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Abstract

We describe MetAMOS, an open source and modular metagenomic assembly and analysis pipeline. MetAMOS
represents an important step towards fully automated metagenomic analysis, starting with next-generation
sequencing reads and producing genomic scaffolds, open-reading frames and taxonomic or functional annotations.
MetAMOS can aid in reducing assembly errors, commonly encountered when assembling metagenomic samples,
and improves taxonomic assignment accuracy while also reducing computational cost. MetAMOS can be
downloaded from: https://github.com/treangen/MetAMOS.

Rationale
Metagenomics has opened the door for unprecedented
studies of microbial communities sampled from the envir-
onment (for example, ocean surveys [1-3], Antarctic expe-
ditions [4], and even health-care facilities [5]), as well as
from living organisms [6] and the human body [7-11].
These studies have been made possible by dramatic recent
advances in high-throughput sequencing technologies, the
same technologies that have revolutionized the study of
individual genomes, such as recent efforts to reconstruct
the genomes of thousands of humans [12]. While sequen-
cing technologies have been rapidly improving, the com-
putational infrastructure needed to analyze the resulting
data has been slow to adapt to the volume and characteris-
tics of the data being generated. In particular, genome
assembly, though substantially improved in recent years
[13], remains an important challenge even for single
organisms. In metagenomic projects, traditional genome
assemblers have trouble disentangling closely related
strains and distinguishing true polymorphisms from
sequencing errors. As a result, many researchers forgo
assembly and instead focus their analyses directly on the
underlying reads [14-22]. While these methods have
shown promise, analysis tasks such as gene finding and
taxonomic classification become much easier when

applied to genomic contigs reconstructed through assem-
bly. Accordingly, a number of computational tools specifi-
cally targeted at metagenomic de novo assembly have
begun to emerge [23-26]. These tools are, however, still in
their infancy and their application is limited by a number
of factors such as: (i) performance issues when applied to
large metagenomic datasets; (ii) the need for careful para-
meter tuning in order to optimize assembly results; and
(iii) the lack of integration with the other components of
metagenomic analysis pipelines. Furthermore, the relative
benefits and drawbacks of individual assembly tools are
difficult to ascertain given the lack of metagenomic refer-
ence datasets, and the widely divergent data characteristics
of current metagenomic projects.
It is also important to stress that assembly is just one of

many other bioinformatics analyses typically performed
in metagenomic projects, including taxonomic classifica-
tion, gene annotation, variant analysis, and so on. Per-
forming these tasks requires the installation, integration,
and tuning of multiple software packages, which is not
trivial even for groups with extensive bioinformatics
expertise. As a result, most studies rely on ad hoc pipe-
lines based on custom scripts and intensive manual ana-
lyses, making it difficult to reproduce or extend analysis
results and hampering collaboration.
To address these challenges, we developed MetAMOS,

a modular and customizable framework for metage-
nomic assembly and analysis. To researchers without
bioinformatics expertise, MetAMOS provides a push-
button solution for analysis of metagenomic datasets,
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irrespective of the sequencing technology used. In addi-
tion to the actual assembly, MetAMOS outputs a taxo-
nomic profile of the community, gene predictions, and
potential genomic variants. In some sense, MetAMOS
can be viewed as an assembly-centric counterpart to
QIIME [27] and mothur [28], popular pipelines used for
the analysis 16S rRNA data. To bioinformaticians,
MetAMOS provides a modular and flexible pipeline,
integrating many metagenomic analysis tools that can
be tailored and extended to meet specific analysis needs.

Overview of the MetAMOS analysis pipeline
The MetAMOS package is built around a collection of
publicly available assembly and analysis tools tied
together with the help of the lightweight workflow sys-
tem Ruffus [29]. The current analysis workflow and
available software packages are outlined in Figure 1, and
discussed in detail below in the Workflow section. It is
important to stress, however, that these tools are not
simply strung together into ad hoc pipelines; rather, the
entire pipeline is built around the unique features pro-
vided by the metagenomic scaffolder Bambus 2 [30].
The pipeline can be broadly separated into three main

sections. The first includes a pre-processing step aimed at
constructing a collection of conservative contigs using
software specific to the sequencing technology employed
(Sanger, 454, and Illumina data are currently supported).
Specifically, pre-processing involves the following steps:
(1) dynamic library size re-estimation based on read map-
pings, and (2) contig cleaning (removal of contigs that lack
read mappings). In the second step, Bambus 2 is used to
identify genomic repeats, scaffold the initial set of contigs,
correct assembly errors, extend contigs, and detect geno-
mic variants. In a third, post-scaffolding stage, the contigs
are further analyzed and annotated using scaffold-aware
approaches, such as the propagation of taxonomic labels
to all contigs linked together within a scaffold. Thus, the
scaffold information generated by Bambus 2 allows us to
integrate multiple sources of information and obtain more
accurate annotations of the resulting assembly. At the end
of the final stage, MetAMOS produces an interactive
HTML report that summarizes the main results of the run
(Figure 2).

Related software
Our package shares similarities with SmashCommunity
[31], a metagenomic analysis pipeline targeted at 454 and
Sanger data. Unlike MetAMOS, SmashCommunity only
supports a small set of assembly and analysis tools (Ara-
chne [32], Celera Assembler [33,34], Forge, and MetaGene-
Mark [35]). More importantly, however, SmashCommunity
simply links together the individual analysis tools and does
not provide additional functionality made possible by the
integration of different analyses. For these reasons, instead

of building upon SmashCommunity, we decided to build
MetAMOS around the AMOS open-source genome
assembly framework, which already included many assem-
bly-centric analysis utilities [30,36-41].

Results
Below we demonstrate the use of MetAMOS and compare
its performance to other software tools that can and have
been used for metagenomic analysis. We focus our analy-
sis on several datasets with complementary characteristics:
‘mock’ metagenomic communities from the Human
Microbiome Project (HMP) [11], and real metagenomic
samples from the HMP and the Metagenomics of the
Human Intestinal Tract (MetaHIT) [42] projects. The
mock communities (described in more detail below) com-
prise a known mixture of organisms and provide a valu-
able resource for assessing the accuracy of different
assembly tools. The real datasets are a sample of data
from recent studies and demonstrate the practical poten-
tial of our tool.

HMP mock communities
Assembly analysis
Results obtained on real metagenomic samples are difficult
to evaluate due to the absence of a ‘golden truth’ reference.
Thus, to first compare and evaluate metagenomic assem-
bly accuracy, we rely on metagenomic samples with
known composition, specifically two ‘mock’ communities
created by the HMP consortium [43,44]. These commu-
nities represent the result of sequencing a mixture of
quantified DNA fragments from organisms with known
genomic sequences, comprising over 50 bacterial genomes
and a few eukaryotes. While not without limitations, this
dataset has advantages over purely simulated data because
it captures the error and bias introduced by the sequen-
cing technology.
Data from two HMP mock communities are available:

Even and Staggered (NCBI BioProject ID 48475). The
reference genomes in these mock communities are pre-
cisely known, the abundances are fairly well known, and
the reads were sequenced with the Illumina GAII instru-
ment [45]. We independently confirmed the different
abundance profiles of the mock Even and Staggered
communities with MetaPhyler; Figure 3 shows the inter-
active Krona [46] chart for these samples, as output by
MetAMOS.
Using these datasets we evaluate the performance of

eight different methods: SOAPdenovo (SOAPdenovo
contigs), SOAPdenovo_MA (MetAMOS+SOAPdenovo
unitigs), Meta-IDBA, Meta-IDBA_MA (MetAMOS+
Meta-IDBA contigs), MetaVelvet, MetaVelvet_MA
(MetAMOS+MetaVelvet unitigs), Velvet, Velvet_MA
(MetAMOS+Velvet unitigs). The methods with the suf-
fix ‘_MA’ represent the use of the specific assembler
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Figure 1 MetAMOS workflow. The arrows indicate dependence between pipeline steps. MetAMOS leverages over 20 existing analysis tools for
various steps in the pipeline. The figure also highlights the novel contributions to metagenomic analysis made by MetAMOS. Miller et al. 2008
[33]; Peng et al. 2011 [25]; Namiki et al. 2011 [24]; Sommer et al. 2008 [40]; Margulies et al. 2005 [99]; Li et al. 2010 [51]; Zerbino et al. 2008 [63];
Chitsaz et al. 2011 [64]; Langmead et al. 2010 [49]; Langmead et al. 2012 [50]; Zhu et al. 2010 [100]; Rho et al. 2010 [68]; Kelley et al. 2012 [69];
Treangen et al. 2009 [75]; Altschul et al. 1990 [66]; Liu et al. 2011 [52]; Eddy et al. 2011 [67]; Brady et al. 2011 [14]; Parks et al. 2011 [22]; Koren et
al. 2011 [30]; Ondov et al. 2011 [46].
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within the MetAMOS framework, specifically to gener-
ate the initial high-confidence contigs that are then scaf-
folded and further analyzed with Bambus 2 and the
other utilities provided by MetAMOS. Unitigs are sec-
tions of the genome that can be unambiguously recon-
structed by an assembler on the basis of reads alone
(entirely contained in either unique regions or repeats),
that is, regions that do not span the boundary between
repeats and unique regions.
The results are shown in Figure 4a, b (mock Even),

and Figure 4c, d (mock Staggered) using the recently
proposed Feature Response Curve technique [47]. These
curves simultaneously track the cumulative size of the
assembly (total number of bases reconstructed) and the
number of errors found in the assembly, and are similar
in spirit to the well known receiver operating character-
istic (ROC) used for comparing classifier systems. In a
Feature Response Curve plot, the contigs are sorted by
decreasing sequence length, and the number of errors

and cumulative contig size are plotted along the x- and
y-axes, respectively. When comparing two assemblies, A
and B, if the curve corresponding to assembly A is
above that of assembly B, one can infer that A contains
more of the (meta)genome while incurring the same
number of errors as assembly B, or stated differently,
assembly A reconstructs the same amount of DNA as
assembly B but with fewer errors.
An observation evident from the analysis of the ‘mock

Even’ dataset (Figure 4a, b) is that metagenomic-specific
assemblers (MetaVelvet and Meta-IDBA) have very
similar performance to non-metagenomic assemblers.
For example, Velvet appears to provide the best results
within the most contiguous 37 Mbp of the assembly
(roughly half of the total genomic content of the sample;
Figure 4a). Beyond this point Velvet, and most of the
other assemblers, rapidly accumulate errors while recon-
structing the remaining genomic content of the sample.
SOAPdenovo, the assembler used by both the HMP

Figure 2 MetAMOS HTML report interface. The majority of results generated during the pipeline are exposed to the user via an interactive
HTML report. From left to right. Pipeline status: this lists the state (OK, FAIL, SKIP) for each step in the pipeline. In addition, each individual step
is linked to an image/text summary of the results generated during this step. Krona plot: by default, in the main section of the report an
interactive Krona plot of the annotations is displayed. This main section is dynamically updated with content from the other steps at the user’s
request. Single/Multiple Sample plots: This section is dedicated to displaying automatically generated R plots of assembly statistics. If multiple
samples are available, they can be combined into a single plot. Quick summary: this column, as the name implies, provides a very brief overview
of the results (listing in descending order number of reads, contigs, scaffolds, ORFs, variants) in addition to linking to a file containing a summary
of all of the executed commands for the MetAMOS run.
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[43,44] and the MetaHIT project [48], has a more stable
error characteristic, accumulating overall fewer errors
than the other assemblers. However, SOAPdenovo also
makes more mistakes within its larger contigs, as shown
by the dip within the bottom left side of the curve.
Because MetAMOS includes independent pre-processing
and scaffolding routines, the performance of Velvet and
MetaVelvet improved when run within the MetAMOS
framework (Figure S1 in Additional file 1).
All assemblers have lower performance on the ‘mock

Staggered’ community (Figure 4c, d), which is expected
to better model the pattern of taxonomic diversity
encountered in real data. Meta-IDBA shows strong early
performance, but is only able to reconstruct approxi-
mately 25% of the reference genomes (20 out of 83
Mbp) in contigs larger than 150 bp. SOAPdenovo +
MetAMOS obtains the best overall performance for this
Staggered simulated dataset, and again, MetAMOS
improves over the Velvet and MetaVelvet assemblers,
with the gain being more pronounced than in the mock
Even dataset.
Also evident from these figures is the inherent diffi-

culty of metagenomic assembly. Even in the easiest
community (mock Even), the best assembler can only

reconstruct about 66% of the total genomic content (55
out of 83 Mbp) in contigs larger than 150 bp, while for
the more complicated community, less than 30 Mbp are
reconstructed (36%).
When analyzing mis-assemblies we observe that all

assemblers make mistakes (Table 1), especially in the cate-
gory termed ‘heavy mis-assembly’. Heavy mis-assemblies
are contigs with only one alignment to a reference genome
covering less than 80% of the contig’s length, or multiple
incompatible alignments to a single reference. MetaVelvet
has the best contiguity at 10 Mbp in both mock commu-
nities but also generates more assembly errors than the
more conservative SOAPdenovo assembly. MetAMOS is
able to improve upon MetaVelvet in terms of both conti-
guity and error rate in the mock Even dataset, while in the
mock Staggered data the reduction in error is associated
with a reduction in contiguity. In addition, MetAMOS
nearly matches the stand-alone assemblers in terms of
reference representation, while lowering the number of
errors they produce (Table 1). This conservative approach
is critical for ensuring the accuracy of downstream
analyses.
The results highlight the difficulty of choosing an appro-

priate assembler for a specific application. Depending on

RootRoot

Eukary
ota

(A) (B)
Figure 3 Krona plots of the HMP mock Even and Staggered samples. (a) HMP mock Even; (b) HMP mock Staggered. Meta-IDBA was used
for assembly, MetaGeneMark for ORF prediction, and MetaPhyler for classification. The classifications can optionally be colored by average
confidence, highlighting the certainty in the classifications.
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Figure 4 Feature response curve performance on mock Even and mock Staggered communities. The y-axis shows the cumulative contig
length (sorted in decreasing order) and the x-axis shows the corresponding number of misassembled contigs. The thick lines (assemblies ending
in _MA) represent the results obtained by running MetAMOS using the corresponding assembler (dashed lines) for the Assembly module. (a)
HMP mock Even, all errors reported (b) HMP mock Even, heavy mis-assemblies only. (c) HMP mock Staggered, all errors reported. (d) HMP mock
Staggered, heavy mis-assemblies only. For all but Velvet and MetaVelvet the dashed lines are hidden behind the solid lines because the original
assemblies are mostly unchanged.

Table 1 Comparison of assembly statistics

Dataset Assembler #ctgs/
scfs

Good Ctgs/
scfs

Total aln
(Mbp)

Slt Hvy Ch Size @ 10
Mbp

#@ 10
Mbp

Max ctg
size

Err per
Mbp

mockE SOAPdenovo 63,014 99.3% 51 167 131 1 28,208 195 249,819 5.9

mockE SOAPdenovo_MA 63,107 99.3% 51 166 131 1 28,208 195 249,819 5.8

mockE Velvet 12,381 96.0% 41 269 106 2 46,122 128 183,815 9.2

mockE Velvet_MA 12,830 96.2% 41 256 100 2 42,269 137 179,673 8.7

mockE MetaVelvet 23,323 96.7% 49 474 160 5 62,131 93 367,458 13.0

mockE MetaVelvet_MA 22,772 96.8% 49 462 156 4 62,138 91 367,458 12.7

mockE Meta-IDBA 22,064 95.3% 47 362 151 3 26,141 223 249,069 11.0

mockE Meta-IDBA_MA 22,032 95.4% 47 362 151 3 26,141 223 249,069 11.0

mockS SOAPdenovo 45,251 98.8% 28 135 99 0 5,672 626 186,064 8.4

mockS SOAPdenovo_MA 44,928 98.8% 28 135 98 0 5,672 626 186,064 8.3

mockS Velvet 20,981 95.6% 28 498 127 1 6,134 770 119,120 22.4

mockS Velvet_MA 21,050 95.8% 28 485 115 1 6,060 775 119,120 21.5

mockS MetaVelvet 19,649 94.5% 28 518 158 2 13,028 351 217,330 24.2

mockS MetaVelvet_MA 20,551 95.3% 28 517 143 3 6,685 622 217,330 20.1

mockS Meta-IDBA 4,573 92.3% 18 101 83 0 13,150 368 119,604 10.2

mockS Meta-IDBA_MA 4,559 92.5% 18 101 83 0 13,150 368 119,604 10.2
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the dataset, different assemblers achieve the best trade-off
between contiguity and errors. By allowing the reproduci-
ble execution of each assembler within a unified, auto-
mated framework, MetAMOS facilitates a more informed
choice of assembler for any given application.
Assembly-based taxonomic annotation of reads
We evaluated the taxonomic annotations generated by
FCP within MetAMOS on the mock communities using
the same assemblers as above: SOAPdenovo, Velvet,
MetaVelvet, and Meta-IDBA. We ran both the Annotate
(taxonomic classification of contigs) and Propagate (clas-
sification propagation across scaffolds) steps with default
parameters and compared results to the true read
assignments determined by mapping reads to the known
reference genomes with Bowtie [49,50]. The results
shown in Table 2 demonstrate that performing the
annotation after assembly within MetAMOS signifi-
cantly reduces the number of unclassified reads and
reduces the number of errors, irrespective of the assem-
bly tool being used. Furthermore, the scaffold-based
propagation of annotations further improves the results,
leading to more reads being annotated while only
slightly increasing the misclassification rate.

HMP tongue dorsum
Assembly of a tongue dorsum sample from the HMP project
Our second analysis was performed on real data (HMP
tongue dorsum female sample, SRS077736). Velvet and
MetaVelvet were not able to complete using 256 GB of
memory, the maximum available to us; therefore, we
restrict our results to SOAPdenovo and Meta-IDBA. For
this sample we do not know the actual genomes compris-
ing the community; instead we used the reference genome
set identified by the HMP to have high similarity to the

sequences within the sample (HMP Shotgun Community
profiling SRS077736). This dataset was previously
assembled with Meta-IDBA [25] and the published results
demonstrated that Meta-IDBA was able to generate larger
contigs than SOAPdenovo [51].
To evaluate the correctness of these assemblies, we

aligned them against the set of reference genomes and
tabulated assembly errors. Unlike the mock datasets, the
recruited references may not exactly match the true gen-
omes in the sample. To allow for structural rearrange-
ments within the same genome, we ignored errors
occurring within the same reference genome (contigs
with multiple alignments to the same reference) and only
focused on chimeric errors (contigs spanning two or
more reference genomes). Furthermore, we allowed
higher rates of nucleotide errors in the alignment. None
of the contigs were chimeric at the genus level or above.
While both assemblers (SOAPdenovo and Meta-IDBA)
vary in their ability to reconstruct individual genomes,
MetAMOS is able to maintain or improve upon the start-
ing assembly in all cases (Figure 5, Table 1).
Using the tongue dorsum dataset we also explored the

dependence between assembly quality and the relative
abundance of an organism within a sample. As expected,
the assembly quality strongly depends on the overall depth
of coverage (Figure 6). Most reference genomes that were
covered at < 5 to 10× were poorly assembled (reference
coverage of 40% or less). These results hold irrespective of
the assembler used (data not shown), indicating a funda-
mental limitation of assembly-based approaches for low
abundance genomes. The abundance/coverage estimates
obtained by mapping to reference genomes were consis-
tent with those produced by MetAMOS using the taxo-
nomic profiling tool MetaPhyler [52]. Thus, the taxonomic

Table 1 Comparison of assembly statistics (Continued)

HMP SOAPdenovo 39,028 89.9% 11 1,138 2,686 0 9,881 514 116,204 347.6

HMP SOAPdenovo_MA 35,230 89.1% 11 1,138 2,618 0 11,359 426 238,051 341.5

HMP Meta-IDBA 25,861 88.9% 7 718 2,102 0 4,215 1144 59,188 402.8

HMP Meta-IDBA_MA 25,698 88.7% 7 710 2,087 0 4,215 1144 59,188 399.6

HMPscf SOAPdenovo 31,673 99.9% 11 - - 10 9,906 510 116,181 0.9

HMPscf SOAPdenovo_MA 27,231 99.9% 11 - - 10 11,359 426 238,051 0.9

HMPscf Meta-IDBA 20,352 99.9% 7 - - 10 4,946 939 59,188 1.4

HMPscf Meta-IDBA_MA 22,886 99.9% 7 - - 9 22,304 238 66,401 1.3

Datasets are mockE (mock Even), mockS (mock Staggered), HMP (Tongue dorsum, contig-level analysis), HMPscf (Tongue dorsum, scaffold-level analysis). All
analyses other than HMPscf were done at the contig level. If necessary, contigs were extracted from scaffolds by splitting at three consecutive Ns. Assemblers
with suffix _MA indicate the results produced by running MetAMOS on contigs produced by the corresponding assembler. #ctgs/scfs: total number of contigs/
scaffolds in the assembly. Good Ctgs/scfs: fraction of contigs/scaffolds that mapped without errors to reference genomes. For the HMP dataset (Tongue dorsum
contigs) alignments were only made to a small set of genomes estimated by the HMP project to match the genomes in this sample. For the HMPscf dataset
good scaffolds are those without chimeric errors. Total Aln: total amount of sequence that can be aligned to the reference genomes (in Mbp). Slt: slight mis-
assemblies determined by alignments that cover 80% or more of the aligned contig in a single match. Hvy: heavy misassemblies determined by alignments that
cover less than 80% of the aligned contig in a single match or have two or more matches to a single reference. Ch: Chimeras are contigs with matches to two
distinct reference genomes. Neither heavy mis-assemblies nor chimeras count towards reference coverage. Size @ 10 Mbp: the size of the largest contig c such
that the sum of all contigs larger than c is more than 10 Mbp (similar to the commonly used N50 size). #@ 10 Mbp: smallest number of contigs whose
cumulative size adds up to more than 10 Mbp. Max ctg size: size of the largest contig in the assembly. Err per Mbp: average number of errors per Mbp. Numbers
in bold represent the best value for the specific dataset.
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profiling data reported by MetAMOS provides a refer-
ence-independent means to assess which organisms in a
sample can be effectively assembled.
The results described above are based on contig-level

analyses in order to allow a comparison of multiple assem-
blers (for example, meta-IDBA does not perform scaffold-
ing and would be unfairly penalized by a scaffold-level
analysis). To demonstrate the value of the additional infor-
mation contained in the scaffolds produced by MetAMOS
we also performed an analysis of the contiguity and correct-
ness of MetAMOS scaffolds compared to SOAPdenovo
scaffolds and Meta-IDBA contigs (Table 1). As a complete
collection of reference genomes is not available for this
dataset, we only focused on chimeric errors - specifically
contigs or scaffolds that map to two or more different refer-
ence genomes. When starting with either SOAPdenovo or
Meta-IDBA contigs, MetAMOS was able to create more
contiguous sequence, measuring a 200% improvement over
the largest SOAPdenovo scaffold, 11% improvement over
the largest Meta-IDBA contig, and over 5-fold increase in
contiguity within the top 10 Mbp of the assembly, while
making the same or fewer chimeric errors.

Biological variant identification
MetAMOS, through its use of the Bambus 2 scaffolder
[30], is currently the only metagenomic assembly pipe-
line able to automatically identify assembly patterns
indicative of genomic variation (termed ‘variation
motifs’). Figure 7 shows an example section of a variant
motif (spanning 1,212 bp) automatically reported by
MetAMOS. This motif is composed of two variant sub
regions, each 200 bp in length, connecting to two larger,
500 bp contigs in the assembly graph. Nucleotide align-
ments (using BLASTN, e-value < 10e-7) yield significant
hits to Streptococcus oralis Uo5 and Streptococcus san-
guinis SK36. The variant region in the middle contains
12 SNPs that fall within a poorly characterized hypothe-
tical protein, distantly related to a glutamic acid decar-
boxylase (GAD) protein. GAD proteins (gadB) have
been previously reported to show divergence in closely
related strains of Streptococcus thermophilus [53]. This
simple example highlights the utility of variation motifs.
Typical assembly software would break the assembly in
this region or forcefully merge the two variants into a
mosaic (due to ‘bubble popping’ procedures). Instead,

Table 2 Performance comparison of metagenomic annotation of reads versus contigs

Class level (pre-propagate) Class level (post-propagate)

Dataset Assembler Run time
(speedup)

Number
unclassified

Number
correctly
classified

Number
incorrectly
classified

Number
unclassified

Number
correctly
classified

Number
incorrectly
classified

mockE None 84.2 h (-) 11,116,265 3,920,471 681,801 NA NA NA

mockE SOAPdenovo_MA 33.0 h
(2.6×)

634,091 14,852,561 231,885 612,517 14,874,157 231,863

mockE Velvet_MA 29.4 h
(2.9×)

870,073 14,611,333 237,130 854,554 14,626,870 237,112

mockE MetaVelvet_MA 29.9 h
(2.8×)

709,938 14,800,318 208,281 693,142 14,811,333 214,062

mockE MetaIDBA_MA 37.8 h
(2.2×)

1,700,699 13,652,114 365,724 1,676,319 13,676,524 365,724

mockS None 167.1 h (-) 18,081,508 5,200,170 849,672 NA NA NA

mockS SOAPdenovo_MA 72.3 h
(2.3×)

1,971,900 21,772,125 387,325 1,850,541 21,884,121 386,688

mockS Velvet_MA 71.8 h
(2.3×)

2,392,898 21,313,998 424,454 2,250,852 21,456,487 424,011

mockS MetaVelvet_MA 54.4 h
(3.1×)

2,301,985 21,449,129 380,236 2,134,599 21,614,171 382,580

mockS MetaIDBA_MA 53.8 h
(3.1×)

2,576,941 21,316,513 237,896 2,210,972 21,681,036 239,342

Datasets are mockE (mock Even) and mockS (mock Staggered). Representing the truth, a total of 15,718,537/22,735,802 (69.14%) sequences could be
unambiguously mapped using Bowtie for the mockE dataset and 24,131,350/39,918,454 (60.45%) for the mockS dataset. Assembler: each assembler was run
within MetAMOS and the output contigs were classified using FCP. In the None case, the read sequences were classified by FCP prior to assembly. Classifications
of reads with no known truth were neither penalized nor rewarded. Run time: the time required to run either FCP on the reads or the Preprocessing, Assembly
(for a specific assembler), Annotate and Propagate steps within MetAMOS is reported in CPU hours. The speedup factor is the FCP run time divided by the time
required to perform the analysis within MetAMOS. All experiments were performed on a 64-bit Linux server equipped with eight 2.8 GHz dual-core processors
and 128 GB RAM. Number unclassified, Number correctly classified, and Number incorrectly classified: total count of sequences, either unclassified, correctly
classified, or incorrectly classified at the class taxonomic level. When compared to the unassembled results, classification within MetAMOS yields at least a three-
fold increase in correctly classified sequences and a two-fold reduction in incorrectly classified sequences. Number unclassified, Number correctly classified, and
Number incorrectly classified (post-propagate): the MetAMOS propagate step was used to transfer the annotations using the assembly graph. The total number
of correctly classified sequences increases slightly in all cases, while not significantly increasing the number of incorrectly classified sequences. The full
classification at each taxonomic level is given in Table S1 in Additional file 1. NA, not applicable.
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MetAMOS preserves the contiguity of the genome’s
backbone while also outputting the pattern of variation
detected in this region. Note that such regions are diffi-
cult to identify within the output of existing assemblers,
requiring substantial manual examination of the assem-
bly output [54].

Sexual dimorphism in the human gut microbiome
To demonstrate the types of analyses enabled by MetA-
MOS, we next investigate sexual dimorphism in the
human gut microbiome. Microbiome differences between
different genders were previously investigated in macaques
[55] and mice [56], and such differences have yet (to the
best of our knowledge) to be explored in humans. To
explore whether evidence of sexual dimorphism could be
gleaned from metagenomic data analyzed with MetAMOS,
we focused on six subjects (three male and three female),
all of the same age (59 years), and from the same country
(Denmark), whose microbiome was sequenced as part of
the MetaHIT project (sample details provided in Materials
and methods). Note that conclusively assessing whether
sexual dimorphism within gut bacteria of the human
population requires extensive studies outside of the scope
of this manuscript. Nevertheless, we decided to focus on
this problem because: (a) to the best of our knowledge

such an analysis has not been previously performed; and
(b) the overall analysis approach is typical of a wide range
of comparative metagenomic analyses that are commonly
performed in a clinical setting.
The male and female samples, comprising more than 70

million sequences each, were analyzed with MetAMOS in
under 4 days, using 20 cores and 128 GB of RAM. The
maximum contig and scaffold sizes are similar, while the
males have a slightly higher total number of assembled
bases. MetaPhyler [52] was run both on the individual
reads, pre-assembly, and on the final collection of ORFs,
post-assembly. The taxonomic profiles pre-, and post-
assembly are highly concordant (Spearman’s correlation
coefficient of 0.998 and 0.993 for the male and female sam-
ples, respectively). We estimate that MetaPhyler analysis on
contigs requires roughly 300 times less computational
resources than the equivalent analysis on the reads alone,
highlighting the power of assembly as a data ‘compression’
tool, and suggesting that many analyses currently performed
on the reads directly (for example, functional annotation
[57,58], or pathway analysis [59]) could be substantially
accelerated if performed on the assembled data instead.
Comparative analysis of multiple samples
MetAMOS includes utilities for performing comparative
analyses of multiple assembled samples. To illustrate

Figure 5 Feature response curve for the HMP tongue dorsum sample. The y-axis shows the cumulative contig length (sorted in decreasing
order) and the x-axis shows cumulative errors. Curve includes all errors (slight, heavy, chimera; see text for more details).
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this functionality, we compare the taxonomic composi-
tion of the male and female samples in Figures 8 and 9,
generated automatically within the MetAMOS HTML
reports. Figure 8 contains a heat map of the taxonomic
composition at the species level (calculated with Meta-
Phyler); Figure 9 shows assembly contiguity plots for

contigs and scaffolds on multiple female and male
assemblies. Our analysis reveals a higher predominance
of members from the Bacteroidales order and a deple-
tion of members from the Clostridiales order in male
samples. This difference is not statistically significant at
the order level; however, the family Eubacteriaceae and
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Figure 6 Comparing depth of coverage versus percentage of reference covered by assembly on the HMP tongue dorsum sample. The
points represent individual reference genomes similar to the organisms in the sample. The x-axis represents the estimated depth of coverage
while the y-axis represents the breadth of coverage (percentage of the reference covered by correctly assembled contigs). The coverage and
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actinomycetemcomitans D11S-1; Aaphr, Aggregatibacter aphrophilus NJ8700; Apleu, Actinobacillus pleuropneumoniae serovar 7 str. AP76; Aparv,
Atopobium parvulum DSM 20469; Asucc, Actinobacillus succinogenes 130Z; Cconc, Campylobacter concisus 13826; Hducr, Haemophilus ducreyi
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multocida str. Pm70; Rmuci, Rothia mucilaginosa DY-18; Sagal, Streptrococcus agalactiae 18RS21; Sgall, Streptococcus UCN34; Sgord, Streptococcus
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genus Eubacterium from the Clostridiales order are sig-
nificantly depleted in males (P = 0.04 and P = 0.02,
respectively, Fisher’s exact test; P = 0.024 and P = 0.024,
Metastats [60]. A statistical enrichment of Bacteroides
can also be identified within the previously reported
macaque data [55] (P = 0.0048, Metastats [60]). The
comparative reports produced by MetAMOS also allow
the visual comparison of the assembly statistics through
accumulation plots (Figure 9).
Scaffold-based propagation of annotated reads
As briefly discussed earlier, MetAMOS includes a novel
component responsible for propagating annotations to
unclassified contigs. Using this procedure allowed us to
assign taxonomic labels to an additional 985 contigs
(from 918 to 1,903, a more than 2-fold increase) and to
label 25 contigs as ambiguous on the female sample.
Whenever the read-pair neighbors of a contig do not
have a consistent annotation, MetAMOS marks the node
as ambiguous, highlighting the conflicting annotation. Six
of these contigs (all under 1 kbp in length) had received
taxonomic labels when analyzed with the PhyloSift pack-
age and were re-classified as ambiguous by MetAMOS.
We confirmed (using BLASTN and BLASTX searches
with default parameters) that all of the contigs originate
from ribosomal DNA sequence, supporting their ambigu-
ous assignment as ribosomal repeats that can cause
assemblers to incorrectly ‘bridge’ between unrelated
organisms.

Discussion
The goal of MetAMOS is to provide an integrated
environment for metagenomic assembly and analysis,
relying on both existing and novel algorithms and soft-
ware tools. Results on both ‘mock’ communities with
known sequence composition and real metagenomic

data demonstrate that MetAMOS can generate accurate
and contiguous assemblies of metagenomic datasets and
improve the quality of initial assemblies constructed
either with conservative assemblers developed for single
genomes (for example, Velvet), or with assemblers speci-
fically targeted at metagenomic data (for example,
MetaVelvet).
Overall, our results indicate that the choice of assembler

has a strong influence on the final assembly results and
choosing the ideal assembler requires taking into account
both contiguity and correctness. More aggressive assembly
approaches sometimes result in more contiguous assem-
blies, but often introduce errors of the most severe kind
(chimeras). The level of improvement provided by MetA-
MOS over other assembly tools is highly dependent on
the specific characteristics of the dataset being assembled.
MetAMOS only provided a small improvement over other
tools (particularly SOAPdenovo and MetaIDBA) in the
HMP mock communities; however, in the HMP tongue
dorsum dataset the improvement was more pronounced.
This result can be explained in part by the library size re-
estimation automatically performed within the MetAMOS
preprocessing stage (the library size reported in the NCBI
Sequence Read Archive (SRA) was correct for the mock
community but incorrect for the tongue dorsum), as well
as by the ability of MetAMOS (through the use of Bambus
2) to effectively build scaffolds across regions of genomic
variation. Such regions were substantially more abundant
in the real dataset (approximately 10,000) compared to the
artificial communities (approximately 300).
Thus, given a novel metagenomic dataset with unknown

taxonomic composition, it can be difficult to choose an
appropriate assembler a priori. This motivates our focus
on fast end-to-end analysis and inclusion of multiple
assembly methods, allowing the user to tailor the pipeline

Streptococcus oralis Uo5 (motif1)         ATCTTGGAGAAGCTCAAGATAATCATCTGGATTGATGACTTTTAGATAACCATCTAAAAA
ATCTTGGAGAAGCTCAAGATAATCATCTGGATTGATGACTTTTAGATAACCATCTAAAAAStreptococcus oralis Uo5 (motif2)         
************************************************************

Streptococcus oralis Uo5 (motif1)         GGTTCCcAagCCATCtTCcTGCCAAATCTGtAaCAACTCAGCAGGGACTTGGTCCTTGTA
GGTTCCaAgaCCATCcTCtTGCCAAATCTGaAcCAACTCAGCAGGGACTTGGTCCTTGTAStreptococcus oralis Uo5 (motif2)         
****** *  ***** ** *********** * ***************************

Streptococcus oralis Uo5 (motif1)         TTTTTCAATaACTTCTTGGGGCATATCtGCCaCTTTgATAAAGTTTTCTAGCATgTTTTC
TTTTTCAATcACTTCTTGGGGCATATCcGCCtCTTTtATAAAGTTTTCTAGCATaTTTTCStreptococcus oralis Uo5 (motif2)         
********* ***************** *** **** ***************** *****

Streptococcus oralis Uo5 (motif1)         CTCCGATTTGATTTTTAGCATCATTTCTCTACAACCATAGTATACCATAAACCATATGTA
CTCCGATTTGATTTTTAGCATCATTTCTCTACAACCATAGTATACCATAAACCATATGTAStreptococcus oralis Uo5 (motif2)         
************************************************************

Figure 7 HMP tongue dorsum variant motif. This is a pairwise sequence alignment of a variant region between two closely related
Streptococcus oralis strains. Matching alignment columns contain an asterisk underneath the column while columns with substitutions are
indicated in lower case. The two motifs depicted in the image, motif1 and motif2, were automatically detected and output by MetAMOS.
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to their data. The modular design of MetAMOS enables
its adaptation to new types of data by simply incorporating
genome assembly tools tuned to the specific features of
the new data.
In addition to assembly, MetAMOS provides several

features important for downstream analysis, including
taxonomic profiling, gene detection, and identification
of genomic variation motifs. We have shown that the

combination of these analyses within a single pipeline
can produce improved results. We have demonstrated
this for taxonomic classification, where analysis within
MetAMOS increases the number of correctly classified
sequences by as much as four-fold while reducing error.
Another benefit is a two- to three-fold speed up within
MetAMOS versus the taxonomic annotation methods run
on the reads (Table 2). MetAMOS makes it straightforward

Species level abundance
Color Key

Figure 8 MetAMOS comparative heat map for sexual dimorphism study. Heat map calculated on the species-level diversity in the gut
microbiome of six healthy Danish adults (as reported by MetaPhyler; full species listing for this experiment available for download from the
MetAMOS website). Only taxa with abundance > 1% in all samples are reported. Sex is indicated on the x-axis, while individual species are
labeled on the y-axis. The gradient from dark to light indicates the z-score of the abundance from low to high.
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to assess the performance of the various tools for each of
these steps for a given sample. We continue to work on
improving the performance of MetAMOS and plan to add
additional analysis modules in future releases, including
integration with pipelines for metabolic profiling (such as
HUMAnN [61]).
Finally, the modular design and open-source licensing

model enable researchers to adapt MetAMOS to new
applications beyond our initial focus on metagenomic
data. As an example, the combination of Velvet-SC (a sin-
gle-cell assembler already integrated within MetAMOS)
and the coverage-independent repeat detection methods
of Bambus 2 make MetAMOS an effective pipeline for sin-
gle-cell genomics. In addition to our primary goal of pro-
viding biologists with an integrated analysis pipeline for
metagenomic data, we hope that the availability of MetA-
MOS will encourage researchers to contribute their own

analysis modules, and that this framework will reduce
duplication of efforts and accelerate developments in this
field by allowing scientists to focus their attention on indi-
vidual components without having to re-implement all the
components of a metagenomic pipeline.

MetAMOS computational design
MetAMOS was designed to be run in two modes:
‘Assembly mode’, which requires larger amounts of RAM
and starts from raw read data; or ‘Analysis mode’, which
starts from already assembled contigs/scaffolds and can
be run on much more modest computational nodes or
servers. MetAMOS has support for eight assemblers
(SOAPdenovo [51], Newbler, Velvet [62,63], Velvet-SC
[64], MetaVelvet [24], Meta-IDBA [25], CABOG [33] and
Minimus [40]); six read/contig annotation methods (Phy-
loSift [65], BLAST [66], FCP [22,67], PHMMER [68],

A B

C D

Number of Contigs

Number of Scaffolds

Male vs Female (Number of Scaffolds vs. Cumulative assembly size)

Male vs Female (Number of Contigs vs. Cumulative assembly size)Male vs Female (Contig size vs. Cumulative assembly size)

Male vs Female (Scaffold size vs. Cumulative assembly size)

Contig size

Scaffold size

Figure 9 MetAMOS comparative assembly report for sexual dimorphism study. This plot display results from multiple female and male
samples inside a single plot. The assembly comparison plots can be generated from multiple MetAMOS runs, allowing for comparisons of
different samples or different assembly strategies. (a) Contig size versus cumulative assembly size. (b) Number of contigs versus cumulative
assembly size. (c) Scaffold size versus cumulative assembly size. (d) Number of scaffolds versus cumulative assembly size.
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PhymmBL [14,15]); three metagenomic gene prediction
tools (FragGeneScan [69], MetaGeneMark [35], Glim-
mer-MG [70]); one abundance estimation method (Meta-
Phyler [52]); a BLAST-based [66] functional annotation
step using the Uniprot database [71]; a scaffolder engi-
neered specifically for metagenomic data (Bambus 2
[30]); and an interactive tool for visualizing taxonomic
and functional composition (Krona [46]) (Figure 1).

MetAMOS workflow
Our design of the MetAMOS pipeline was motivated by
two guiding principles: modularity and robustness. We
intended to encourage users to tailor MetAMOS to the
biological questions they want to answer, not the inverse.
Given that each metagenome assembly/analysis presents a
unique set of challenges/goals, users can take advantage of
this modularity and customize their own pipelines by
combining the modules they deem necessary. MetAMOS
leverages a previously published workflow management
system (Ruffus [29]) to track inputs/outputs/states and
checkpoint while running through computationally inten-
sive analyses. While MetAMOS offers several novel fea-
tures specific to metagenomic assembly, we also wanted to
leverage existing methods and software for metagenomic
analysis to create a ‘playground’ for metagenomic assembly
and encourage cooperation among the community. Upon
download of the MetAMOS source and installation of
python (2.5.x to 2.7.x), users only need run the INSTALL
script. This will automatically configure the pipeline to
run within the user’s environment and also fetch all
required data, if a connection to the Internet is available.
Once installed, there are two main executables that com-
prise MetAMOS: initPipeline and runPipeline. initPipeline
is mainly involved with creating a project environment,
and describing input files (454/Illumina reads, assembled
contigs) and library types. runPipeline takes a project
directory as the input and will initiate execution of the
entire MetAMOS pipeline (Figure 1). Next, we describe
each step/module of the pipeline in detail.
Preprocess (required)
This is the starting point of all analyses in the pipeline.
MetAMOS can take a variety of inputs, including inter-
leaved and non-interleaved FastQ/FastA format, SFF files,
and even a set of pre-assembled contigs. MetAMOS sup-
ports existing read-analysis tools such as FastQC [72] to
evaluate the quality of the supplied read data. Preprocess
includes an optional ‘aggressive’ read filter that discards
any read containing ‘N’s or a base below a pre-defined
quality value. The justification for aggressive read filtration
is that read coverage/depth is no longer at a premium and
the quality of reads has a huge influence on the quality of
assemblies [73]. This initially may seem extreme, especially
since this step can discard upwards of 25% of the reads;
however, given the dependency of de Bruijn graph-based

assemblers on clean data, we anticipate that assembly
quality will be improved and have observed this in prac-
tice. We also include a read filtration step based on the
fastx_toolkit [74] that allows the user to trim rather than
discard the reads. Another important component of Pre-
process is the library verification step that will check
whether read pairs are properly aligned and also modify
read headers to ensure they are compatible with down-
stream tools.
Assemble (optional)
Once reads are pre-processed they are passed to the
Assemble step. Currently MetAMOS has support for eight
assemblers, including SOAPdenovo, Newbler, Velvet, Vel-
vet-SC, MetaVelvet, Meta-IDBA, CABOG and Minimus.
Each of these assemblers has its own set of parameters
and required input format, all of which are automatically
managed within the pipeline and transparent to the user.
It is our goal to keep growing this list to include the
plethora of existing assemblers and eventually allow the
user to combine assemblies via an assembly merging strat-
egy, combining the strengths of each assembler and hope-
fully avoiding the weaknesses of any single strategy. Three
types of assembly are possible in the current version of
MetAMOS: (a) single genome/isolate, (b) metagenomic, or
(c) single cell. While the main focus is on metagenomic
assembly, thanks to the modular nature of MetAMOS, all
three types are supported via the mentioned assemblers
and command-line options. If pre-assembled contigs are
input to MetAMOS, the assembly step is automatically
disabled.
MapReads (required)
This step is necessary for MetAMOS. We currently rely
on Bowtie [49] and Bowtie2 [50] for mapping all reads
back to assembled contigs. This step is an essential step
in the pipeline which performs the following tasks: (i)
depth of coverage estimation; (ii) filtering of contigs
with no reads mapping to them; (iii) creation of links
for the scaffolding step; and (iv) re-estimation of frag-
ment length for each provided paired-read library. This
step is an important quality control step that helps to
avoid propagating genome assembler mistakes down-
stream to later steps in the pipeline. Some assemblers
do offer read positions that are directly usable for scaf-
folding downstream (CA, Velvet), and we preserve this
information if requested by the user.
FindORFS (optional)
Following the MapReads step, we pass the contigs to the
metagenomic gene prediction module. Three metage-
nomic gene prediction tools are currently supported:
FragGeneScan, MetaGeneMark, and Glimmer-MG. The
rationale for calling genes at this step is that most metage-
nomic gene prediction tools have significantly increased
sensitivity and accuracy once the fragment is longer than
300 bp. Even though these tools are efficient, we limit the
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work by only calling ORFs on contigs with more than 3×
depth of coverage and larger than 300 bp (both parameters
are configurable by the user).
FindRepeats (optional)
A novel feature in MetAMOS, this step takes ORFs or
contigs as an input and serves three purposes. First, it
annotates repetitive contigs that can be used to identify
under-collapsed sequence output by the assembler. Sec-
ond, it allows for clustering predicted ORFs into families
sharing high identity (> 97%), which may represent gene
duplication events. Third, this step will allow us to bypass
the MarkRepeat step of Bambus 2 (discussed below in
further detail), which, depending on the sample, can
become computationally expensive. Repetitive contigs are
identified by the de novo repeat family detection algorithm
implemented in Repeatoire [75]. Repeatoire relies on a
probabilistic multi-alignment algorithm based on spaced
seeds, which can handle indels and substitutions.
Annotate (optional)
This step takes ORFs or contigs as an input and deter-
mines which organisms comprise the given sample. In
order to annotate the ORFs or contigs, we offer five classi-
fication methods spanning a range of techniques: homol-
ogy-based (BLAST), composition-based (FCP), hidden
Markov models (PHMMER, PhyloSift), and interpolated
Markov models (PhymmBL). Annotating each and every
read in a sample can be computationally prohibitive and
lead to inaccurate classifications due to a lack of a discri-
minatory signal from such short sequences [21]. Thus, our
philosophy is to assemble first and then classify contigs, or
even better, ORFs. This allows a more focused approach
to annotation that permits more reliable classification on
the predicted ORFs compared to individual short reads.
However, as not all reads find their way into the final
assembly, any reads not mapped to the assembly in the
MapReads step are labeled singleton reads. These reads
are also classified in order to get a complete picture of the
taxonomic composition of the sample.
FunctionalAnnotation (optional)
This step takes ORFs or contigs as input and determines
what biological functions are present. To address this, we
currently support homology-based (BLAST) functional
assignment using the UniProt/Swiss-Prot database. Results
from this step are displayed as a Krona chart of functional
abundance in the HTML summary report. Note, however,
that this step provides just a preliminary functional profile
that should be refined using one of the many existing
pipelines for this purpose (using the collection of ORFs
output by MetAMOS in/FindORFS/out/proba.fna as an
input). Accurate functional annotation is a complex task
that is beyond the scope of our pipeline.
Scaffold (required)
The entanglement of repeats and genomic variation is
one of the main challenges in metagenomic assembly. In

clonal bacterial genome assembly, any regions that tan-
gle the assembly graph are necessarily repetitive regions
in the genome, and there exist a variety of strategies for
disambiguating and resolving repeats in this context
[76]. However, in metagenomic assembly, the tangles in
the graph are not solely due to repeats and can also be
caused by variable regions within closely related strains
inside the community. Bambus 2 relies on a graph-
based repeat detection method that can distinguish
between repeat-induced tangles and likely regions of
genomic variation without using prior knowledge of the
taxonomic composition. Once repeats are identified and
classified, Bambus 2 can focus on the variant regions in
the assembly. Bambus 2 outputs these variant regions
and makes them available to the user for downstream
analysis.
Classify (optional)
One of the final steps of the MetAMOS pipeline assigns
final classifications to each and every contig/ORF/scaf-
fold in the outputs produced by earlier steps and stores
them in subdirectories labeled at some pre-specified
taxonomic level (class by default). In addition, all reads
that were used in the assembly of the contigs/scaffolds
are placed in each appropriate subdirectory. This step
enables the easy identification of assembled contigs
from taxonomic groups of interest, as well as the identi-
fication of DNA from potentially novel organisms.
Propagate (optional)
Another novel contribution of the MetAMOS pipeline is
annotation propagation. We rely on the scaffold graph
generated by Bambus 2 to transfer annotations (in our
case taxonomic labels) to un-annotated contigs within the
same scaffold. This process allows us to label contigs that
cannot be reliably classified due to their short length. The
assembled scaffolds are not modified during this step.
Postprocess (required)
Postprocess involves the generation of all reports and
output into a single location (/Postprocess/out/). Once
MetAMOS is finished running, if the user prefers to
rerun any step with a different method, the pipeline can
be re-run with the same command and the Ruffus [29]
framework will ensure that only the necessary steps are
run again. This allows for a quick exploratory run to be
performed that is later refined once initial information
is gathered on the composition and characteristics of
the metagenomic community.
HTML summary report
The MetAMOS pipeline ends by generating an interactive,
HTML summary (Figure 2) of the assembly statistics and
estimated abundance information. The Summary page
provides a graphical interface for navigating the data and
reports generated by the pipeline. It comprises a main
console surrounding a dynamic pane that can show speci-
fic reports for each step. These reports consist of tables,
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charts, and interactive Krona charts for exploring hier-
archical abundance information. We offer several plots
that allow for comparisons of different samples or different
assembly strategies. Plots that are currently supported
include: contig size versus cumulative assembly size, num-
ber of contigs versus cumulative assembly size, scaffold
size versus cumulative assembly size, and number of scaf-
folds versus cumulative assembly size (Figure 9). As
reports for each step are viewed in the dynamic pane, the
main console persistently provides an overview of the run,
including statuses of each step as well as summary statis-
tics and charts. Details of the pipeline configuration and
commands that were run are also accessible from the
main console.

Materials and methods
Assembly validation
MUMmer [77] version 3.23 was used to align assembled
contigs/scaffolds to the reference genomes (–maxmatch -l
20). When scaffolds were available, contigs were extracted
by splitting the scaffolds at three or more consecutive Ns.
For the scaffold analysis in the HMP tongue dorsum sam-
ple scaffolds were left intact. Only contigs/scaffolds over
150 bp were used for validation (unassembled reads did
not count towards the total). Alignments were then filtered
using ‘delta-filter -i 97 -q’ to only retain the best hits to the
reference for each contig/scaffold. All statistics were calcu-
lated on the final set of filtered alignments using a custom
validation script. A contig with an alignment to a single
reference genome across its entire length (allowing for a ±
15 bp mismatch at the ends of the alignment) was consid-
ered a good contig. A contig with an alignment covering >
80% of the contig length but < 100% was considered a
slight mis-assembly and still considered valid. A contig
with single alignment covering less than < 80% of the con-
tig length, multiple alignments to a single reference gen-
ome, or multiple alignments to multiple reference genomes
were all considered as mis-assemblies (and in the case of
alignments to multiple reference genomes, chimeric). For
the HMP tongue dorsum dataset, contigs were allowed to
have multiple alignments to a single reference and to align
at lower identity (-i 90) due to the expected differences
between the selected reference genome set and the actual
genomes in the sample. None of the heavily mis-assembled
contigs or chimeric contigs were used to calculate refer-
ence coverage statistics. The assembly validation scripts are
available for download at [78]. For the scaffold analysis we
only counted detectable chimera events as errors.

Annotation validation
The mock dataset annotations were generated using FCP.
Each assembler was run within MetAMOS as described
below and the assembled contigs (along with unassembled
sequences) annotated using FCP. To establish a truth,

sequences were mapped using Bowtie to the known refer-
ences. The command ‘bowtie -p 10 -f -l 25 -e 140 –best -k
1 -S’ was used to pick the best genome for each sequence.
Unmapped sequences were also recorded. The annotation
results were compared to this truth at each taxonomic
level using custom scripts. Finally, the MetAMOS propa-
gation step was run using the class-level annotation and
the results compared to the pre-propagation results.

Default MetAMOS parameters
The Preprocess step includes one external software pro-
gram, FastQC, in addition to a custom filtration script for
read pre-processing. By default, read pre-processing is dis-
abled. If enabled (via the -t parameter), all reads contain-
ing low quality bases and Ns are aggressively discarded,
which can result in 5 to 10% (or more) of the reads being
discarded. If fastq files are available and FastQC is enabled
(by default it is disabled), the following command is exe-
cuted: fastqc -t < cpus > fastq_input_files. The assemble
step currently supports eight assemblers. The default para-
meters/recipes for each assembler are available in the con-
figuration files from the MetAMOS code repository and
are listed below. The map reads step relies on the short
read mapper bowtie to align the reads to the assembled
contigs. The default bowtie command is: ‘bowtie -l 25 -e
100 –best –strata -m 10 -k 1’. Alternatively, the user can
select via the ‘-w’ parameter to trim the reads to 25 bp and
align with the following parameters: ‘bowtie -v 1 -M 2’.
Currently MetAMOS supports three metagenomic gene
finders, MetaGeneMark, FragGeneScan, and Glimmer-
MG. MetaGeneMark and FragGeneScan are run with
default parameters. We rely on a utility script that runs
Repeatoire to identify repetitive contigs and create multi-
alignments of ORF families. Repeatoire parameters are, by
default, set to: ‘–minreplen = 200 –z = 17’. By default,
MetaPhyler is enabled to quickly estimate the abundance
on the supplied metagenomic sample. The included ver-
sion, MetaPhylerV1.13, relies on blastp. The blastp para-
meters used are: ‘-m 8 -b 10 -v 10’. No other parameters
are required for running MetaPhyler. If annotate is
enabled, FCP is used to annotate/classify contigs and pre-
dicted ORFs. The default parameters are used. In addition
to FCP, we also support phmmer (-E 1.0e-10), PhyloSift
(’all -threaded’), and PhymmBL (default program para-
meters). Bambus 2 is the metagenomic scaffolder included
within MetAMOS and is also executed with default para-
meters (coverage cut-off is automatically calculated from
the assembly graph).

Software packages and corresponding parameters used
in our experiments
Program versions
All parameters used were default unless otherwise speci-
fied. The parameters below are the defaults within the
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MetAMOS pipeline for each tool. Modifications to
default program parameters were the result of either a)
recommendations from the program’s author/user
guide, b) published parameter settings on similar data-
sets, or c) empirical studies. SOAPdenovo, version 1.05
was run with the parameters ‘-D -d -R -M 3’. Velvet ver-
sion 1.1.05 was run with ‘k = 51’. Meta-IDBA version
0.19 with parameters ‘–mink 21 –maxk < user specified
> –cover 1 –connect’. MetaVelvet version 1.1.01 with
default parameters. Bowtie version 0.12.7 was run with
‘-l 25 -e 100 –best –strata -m 10 -k 1’. MetaGeneMark
version 2.7d was run with default parameters. FragGen-
eScan version 1.16 was run with default parameters.
FCP (nb-classify, epsilon-NB.py) version 1.0 was run
with default parameters.
HMP mock experiment
For all experiments, the default MetAMOS parameters
were used. For all assemblers, a k-mer of 51 was speci-
fied. For Bambus 2, a redundancy threshold of 10 was
used.
HMP tongue dorsum experiment
For all experiments, the default MetAMOS parameters
were used (except for specifying alternative assemblers
with -a soap for SOAPdenovo and -a metaidba for
Meta-IDBA). For all assemblers, a k-mer of 51 was spe-
cified. For Bambus 2, a redundancy threshold of 10 was
used. The motif was aligned using web-based blastn
against the nr database to identify top-scoring genes.
MetaHIT experiment/sexual dimorphism
We selected three males and three females randomly from
the MetaHit project having the same age (59 years), the
same country (Denmark), and the same enterotype (ET1)
[7]. We also chose the samples to have approximately
equal body mass index (26.19 for males versus 24.12 for
females). The chosen samples were MH0041, MH0045,
and MH0055 for males and MH0002, MH0024, and
MH0082 for females. MetAMOS was run on all three sam-
ples of each sex using the longer paired libraries for each
sample (ERR011181, ERR011189, ERR011209 for males
and ERR011091, ERR011149, ERR011264 for females).
To test for concordance between pre- and post-assem-

bly annotations, we selected the order level classifica-
tions and compared the percentage classified at each
order in the pre- and post-assembly male and female
samples independently. We used R (version 2.11.1) and
the command cor.test(preAsm, postAsm) to estimate
the concordance between pre- and post-assembly
assignments. To test for significance of the difference
between samples we used the Fisher exact test on the
order, family, and genus compositions of the male and
female samples with the R command fisher.test(x).
We ran two versions of MetaPhyler, one based on

BLAST in addition to the new version based on MUM-
mer. The new MetaPhyler is significantly faster; the new

MetaPhyler ran in 12 CPU hours compared to 25 CPU
hours for the post-assembly analysis (which used the origi-
nal MetaPhyler).
For all experiments, the default MetAMOS parameters

were used and a k-mer of 51 was specified. For Bambus
2, a redundancy threshold of 10 was used.

Datasets used in our experiments
HMP mock samples were part of the Human Micro-
biome Project Metagenomes Mock Pilot (BioProject ID:
48475) and available for download at [79].
HMP tongue dorsum sample was downloaded from

the SRA [SRA:SRS077736].
MetaHIT human gut metagenome samples: *MH0041

[80] (run accession ERR011181) [81,82]; *MH0045 [83]
(run accession ERR011189) [84,85]; *MH0055 [86] (run
accession ERR011129) [87,88]. MetaHIT human gut meta-
genome samples from three Danish females (aged 59
years): *MH0002 [89] (run accession ERR011091) [90,91];
*MH0024 [92] (run accession ERR011149) [93,94];
*MH0082 [95] (run accession ERR011264) [96,97].

Availability
MetAMOS is available from [78]. MetAMOS and
AMOS-specific code are released open source under the
Perl Artistic License [98]. Licensing restrictions for
bundled software are outlined on the main project page.
Operating systems are Mac OS X and most UNIX sys-
tems and programming languages are Perl, Python, Java,
C++.

Additional material

Additional file 1: Figure S1 and Table S1.
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