
In 1973, Christian Anfinsen and colleagues postulated 
that the information required for a protein to fold into its 
native structure is encoded in its amino acid sequence. 
Almost 40 years have passed, but determining the three-
dimensional structure of a large protein solely from its 
amino acid sequence remains a formidable challenge. In 
the past decade and a half, remarkable progress in the 
development of cost-effective high-throughput sequen c-
ing technologies has led to an explosion of genomic 
sequence information from evolutionarily diverse organ-
isms. Exploiting this information with statistical tools 
and constraints derived from evolutionary princi ples has 
begun to show promise toward determining protein 
structure from sequence.

Recently, there has been increasing excitement in 
predicting protein structure by using co-evolving sites 
within protein sequences as a structural constraint [1-6]. 
�ese studies have demonstrated how improved statis-
tical tools and the growing amount of sequence infor-
mation hold enormous potential to predict the three-
dimensional structure of proteins (Box  1). Along these 
lines, Hopf et al. [7] have developed a computational 
approach that exploits protein sequences to predict 
membrane protein structures. �ey demonstrate that the 
three-dimensional structure of α-helical membrane 
proteins can be determined with very good accuracy 

using their algorithm EVfold_membrane [7]. �eir 
approach identifies positions in protein sequences that 
show correlated patterns of mutation and uses this infor-
mation as a structural constraint to model membrane 
protein structures [7].

Ab initio structure prediction of membrane 
proteins
Reliable prediction of structures could have a major 
impact on our understanding of membrane protein func-
tion. �is is underscored by the fact that less than 1% of 
the structures in the Protein Data Bank are of integral 
membrane proteins despite these comprising over 20% of 
all genes in mammalian genomes. Membrane proteins 
are physiologically crucial given their function as a vital 
communication interface between the intracellular and 
extracellular environments, and between the cytosol and 
diverse membrane-bound organelles. Hence, many mem-
brane proteins are pharmacologically important and are 
potential drug targets. While efforts in structural 
genomics have led to the elucidation of structures of 
numerous soluble proteins, determining the structure of 
membrane proteins remains challenging due to diffi cul-
ties involved in their expression, purification and 
crystallization. �us, any approach that provides insights 
into structures of membrane proteins will be very useful 
in explaining their function.

Unlike soluble proteins, membrane proteins predomi-
nantly adopt α-helical (as seen in G-protein-coupled 
receptors) or β-barrel (as seen in porins) structures due 
to the constraints posed by the lipid environment. 
Membrane proteins with α-helical structure dominate 
most cell membranes, while those with β-barrel structure 
are confined to the outer membrane of bacteria and 
eukary otic organelles. Due to the limited structural 
diversity seen in the membrane protein fold compared to 
soluble proteins, the former lends itself better to ab initio 
structure prediction.

In previous approaches, the topology of membrane 
proteins has been predicted using machine-learning 
approaches that are trained on lipid exposure and residue 
contact information [8] and energy-based folding 
methods that incorporate the knowledge of helix packing 
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constraints [9]. These methods are limited in their accuracy 
of structure prediction and by the size of membrane 
proteins that can be investigated [7]. Additionally, there 
are inherent limitations in machine-learning approaches, 
which are dictated by the amounts of high-resolution 
structural data that are already available, and in energy-
based methods, which typically require large computa
tional resources. Compared with these methods, the 
algorithm developed by Hopf et al. [7] uses no a priori 
structural knowledge and appears to perform better than 
the previous methods in terms of determining models of 
larger membrane proteins (up to 14 transmembrane 
helices). Other benefits of the approach are that it shows 
increased accuracy, incorporates the increasing abun
dance of sequence information, and requires relatively 
low computational power.

From sequences to membrane protein structure 
prediction
According to Anfinsen’s hypothesis, the native protein 
structure is intrinsically encoded in its sequence. But 
how is it possible to infer this information solely from 
sequence data? The EVfold_membrane algorithm developed 
by Hopf et al. [7] uses a global statistical approach 
(entropy maximization) and identifies evolutionary 
coupling (co-evolution) between positions on a sequence 
from a multiple sequence alignment (Figure 1). The basic 
principle of the method is that spatially interacting 
residues tend to co-evolve; thus, co-evolving sites on a 
sequence can be used as a spatial constraint to predict 
the three-dimensional structure of a protein. Using the 
evolutionary coupling between positions as constraints, 

distance geometry and simulated annealing methods are 
then used to generate three-dimensional models of 
proteins, akin to the approach employed in deciphering 
solution structures of proteins using NMR spectroscopy. 
The predicted models are assessed and ranked based on 
various criteria, such as the quality of secondary struc
ture, lipid accessibility of the residues and satisfaction of 
evolutionary constraints.

The performance of this algorithm was benchmarked 
against the experimentally determined structures of 25 
membrane proteins from diverse protein families. The 
predictions showed general agreement with the overall 
fold and expected deviations in loop regions, unstruc
tured segments in the transmembrane region, and in the 
orientation of side chains of amino acids. The power of 
this algorithm was further highlighted by applying the 
method to predict the structures of 11 membrane 
proteins with unknown structure. Some of the predicted 
structures show similarity to folds of known families, 
thereby making it possible to detect evolutionary relation
ships between protein families that have significantly 
diverged.

Beyond membrane protein structure prediction: 
function and dynamics
Unlike RNA structures, in which pairwise interactions 
between bases are highly specific, a single residue in a 
protein typically contacts multiple residues in its 
proximity to maintain the three-dimensional fold of a 
protein. This results in complex co-evolution profiles 
between different positions that may become hard to 
interpret. In other words, this aspect of proteins leads to 

Box 1. Identification and interpretation of co-evolving positions

Metrics to quantify pairwise co-evolution of positions from multiple sequence alignments

State of the art approaches to obtain pairwise co-evolutionary correlations between positions in a multiple sequence alignment mainly 
rely on multivariate statistics. Such approaches take into account the frequencies at which certain amino acid residues appear at aligned 
sites. Among the most popular are Pearson correlation, maximum likelihood approaches, Bayesian statistics, chi-square-like methods and 
statistical coupling analysis [10]. In particular, approaches from information theory that use mutual information and Shannon entropy have 
recently been applied to three-dimensional structure prediction with promising results [1-8].

Filtering relevant and significant correlations from high background noise

One main obstacle in quantifying co-evolution is to filter the relevant information from noise that typically appears in the same order 
of magnitude as the signal seen for significant correlations [10]. This noise can be due to two main sources: (1) statistical noise due to 
incomplete or unrepresentative sequence sets and random co-variance, and (2) phylogenetic noise arising from the tree-like phylogenetic 
relationship of homologous sequences. Sophisticated normalization methods such as interdependency mutual information or comparison 
to test sets with random distributions can significantly enhance the signal to noise ratio [10].

Disentangling direct and indirect correlations

Maximum-entropy-based algorithms have recently been successfully applied to co-evolutionary sequence correlation in order to find 
residue contacts in proteins and have been implemented using a numerical method from mean field theory [7]. Another method is 
based on calculating the inverse covariance matrix to obtain partial correlations. In this approach, the accuracy of the strongest direct 
interactions can significantly be improved by sparse inverse covariance estimation, in which the inverse covariance matrix is numerically 
estimated while iteratively removing weaker interactions. An efficient algorithm known as graphical LASSO has been used to transfer this 
principle to co-evolutionary correlation problems in order to predict residue contacts [1,4].
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the appearance of background noise while computing 
pairwise co-evolution. �is phenomenon makes reliable 
identification of significant co-evolutionary correlations 
difficult (Box  1). While there has been significant pro-
gress in improving the signal-to-noise ratio over the last 
years, the methods still have a high false-positive rate, 
making it difficult to differentiate between direct and 
indirect interactions between positions in the protein [8]. 
However, if one can disentangle this information, which 
is still an area of intense research, it can reveal key 
molecular aspects of the structure, dynamics and 
function of the protein.

In addition to inferring the structural proximity of 
specific residues, co-evolution between positions in a 

sequence can provide information about the confor-
mation dynamics (including allosteric communication 
and alternative conformations) and molecular function 
(such as which residues are involved in substrate recog-
nition, regulation and interaction) of proteins (Figure 1). 
By resolving contradictory distance constraints and 
investigating residues that co-evolve with a large number 
of positions, Hopf et al. [7] harnessed this information to 
identify different conformational states (as shown for 
membrane proteins glpT and OCTN, which transport 
glycerol 3-phosphate and organic cations, respectively). 
�is has also provided hints about contacts in homo-
oligomerization interfaces (as shown for the ABC 
transporter MsbA), and has facilitated prediction of 
functionally important sites (as shown for adiponectin 
receptor protein 1, AdipoR1). �us, information on co-
evolving positions can be exploited to gain important 
insights into the dynamics and function of proteins.

Future directions and novel applications
�e computational study undertaken by Hopf et al. [7] 
demonstrates the potential of what one can learn about 
the structure of membrane proteins from residue co-
evolution. While this is an impressive and important 
landmark in membrane protein structure prediction, 
there is still scope for improvement. For instance, 
constraints derived from biochemical experiments on 
protein function (such as restraining the distances 
between side chains of substrate binding residues in 
transporters) could be incorporated. Moreover, the 
method could be extended further by creating hybrid 
computational approaches that exploit Rosetta or other 
classical folding methods to leverage the strengths of 
constraints both in terms of co-evolution and energy.

In terms of applications, there are a number of 
problems where one can exploit this method. For 
instance, a variety of meta-genomics studies from diverse 
niches are providing us with a deluge of sequence infor-
mation of several proteins that are completely un-
characterized. In this context, sequence co-evolution-
based approaches can provide insights into structures of 
novel families of predicted proteins, which could be 
important for biotechnological and protein engineering 
applications. �e algorithm can also be useful in 
medicine and drug development as a number of 
membrane proteins are implicated in several human 
disease conditions and many of them are difficult targets 
for structural analysis (for example, the cystic fibrosis 
transmembrane conductance regulator, whose structure 
remains to be determined). �us, ab initio structure 
determination of such medically important membrane 
proteins could provide structural models to better 
interpret disease mutations and serve as potential 
starting points for structure-based drug design. Such 

Figure 1. Inferring protein structure, function and dynamics 
from residue co-evolution. Co-evolving positions within a 
sequence can be inferred from investigating multiple sequence 
alignment of homologous protein sequences (Box 1). Such 
information can be exploited to provide information on spatial 
proximity of residues and hence to infer three-dimensional 
structures, residues at the oligomeric interface, amino acids that 
are functionally important and the presence of potential allosteric 
communication paths in the structure.
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models can help identify structurally proximal residues 
that could be engineered to increase the stability of 
membrane proteins for expression, making them suitable 
for crystallization and for structure determination. With 
major advancements in the field of electron cryo
microscopy, it is now routinely possible to obtain low-
resolution maps (8 to 12  Å) of proteins either by single 
particle reconstruction or electron crystallography. Infer
ring topology, subunit orientation and the oligomeric 
arrangement of membrane proteins using this method 
might provide models to interpret and complement the 
electron microscopy maps of macromolecular complexes 
involving membrane proteins.

Conclusions
Presently, structural biology struggles to hold pace with 
the rapid growth in genome sequencing. Only a fraction 
of all known sequence families is represented in the 
Protein Data Bank with at least one structure of its 
members. Despite the great progress in structure predic
tion using protein fragments, improved force fields, 
molecular dynamics simulations and homology model
ing, structures of membrane proteins remain widely 
inaccessible. Computational methods such as EVfold_
membrane thus hold the key to accelerating the structure 
determination of membrane proteins, thereby bridging 
the widening sequence-structure gap.
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