did not change the overall conclusions. Rank-
ing for the joint analysis in the accuracy plots utilized
posterior inferences for the B and E variables based on
the jMOSAiCS model. Accuracy as a function of the top
number of detected enriched regions required ranking of
regions by chromHMM. For each region, we summed
over chromHMM estimated pattern probability times the

pattern-specific emission probability of each bin within
the region and generated pattern-specific posterior prob-
abilities for ranking.
Comparison of chromHMM and jMOSAiCS required

annotation of the genome into TF binding/chromatin
states based on the jMOSAiCS fit. We calculated the
joint posterior probability of the E variables Pr(Ei1 = r1,
..., EiD = rD | Yi, τ1, h) for each combination of r1, ..., rD,
where ri = 0, 1. The enrichment pattern (or state) of
each region is assigned as the one with the maximum
joint posterior probability.

jMOSAiCS analysis of multiple histone modification ChIP-
seq datasets from [6]
We partitioned the mouse genome into 200 bp intervals
and applied jMOSAiCS to data from the G1E and G1E-
ER4+E2 cells separately. Enriched regions were identi-
fied by controlling the FDR at 0.01 through the E vari-
able. In the downstream analysis, we focused on 11,485
GATA1-occupied segments defined by [6] and enumer-
ated H3K4me3, H3K4me1, H3K27me3, and H3K9me3
modification patterns of these regions across the two
cell types. The median width of the GATA1-occupied
segments was 800 bp and only 0.75% of the segments
were wider than 2,000 bp.

Quantitative ChIP assay
Quantitative ChIP analysis was conducted with two
independent biological replicates of beta-estradiol-
induced G1E-ER-GATA-1 cells using control and speci-
fic antibodies as described in [34]. The relative levels of
the specific histone marks are indicated in the Addi-
tional file 3, Table S2. The PCR primers used to analyze
the four loci are provided in Additional file 3, Table S3.

Additional material

Additional file 1: R package for jMOSAiCS.

Additional file 2: Vignette for the R package jMOSAiCS.

Additional file 3: Supplementary materials. This file contains further
details on and additional results from the computational experiments
presented as supplementary text and figures.
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