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Abstract

Background: Genetically identical populations of cells grown in the same environmental condition show
substantial variability in gene expression profiles. Although single-cell RNA-seq provides an opportunity to explore
this phenomenon, statistical methods need to be developed to interpret the variability of gene expression counts.

Results: We develop a statistical framework for studying the kinetics of stochastic gene expression from single-cell
RNA-seq data. By applying our model to a single-cell RNA-seq dataset generated by profiling mouse embryonic
stem cells, we find that the inferred kinetic parameters are consistent with RNA polymerase II binding and
chromatin modifications. Our results suggest that histone modifications affect transcriptional bursting by
modulating both burst size and frequency. Furthermore, we show that our model can be used to identify genes
with slow promoter kinetics, which are important for probabilistic differentiation of embryonic stem cells.

Conclusions: We conclude that the proposed statistical model provides a flexible and efficient way to investigate
the kinetics of transcription.
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Background
RNA-sequencing (RNA-seq) is a recently developed
approach that allows an unbiased examination of the
transcriptome to be performed using high-throughput
DNA sequencing [1-3]. Compared to gene expression
microarrays, the previous gold standard for genome-
wide quantification of gene expression levels, RNA-seq
has some specific advantages: it allows splicing to be
assayed in an unbiased manner [4], it better enables the
measurement of expression levels over a wide dynamic
range [1], and it allows allele-specific expression to be
interrogated [5,6].
Until recently, most RNA-sequencing experiments

began with a large population of cells (> 105), and, as a
result, the gene expression counts obtained can be
viewed as an average across that population. However,
recent developments in sequencing technology have
enabled the use of much smaller volumes of starting
material, and several groups have described protocols
for assaying the transcriptome of single cells [7-11].

This is vital in many biological contexts, such as early
embryonic development and tumor etiology, where it is
expected that different cells will have distinctive expres-
sion profiles. Furthermore, even in tissues that are typi-
cally considered to consist of homogeneous populations
of cells, inter-cellular variability in gene expression levels
can be considerable. For example, the cells of a geneti-
cally identical population grown in the same environ-
ment have been shown to display substantial variability
in the total number of mRNA molecules that they con-
tain [12-14]. This variability can be partially explained
by noting that gene expression levels are regulated by
combinatorial interactions between numerous cellular
components, where these interactions involve random
biochemical reactions [12,13,15].
More generally, single-cell imaging methods (e.g.,

RNA fluorescence in situ hybridization or FISH) have
been widely applied to elucidate the principles of gene
expression regulation in vivo [16]. These studies have
observed that: i) gene expression is heterogeneous
[12-14]; ii) genes fluctuate between an ‘on’ and ‘off’ pro-
moter state and transcripts are produced in bursts
[17-19]; and iii) the transition to the ‘on’ state requires
multiple rate-limiting steps that are determined by

* Correspondence: marioni@ebi.ac.uk
European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome
Sciences Campus, Hinxton, Cambridgeshire, CB10 1SD, UK

Kim and Marioni Genome Biology 2013, 14:R7
http://genomebiology.com/2013/14/1/R7

© 2013 Kim and Marioni licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:marioni@ebi.ac.uk
http://creativecommons.org/licenses/by/2.0


many sequential interactions between regulators and
chromatin, but the transition to the ‘off’ state can be
determined by a single rate-limiting step [16]. Some
examples of the stochastic processes that play a role in
the transition to the ‘on’ state are the recruitment of
nucleosome remodelers and histone-modifying enzymes
by activators, the rate at which RNA polymerase II
(PolII) escapes from the core promoter to produce short
RNA molecules prior to pausing, and the rate at which
PolII leaves pausing and enters productive elongation
[15].
One situation where stochastic fluctuation in gene

expression levels plays an important role is in the regu-
lation of mouse embryonic stem (ES) cells [14]. Mouse
ES cells are derived from the inner cell mass (ICM) or
the epiblast of the pre-implantation blastocyst [20], and
they can proliferate in the same undifferentiated state
indefinitely whilst retaining the ability to differentiate
into all adult cell lineages. These two hallmarks of ES
cells are conferred by tightly controlled gene regulatory
networks [21]. However, growing evidence suggests that
the ability of an individual ES cell to differentiate into
an adult cell type at a specific time is determined sto-
chastically [14,22]. In particular, the expression levels of
key regulatory genes, such as Nanog, Stella, and Rex1,
which are markers of pluripotency, are heterogeneous in
ES cells even though the cells are cultured in the same
condition [23]. This implies that ES cells exist in a
dynamic equilibrium between states that show different
propensities for differentiation [22-24].
Here, we develop a statistical framework motivated by

a kinetic model for transcriptional bursting to model the
biological variability present in single-cell RNA-seq data.
The framework derived makes it easy to perform para-
meter fitting and allows the kinetics of transcription to
be investigated. We apply our model to single-cell RNA-
sequencing data generated from mouse ES cells and
demonstrate that the estimated parameters are consis-
tent with promoter kinetics inferred from RNA poly-
merase II binding and chromatin state profiles.

Results
A kinetic model for stochastic gene expression
The standard kinetic model for gene expression assumes
that a gene can fluctuate randomly between ‘on’ and
‘off’ promoter states, where mRNA can be transcribed
only in the ‘on’ state [16,25] (Figure 1A). If a single rate-
limiting step determines the rates of transcription and
transitions between the two promoter states [16,17], the
fluctuations between the ‘on’ and ‘off’ promoter states
can be described by a two-state Markov process where
kon is the rate (per unit time) at which a gene becomes
active and koff is the rate (per unit time) at which the
gene becomes inactive. Consequently, 1/koff and 1/kon

describe the average waiting time of a gene in the active
and inactive states, respectively, and the (average) frac-
tion of time that a gene spends in the active state is:

p =

1
koff

1
koff

+
1
kon

=
kon

koff + kon
. (1)

Moreover, when the gene is in the active promoter
state, it is assumed to be transcribed at a rate, s, per
unit time and the number of mRNA molecules of the
gene is assumed to decay at a rate, d, per unit time.
Subsequently, transcriptional bursting can be character-
ized by two parameters: the average number of synthe-
sized mRNA molecules while a gene remains in an
active state (burst size or transcriptional efficiency,
s/koff) and the frequency at which bursts occur per unit
time (burst frequency, kon) [18,26-28].
Given these four kinetic parameters, a set of differen-

tial equations has been derived describing how the num-
ber of mRNA molecules of a given gene within a cell, x,
changes over time (Additional file 1; [17]). The steady
state distribution of these equations has been shown to
take the form [17-19]:

P(x|kon, koff, s, d) =

( s
d

)x
e−s/d �

(
kon
d

+ x
)

�

(
kon
d

+
koff
d

)

x! �

(
kon
d

+
koff
d

+ x
)

�

(
kon
d

) 1F1

(
koff
d

,
kon
d

+
koff
d

+ x;
s
d

)
. (2)

As noted previously, the four kinetic parameters are
all measured in units of time. However, since the inverse
of the decay rate, 1/d, denotes the average lifetime of an
mRNA molecule, it can be used to normalize the other
kinetic parameters so that they are independent of time
[16,17]. This is equivalent to setting d = 1 in (2), and we
do this henceforth.

A Poisson-beta model
The parameters of the steady-state solution (2) have
previously been estimated from observed data using two
different approaches. The first approach is to match the
first three moments to their empirical values [17].
Although this method is straightforward and computa-
tionally efficient, it does not guarantee that the estimates
are within the parameter space. To overcome this pro-
blem the maximum likelihood estimates of the para-
meters can be found using a numerical optimization
approach [18]. However, the computation of the conflu-
ent hypergeometric function, 1F1, is difficult, because
there is no numerical method for its accurate, fast and
reliable computation within all parameter values [29].
Furthermore, when the number of observations is small
(less than 100), the maximum likelihood approach
sometimes gives unrealistically large estimates of the
kinetic parameters [18].
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Figure 1 Poisson-beta model. (A) Schematic of a two-state kinetic model for stochastic gene expression. (B) Heat map of the maximum P
values of two goodness-of-fit tests for Poisson and negative binomial distributions. One thousand combinations of kon and koff were uniformly
sampled from the log space by fixing s to 100. For each combination of the sampled parameters, 1,000 independent samples were generated
from the Poisson-beta distribution to evaluate the fit of the data to the Poisson and negative binomial distributions using a bootstrap-based
goodness-of-fit test. The colors represent minus log10-transformed P values and the heat map is interpolated from the scattered data by using a
Delaunay triangulation method. (C) Heat map of the Fano factor as a function of kon and koff with a fixed rate of transcription (s = 100). Along
the black dashed line fixing the average number of mRNA molecules to 20, the four combinations of kon and koff give the varied level of the
Fano factor and show different patterns of the variability of the number of mRNA molecules between cells. At point 1 with the highest Fano
factor, the transitions between the two promoter states are slow, and the standardized expression level of a gene exhibits a U-shaped
distribution, resulting in a bimodal distribution. At point 2, the transition to the inactive state is faster than the transition to the active state, and
therefore the mRNA distribution has a long right tail resulting from occasional transcriptional bursts. As kon and koff increase at points 3 and 4,
transitions between promoter states become fast, resulting in a Poisson-like distribution of the number of mRNA molecules with the Fano factor
approaching 1. Note that this plot is similar to a recent figure generated by [25]. (D) Representative Poisson-beta distributions from four points
in (C), which were computed with the auxiliary variable approach. (E) The corresponding beta distributions of p.
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To overcome these limitations, we propose an auxili-
ary variable approach. Specifically, we let:

x|s, p ∼ Poisson(sp)

p|kon, koff ∼ Beta(kon, koff)
(3)

where p is an auxiliary variable following a beta distri-
bution. The marginal distribution P(x|s, kon, koff), which
is known as the Poisson-beta distribution (PoBe) [30],
takes the same form as the steady-state distribution
described in equation (2).
Interestingly, the mean of the auxiliary variable p is

equal to the fraction of time that a gene spends in the
active state (1). Further, Smiley and Proulx [31] showed
that if a gene’s expression level oscillates between 0 and
s/d and the maximum expression level of the gene (s/d)
is set to 1, then given the two-state model, its stationary
distribution takes the same form as that of p.
Given count measurements from RNA-sequencing data,

we assume that the number of reads mapped to a gene is
proportional to the expression of the relevant mRNA
molecule in the cell under study, and thus the parameters
of the kinetic model can be inferred using a Bayesian hier-
archical approach, such as a Gibbs sampler.
One of the most significant challenges in applying the

kinetic model for gene expression is interpreting the
parameters. As noted in a recent review by Munsky et al.
[25], when kon and koff are large the transitions between
the promoter states are rapid, resulting in a Poisson or
negative binomial-like distribution of the number of
mRNA molecules [18,19]. In the context of fitting the
kinetic model to real data this corresponds to areas of
the parameter space where the three parameters are not
identifiable (Method; Figure 1B). By contrast, when kon
and koff are small, there are relatively few transitions
between the two promoter states and the resulting distri-
bution of gene expression molecules between different
cells is bimodal - here all three parameters are identifi-
able (Figure 1B-E).
In practice, to ensure that the parameters are statisti-

cally identifiable, we suggest fitting three models (Pois-
son, negative binomial and Poisson-beta) to each gene
before using a goodness-of-fit statistic to determine
whether there is evidence that the parameters of the
Poisson-beta model can be identified unambiguously
(Methods). An alternative approach would be to fit a
hierarchical Bayesian model to each gene and to use this
to determine the best fitting distribution.

Assessing the reliability of the Poisson-beta model
Single-cell RNA-sequencing was recently used to assay the
transcriptome of 12 mouse ES cells derived from the ICM
at embryonic day 3.5 (E3.5) [8]. To explore the transcrip-
tional kinetics of ES cells, we fitted the Poisson-beta

model to these data (Methods). Before interpreting the
inferred kinetic parameters, it is necessary to: i) account
for the high amount of technical variability present in sin-
gle-cell RNA-seq data; ii) consider whether the parameter
estimates are statistically identifiable; and iii) assess
whether we can draw meaningful inferences about tran-
scriptional kinetics based on gene expression measure-
ments from 12 cells.
Accurately quantifying the technical variability present

in single-cell RNA-seq data is challenging. While experi-
mental approaches vary, most suggest that when repli-
cate libraries are generated from small quantities of
RNA (taken from the same, large, population of RNA),
the resulting read counts display more technical variabil-
ity, especially for lowly expressed genes, than is observed
in population-based RNA-sequencing analyses [7,10,11].
This is likely due to experimental factors such as the
efficiency of the RT step and the PCR amplification
when small quantities of starting material are considered
[7,10,11]. Some attempts have been made to character-
ize the technical variation using spike-ins [11] but evi-
dence for the efficacy of such approaches is still limited.
Given these challenges and the limitations of current
experimental approaches, we instead removed lowly
expressed genes that are most likely to display high
technical variability [7,10,11]. We considered a gene as
lowly expressed if the maximum normalized read count
was less than 50. This cutoff was determined using tech-
nical replicate data generated using the same protocol
applied to the 12 ES cells [8] or oocytes [7] (Additional
file 1, Figure S2). Across the set of 18,735 genes that
were expressed in at least one cell, 12,551 genes had an
expression level above this cutoff, and we fitted the
Poisson-beta model separately to each of these genes
(Additional file 1, Figure S3).
Using the identifiability criteria outlined in the pre-

vious section, we determined that 10,298 (82%) of the
12,551 genes had identifiable parameters at a P value
threshold of 0.1 (Methods). The genes with non-identifi-
able parameters could be split into two broad categories
(Additional file 1, Figure S3):

1. Genes with relatively large values of koff,i and low
values of kon,i. This corresponds to genes that have a
low expression count in most cells and high expression
in a small number of cells (typically one). When we
simulated data from the Poisson-beta model with para-
meter values in this range (Methods), we found that
kon,i was estimated accurately, but that both koff,i and si
were underestimated (Additional file 1, Figures S6,
S11).
2. Genes with large values of koff,i and kon,i (Addi-
tional file 1, Figure S3). This set of genes are typically
highly expressed (Additional file 1, Figure S12C, F)
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with a relatively low amount of variability across cells,
as evidenced by the large values of koff,i and kon,i.
While it is possible that this set of genes do have very
fast promoter kinetics, statistically it is impossible to
distinguish this from their being permanently in an
active state (that is, koff,i is equal to or very close to
zero). Hence, it is impossible to interpret either the
raw or the derived parameters in this situation (Addi-
tional file 1, Figure S12). More generally, this explains
why we do not observe many low values of koff,i in
our set of parameter estimates. Moreover, it helps to
explain some of the identifiability problems that
other approaches have encountered when estimating
koff,i.

Given these observations, we focus henceforth on the
10,298 genes that have identifiable estimates of the
kinetic parameters. However, before going on to make
biological inferences based upon these parameters it is
first necessary to assess whether any meaningful conclu-
sions can be drawn from fitting the Poisson-beta model
to data from only 12 independent ES cells.
To do this, we fitted the Poisson-beta model to data

simulated using the estimated parameters by increasing
the number of cells from 3 to 100 (Methods). As
expected, the correlation between the parameter esti-
mates and the true values improved as the number of
cells increased (Additional file 1, Figure S4-S8), with a
good agreement when 12 cells were considered (Addi-
tional file 1, Figure S6-S8). Our simulations also dis-
played a tendency to underestimate si; the extent of the
underestimation decreased as the number of cells
increased (Additional file 1, Figure S8). One effect of
this is a slight bias in the estimated values of kon,i and
koff,i (Additional file 1, Figures S6-S8). This is not unex-
pected since si can be considered to represent the ‘maxi-
mum’ rate of transcription and, especially when the
number of cells is small, a cell where a gene is expressed
at this ‘maximal’ value will not be simulated. Neverthe-
less, our simulations do provide confidence in the fit of
the Poisson-beta model when a moderate number of
cells (greater than or equal to 12) are considered. How-
ever, it is important to acknowledge that drawing strong
biological inferences about the kinetic parameters of
individual genes from only 12 cells is difficult - hence,
in what follows we consider properties of sets of genes
with specific values of the kinetic parameters. This will
also help mitigate any effect that technical noise in the
measurement of gene expression levels will have upon
our interpretation of the data.

Transcriptional kinetics of mouse ES cells
To explore how the kinetic parameters provide informa-
tion about the regulation of transcription we utilized

independent information collected from v6.5 mouse ES
cells (derived from the ICM at E3.5) on RNA polymerase
II (PolII) occupancy and various histone modifications
[32-34]. At the global level, the rates of transcription and
gene activation are strongly correlated with the average
expression level while the rate of gene inactivation displays
a more modest correlation (Additional file 1, Figure S13).
As expected, we observed that PolII occupancy was

positively correlated with the average expression level
(Additional file 1, Figure S14) and burst frequency and,
less strongly, with burst size (Figure 2). This is true irre-
spective of whether PolII levels are calculated in the gene
body (P < 10-16 by the Spearman rank test) or in the pro-
moter region (P < 10-16) although the correlation was
noticeably higher in the gene body comparison (Figure 2,
S14 in Additional file 1). However, when we examined
the relationship between burst size and the pause index,
defined as the ratio of PolII occupancy in the promoter
compared to the gene body, we observed no correlation
(P = 0.5558; Figure 2G). Moreover, although we found
that both burst frequency and the average proportion of
time a gene is transcriptionally inactive were significantly
correlated with the pause index (P < 10-16 for kon,i; P <
10-13 for koff,i / (koff,i + kon,i); Figure 2H-I), the correlation
is low in both cases, providing only very weak evidence
that PolII pausing is associated with burst frequency.
A more stringent cutoff that filtered out the lowly
expressed genes did not change the results (Additional
file 1, Figure S15).
Histone modifications can alter chromatin structure,

thereby affecting the regulation of gene expression levels
[35]. Two of the most widely studied modifications,
H3K4me3, which is associated with active promoters,
and H3K27me3, which is associated with genes that
have repressed expression levels, have previously been
positively and negatively correlated with gene expression
levels [32]. Our estimated kinetic parameters are consis-
tent with these observations (see figure legend for statis-
tical details, Figure 3A-I, S16 in Additional file 1): genes
with a H3K4me3 modification have significantly higher
rates of transcriptional bursting and frequency than
genes with no modification or those with a H3K27me3
modification. The third histone mark, H3K36me3,
which is linked to transcriptional elongation and is
enriched over the gene body region [32], was strongly
associated with both burst frequency and the fraction of
time that a gene spends in the inactive state but more
weakly with burst size (Figure 3J-L).
Finally, we used gene ontology (GO) analysis [36] to

interrogate the set of genes that showed characteristics
associated with transcriptional bursting (that is, a low
value of kon,i and a relatively high value of koff,i). To do
this, we sorted all 10,298 genes in descending order
according to the ratio of koff,i to kon,i, and considered
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the top 3,000 genes from this list. As a control, we chose
the bottom 3,000 genes from the sorted list (Figure 4A).
We found that genes with characteristics of rapid tran-
scriptional bursting were associated with ‘cell adhesion’
(Figure 4B), consistent with previous reports that many
tissue-specific cell adhesion molecules are expressed in
mouse ES cells [37] and show cell-to-cell variation in
expression in mouse ES cell colonies [38]. Interestingly,
the gene ontology category ‘neural differentiation’ was
also enriched (Figure 4B), providing some support for
previous studies that suggested that neural fate is chosen
in a stochastic way [14,39]. Conversely, the least varying
set was enriched with genes associated with the mainte-
nance of basic cellular function (Figure 4B), suggesting
that eukaryotic cells have evolved to reduce the transcrip-
tional noise of housekeeping genes for the phenotypic
stability of basic cellular functions [14].

Discussion
The Poisson-beta model provides a convenient statistical
framework for modeling single-cell RNA-seq data and for
studying the kinetics of stochastic gene expression. Since
the kinetic parameters of individual genes inferred from
the small number of cells are likely to be noisy and may be
influenced by technical variability, we focused on the sum-
mary properties of genes. Importantly, we confirmed that
the kinetic parameters derived from the Poisson-beta
model are consistent with PolII binding and chromatin
modifications using single-cell RNA-seq data generated
from mouse ES cells. Our results suggest that the chroma-
tin state of genes, defined by H3K4me3, H3K27me3 and
H3K36me3 modifications, affects transcriptional bursting
by modulating both burst size and frequency, consistent
with a recent study that suggested chromosomal location
affected these kinetic characteristics [40].

Figure 2 Correlation of transcriptional kinetics with RNA polymerase II binding in mouse ES cells. In the left panel, burst size (or
transcriptional efficiency) is plotted on the x-axis. In the middle panel, burst frequency is plotted on the x-axis. In the right panel, the average
fraction of time that a gene spends in the inactive state is plotted on the x-axis. In all the panels, the following are plotted on the y-axis: the
gene body activity (A)-(C), the gene promoter activity (D)-(F), and the pause index (G)-(I). Each point represents one identifiable gene with a
normalized read count greater than 50 in at least one cell. r is the Spearman correlation coefficient.
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Figure 3 Correlation of transcriptional kinetics with histone modifications in mouse ES cells. (A)-(C) Box plots that compare burst size (A), burst
frequency (B), and the average fraction of time that a gene spends in the inactive state (C) in the four groups. Given the annotated chromatin state of
the two histone modifications by [33], we classified all expressed genes with a normalized read count greater than 50 in at least one cell that have
chromatin state annotations into four groups: H3K4me3 only (n = 6,291), H3K27me3 only (n = 10), H3K4me3 + H3K27me3 (n = 630) and none (n =
492). The H3K4me3 group is significantly different from the others except the H3K27me3 group: P < 10-16 for si/kon,i, P < 10-16 for kon,i, P < 10-16 for koff,
i/(koff,i + kon,i), by the Mann-Whitney U-test. Due to the small number of samples of the H3K27me3 group, the H3K4me3 group is less significantly
different from the H3K27me3 group: P = 0.0486 for si/kon,i, P = 2.73 × 10-5 for kon,i, P = 8.12 × 10-5 for koff,i/(koff,i + kon,i). In each box plot, the central red
line indicates the median value, the top and bottom edges of the box are the 75th (q3) and 25th (q1) percentiles, and the ends of the whiskers
denote q3 + 1.5(q3 - q1) and q1 - 1.5(q3 q1). (D)-(L) The profiles of H3K4me3, H3K27me3, and H3K36me3 ChIP-seq reads mapped near TSSs
(Transcription Start Sites) are shown for genes with values of the three kinetic quantities in the top 10% (red), middle 10% (green), and bottom 10%
(blue) of the relevant distribution. The y-axis is the total number of reads mapped to each position.
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However, while our model has clear advantages, it also
has a number of limitations. First, in this manuscript, we
do not address the modeling of the technical variability
directly, primarily because our understanding of how
different experimental characteristics (RT efficiency,
PCR amplification, etc.) might contribute to the noise is
very limited. Instead, we focus only on genes that are
moderately to highly expressed, since previous single-
cell RNA-seq studies have shown that such genes
display less technical variability. However, as our under-
standing of the technical variability inherent to single-
cell RNA-seq increases, it will be important to adapt the
model presented herein.
Second, in common with most other biochemical

models of gene expression, we assume that the rate of
transitions to the ‘on’ state is governed by a single rate-
limiting step. While this assumption facilitates the deri-
vation of a closed-form solution for the master equa-
tions, and thus the implementation of the Poisson-beta
model described in this paper, in higher eukaryotes acti-
vation requires many sequential steps [15]. However, the
limited experimental data about the relative contribution
of the different steps justifies the simplified model pre-
sented herein.
Third, the three kinetic parameters are currently mea-

sured in units of ‘per mRNA average lifetime’ since they
are normalized by the decay rate. To estimate them in
units of ‘per second’, we should directly measure the
decay rates of all genes. This can be done by metabolic
labeling of RNA with 4-thiouridine coupled with mas-
sively parallel sequencing [41]. Another improvement
would be to measure the number of mRNA molecules

directly rather than using the number of reads as a sur-
rogate, which can be done by accurate digital quantifica-
tion of transcriptome via digital RNA-seq [42].
Finally, our model assumes that the transition times

and kinetic parameters are identical for the two alleles
of each gene. A recent study established that 39% to
51% of heterozygous loci show allele-specific expression
when expression patterns are measured in single cells of a
two-cell embryo [43]. This suggests that the kinetic para-
meters and transition times of the underlying Markov
chain might differ significantly between the two alleles of a
gene. Further, Miyanari et al. [44] showed that Nanog is
largely expressed from a single allele in ES cells and can
transition between alleles randomly. Such variability can
be incorporated into our model by measuring the expres-
sion of each allele independently (for example by using
MMSEQ [45]), and using these measures as the input to
the model. However, the mouse ES cell data we analyzed
were generated from an inbred population of mice
(C57BL/6J) and, as a result, we could not apply this
approach. Examining allele-specific variation using the
Poisson-beta model provides an interesting avenue for
future research.

Conclusions
To summarize, as the single-cell field progresses towards
analyzing the transcriptome of large numbers of indivi-
dual cells in parallel, it will become increasingly impor-
tant to develop statistical methods that accurately model
stochastic gene expression. In this context, we anticipate
that the Poisson-beta model presented here, and other
similar approaches, will be vital in maximizing the

Figure 4 Functional enrichment of noisy genes showing distinctive bursting patterns of gene expression in mouse ES cells. (A) The
mean of kon,i and koff,i (± S.E.) for the top and bottom 3,000 genes sorted by koff,i/ kon,i. (S.E. = standard error). (B) The Benjamini corrected P
values of the 18 GO terms enriched in the top or bottom 3,000 genes. GO, gene oncology.
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amount of biological insight that can be obtained from
these data.

Materials and methods
Properties of the steady-state solution of the master
equation
The steady-state solution of the chemical master equa-
tions can be written as a beta convolution of Poisson
random variables (equation (3)). The mean and variance
of the Poisson-beta distribution with these parameters
are given by:

E[x] =
kon

kon + koff
s

Var[x] = E[x] +
konkoff

(kon + koff)
2

s2

(kon + koff + 1)
.

The squared coefficient of variation, h2, and the Fano
factor, �, are given by:

η2 =
kon + koff
kons

+
koff

kon (kon + koff + 1)

φ = 1 +
skoff

(kon + koff) (kon + koff + 1)
.

A hierarchical Bayesian model
To estimate the parameters of the Poisson-beta distribu-
tion, we utilized a hierarchical Bayesian model, which
can be described as:
1. Draw si for gene i from a gamma distribution:

si ∼ Gamma (si|αsi ,βsi)

2. Draw kon,i for gene i from a gamma distribution:

kon, i ∼ Gamma (kon, i|αkon,i ,βkon,i)

3. Draw koff,i for gene i from a gamma distribution

koff, i ∼ Gamma (koff, i|αkoff ,i ,βkoff,i)

4. Draw pij for gene i and cell j from a beta distribu-
tion

pij ∼ Beta (pij|kon,i, koff,i)
5. Draw xij from a Poisson distribution

xij ∼ Poisson(xij—titjsipij)

where ti is the length of gene i (the length of the tran-
scripts measured in bp) and tj is the normalization fac-
tor for cell j. We used the scale normalization method
of [46] to estimate the normalization factor for each
cell. We make an implicit assumption that the number

of reads is proportional to the number of mRNA mole-
cules present in a cell.
The graphical model representing this generative pro-

cess is shown in Additional file 1, Figure S1.

Learning by collapsed Gibbs sampling

Let X = {xij} be a set of observed read counts, and

P =
{
pij

}
be a set of pij. We treat the top-level variables,

shown in the graphical model in Additional file 1, Figure
S1, � = {αkon,i ,βkon,i ,αkoff,i ,βkoff,i ,αsi ,βsi} , as fixed hyper-
parameters. We derive a collapsed Gibbs sampler to
infer all unknown variables � = {P , {kon,i}, {koff,i}, {si}}
given X . In the following, a subscript with a minus sign
that is attached to a set of variables means that the vari-
ables indexed by the subscript are excluded from the
set.
The full conditional distributions of si, pij, kon,i, and

koff,i are non-standard univariate. To sample the vari-
ables from their full conditional distributions, we use
slice sampling [47]. For completeness, the full condi-
tional distributions are given below:
1. Sampling pij

P(pij|P−ij,X ,�\P ,�) ∝ P(pij|kon,i, koff,i)P(xij|si, pij)

2. Sampling kon,i

P(kon,i|{kon,−i},X ,�\{kon,i},�) ∝ P(kon,i|αkon,i ,βkon,i)
J∏

j=1

P(pij|kon,i, koff,i)

3. Sampling koff,i

P(koff,i|{koff,−i},X ,�\{koff,i},�) ∝ P(koff,i|αkoff,i ,βkoff,i)
J∏

j=1

P(pij|kon,i, koff,i)

4. Sampling si

P(si|{s−i},X ,�\{si},�) ∝ P(si|αsi ,βsi)
J∏

j=1

P(xij|si, pij)

The log posterior probability, which can be used to
monitor the convergence of the Gibbs sampler, is given by

lnP(�|X ,A) =
N∑
i=1

J∑
j=1

{
xij ln titjsipij − titjsipij − ln xij!

}

+
N∑
i=1

⎡
⎣ J∑

j=1

{
ln

�(kon,i + koff,i)
�(kon,i)�(koff,i)

+ (kon,i − 1) ln pij +(koff,i − 1) ln(1 − pij)
}

− si
βsi

+ (αsi − 1) ln si − αsi lnβsi − ln�(αsi)

− kon,i
βkon,i

+ (αkon,i − 1) ln kon,i − αkon,i ln βkon,i − ln�(αkon,i)

− koff,i
βkoff,i

+ (αkoff,i − 1) ln koff,i − αkoff,i lnβkoff,i − ln�(αkoff,i)
]
.
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For the hyperparameters, we used the following settings:
βsi = maxjxij , βsi = maxjxij , αkon,i = 1 , βkon,i = 100 ,
αkoff,i = 1 and βkoff,i = 100. We chose the empirical Bayes
prior on si so that it becomes almost uniform across all
realistic ranges for the parameter. The priors on kon,i and
koff,i were chosen to place substantial probability across
the identifiable parameter space. When we used different
priors on kon,i and koff,i (αkon,i = 1 , βkon,i = 10, 000 ,
βkoff,i = 10, 000 , βkoff,i = 10, 000 for more diffuse priors

and αkon,i = 1 , βkon,i = 10 , αkoff,i = 1, βkoff,i = 10 for more
concentrated priors), the inferred kinetic parameters
remained similar, except for the large values of the para-
meters that were penalized by the concentrated prior.
These results suggest that our model is relatively insensi-
tive to the choice of priors (Additional file 1, Figure S9,
S10).

Bootstrap-based goodness-of-fit test
To assess whether a set of observations generated from
a Poisson-beta distribution follows a Poisson or negative
binomial distribution, we used the parametric bootstrap
for goodness-of-fit testing [48]. We first generated n
independent samples X1,..., Xn from the Poisson-beta
distribution with given parameters using the auxiliary
variable representation. We then fitted these n simulated
samples to the Poisson and negative binomial distribu-
tions using a maximum likelihood approach. The
MATLAB function ‘nbinfit’ was used to compute the
maximum likelihood estimates of the parameters of the
negative binomial distribution. Based on the maximum
likelihood estimates of the Poisson or negative binomial

distribution, θdist
n (dist ∈ {Poisson,NB}) , we computed

the Kolmogorov-Smirnov (KS) test statistic KSdistn such

that

KSdistn = max
i

|Fn(Xi) − Fθdist
n
(Xi)|

where Fn is the empirical distribution function for the

n independent samples and Fθdist
n is the cumulative dis-

tribution function of the Poisson or negative binomial
distribution with the maximum likelihood estimates

θdist
n . To evaluate the bootstrap P value, we repeated the

following steps from k = 1 to k = B:

1. Given the maximum likelihood estimates θdist
n , gen-

erate n bootstrap samples X∗
1,k, . . . ,X

∗
n,k from

Fθdist
n
(dist ∈ {Poisson,NB}) .

2. Compute the maximum likelihood estimates θ
∗,dist
n,k

from the bootstrap samples.
3. Estimate the empirical distribution function of the

bootstrap samples

F∗
n,k(x) =

1
n

n∑
i=1

1(X∗
i,k ≤ x).

4. Compute the KS test statistic KS∗,dist
n,k such that

KS∗,dist
n,k = max

i
|F∗

n,k(X
∗
i,k) − F

θ
∗,dist
n,k

(X∗
i,k)|.

Finally, the bootstrap P value is given by

1
B

B∑
k=1

1(KS∗,dist
n,k > KSdistn ).

For this study, we set n = 1,000 and B = 1,000.

Estimating the kinetic parameters from synthetic data
Given the posterior means of si, kon,i and koff,i for each
gene, we generated 3, 6, 12, 20 or 100 independent sam-
ples from the Poisson-beta distribution. We run the
Gibbs sampling algorithm by setting the total number of
Gibbs iterations to 10,000, and computed the posterior
means by discarding the first half of the samples in each
chain as a burn-in period.

Gene activity and pause index for GRO-Seq
To quantify PolII activity at the promoters and gene body
regions, we defined three measures based on the number
of mapped reads of GRO-Seq data [49]. First, gene body
activity is defined as N/L where N is the number of GRO-
Seq reads mapped from +1 kb of the transcription start
site to the end of a gene, and L is the length of the region.
Second, gene promoter activity is defined as the maximum
count of reads in a 50 bp window, where we took the max-
imum among all the windows within the ± 1 kb region of
transcription start sites. Finally, we defined the pause
index as the ratio of the gene promoter activity (divided by
50) to the gene body activity.

Gene ontology analysis using DAVID
To examine whether particular classes of GO biological
processes (GOTERM_BP_FAT) are enriched in the top
or bottom 3,000 genes sorted by koff,i/ kon,i, we used the
DAVID functional annotation clustering tool (the classi-
fication stringency was set to ‘medium’) [36]. By setting
up the 10,298 genes as a background, we chose a repre-
sentative GO term from each annotation cluster with
the Benjamini-corrected P value less than 0.05, provid-
ing 18 GO terms in total. The results are in Additional
file 2, Table S1 (top 3,000) and Additional file 3, Table
S2 (bottom 3,000).

Code availability
The MATLAB source code and a compiled version of
the same are available in Additional file 4.
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Additional material

Additional file 1: Supplemental methods and list of supplemental
figures.

Additional file 2: Table S1.

Additional file 3: Table S2.

Additional file 4: MATLAB source files and the compiled version of
the same.
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