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Abstract

The accuracy of base calls produced by lllumina sequencers is adversely affected by several processes, with laser
cross-talk and cluster phasing being prominent. We introduce an explicit statistical model of the sequencing
process that generalizes current models of phasing and cross-talk and forms the basis of a base calling method
which improves on the best existing base callers, especially when comparing the number of error-free reads. The
novel algorithms implemented in All Your Base (AYB) are comparable in speed to other competitive base-calling
methods, do not require training data and are designed to be robust to gross errors, producing sensible results
where other techniques struggle. AYB is available at http://www.ebiac.uk/goldman-srv/AYB/.

Background

There can be little doubt that the vastly increased
throughput of Next-Generation Sequencing (NGS)
machines has revolutionised DNA sequencing, but the
reads produced are both shorter and less accurate than
those from capillary sequencing and discoveries from
NGS are often verified using traditional sequencing [1].
The challenges to overcome to improve the accuracy
and read length of NGS platforms are different from
those that were faced by capillary sequencing [2] and
require different strategies to tackle them. In particular,
the phasing process — individual molecules of DNA
becoming out-of-step with others in the same cluster —
is complex and ultimately limits the length of reads
which can be obtained from cluster-based sequencing-
by-synthesis methods [2]. Here we develop an explicit
statistical model of the sequencing process, including
phasing and other signal-degrading processes. By imple-
menting a base calling algorithm based on this model,
our AYB software is able to produce more accurate
reads.

Our statistical model is quite generic and so applicable
to all sequencing-by-synthesis and similar platforms
(sequencing-by-ligation, pyrosequencing; see Metzker [3]
for a comparison) that rely on large numbers of clusters
consisting of many homogeneous DNA molecules. We
concentrate on the Illumina Genome Analyser (GA-II),
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both to provide a concrete foundation to aid exposition
of the methods and because of local availability of data
for testing and comparison. The mechanics of sequen-
cing-by-synthesis on the GA-II platform have been
described elsewhere in detail [3]. Here we present an
overview of an idealised sequencing process to establish
context and terminology for the rest of this paper and
then a critique to show how errors arise.

Fragmented single-stranded DNA is washed through
the lanes of a slide, where it attaches and is amplified to
form a sequence-homogeneous cluster of molecules.
Sequencing progresses in steps, referred to as cycles,
with each cycle conceptually sequencing one position of
DNA. For each cycle, a mixture of Fluorophore-Labeled
Nucleotides (FLNs) is washed through the lanes of the
slide and attach to the molecules in each cluster; attach-
ment of more than one nucleotide in a given cycle is
prevented by the presence of a reversible terminator ele-
ment on each FLN. A different fluorophore is associated
with each of the four nucleotides (A, C, G, T) and so
the nucleotide sequence of the DNA fragments can be
uniquely identified from the fluorescence. After the
attachment process has run to completion, the intensity
of fluorescence from each cluster is recorded in four
channels, each channel being a combination of illumina-
tion with a specific laser and imaging through a specific
filter. Clusters are artificially grouped into tiles, regions
of the lane consistent over cycles, whose size is con-
strained by the capacity of the imaging equipment. The
terminator elements and fluorophores are then cleaved
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from the FLNSs, setting up each cluster so the FLNs in
the next cycle will attach to the next position of
sequence.

After processing the images to pick out individual
clusters, the output of the sequencing machine is many
channel x cycle matrices of intensities, one matrix for
each cluster. In principle the bases could be called
straight from these intensities but there are several com-
plicating factors [4] that must be dealt with, cross-talk,
phasing and dimming being of particular importance.

Cross-talk is the recording of light from a single fluor-
ophore in multiple channels. This occurs because,
although they are chosen to be distinguishable, the
fluorophores’ emission spectra overlap. There is not a
one-to-one correspondence between channels and FLNs
and the relationship between the emission of each fluor-
ophore and the intensity observed in each channel
needs to be ascertained and corrected for. Phasing refers
to the deterioration in relationship between sequencing
cycle and sequence position as the cluster loses coher-
ence: on a given cycle, FLNs may be attaching to differ-
ent positions on different molecules within the cluster.
There are many possible explanations for phasing: for
example, a FLN might have a defective reversible termi-
nator element leading to the attachment of two FLNs to
a molecule on a single cycle, allowing the molecule to
get ahead in the sequencing process (‘pre-phased’), or
the cleaving of the reversible terminator might fail for a
cycle so the molecule lags behind when the element is
finally removed (‘post-phased’). A further possible cause
of post-phased molecules is the chemistry not running
to completion, resulting in either no FLN being attached
that cycle or cleaving failure as previously mentioned.
Finally, molecules within a cluster gradually stop contri-
buting to the total signal, possible causes being laser
damage to the individual molecules or problems rever-
sing the terminator element, and this leads to a decrease
(dimming) in the overall emission observed from each
cluster in later cycles of sequencing.

The cross-talk is a consequence of the physics of
fluorophore excitation and methods for estimating it
have already been developed for dye-terminated capillary
electrophoresis sequencing platforms [5]. Phasing and
dimming are more specific to NGS methods, the Illu-
mina platform in particular, and have been approached
in a variety of ways. The Illumina base calling software
(Bustard) assumes a constant rate of post-phasing and
pre-phasing for all cycles [6], as do the Alta-Cyclic caller
[7] and Rolexa [8], whereas BayesCall [6] allows the
phasing at each position of the sequence to depend on
several of the neighbouring bases and Ibis [9] assumes
that all information about the phasing at a given cycle is
contained in intensities of the cycles either side. The
Seraphim base-caller [10] assumes that cross-talk and
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phasing have already been corrected for, empirically
estimating the sequencing noise and calling bases using
a log-linear model over cycles to model base-specific
signal degradation. In contrast our method uses a com-
pletely empirical model, generalising both cross-talk and
phasing, that allows all aspects of the sequencing pro-
cess to be determined by the data on a run-by-run,
indeed tile-by-tile basis. This model is unique to AYB
and incorporates effects such as cycle-wise variation in
cross-talk and allows context-specific phasing rates that
may account for some of the reported sequence specific
errors in GC rich reads [11,12].

Results and Discussion

In a recent comparison [4], Ledergerber and Dessimoz
compared several different base callers and Ibis [9] was
clearly the most accurate and considerably quicker than
any comparable base caller. While Naive Bayescall [13]
is almost as accurate as Ibis and boasts a much
improved base calling time over the original Bayescall
algorithm [6] (37 min. compared to the 2266 min. for
300K reads, respectively, for Ledergerber and Dessimoz’s
example), it is still ¢. 24 x slower than Ibis and requires
an already trained model to be available (Ledergerber
and Dessimoz report 1842 min. for training). Despite its
considerable improvement over the original algorithm,
the computational requirements of Naive Bayescall
restrict its use and, since it is also strictly dominated by
Ibis in both accuracy and speed, we do not include it in
the comparisons below. To quantify the performance of
AYB, we therefore use Bustard and Ibis as comparators
to represent standard practice (Bustard; various versions
depending on age of data) and the current state-of-the-
art (Ibis; version 1.1.5).

Bustard is the standard base calling software for the
[llumina platform and a detailed description of the algo-
rithm is given in [6]. Ibis uses a machine learning
approach to base calling, training a Support Vector
Machine (SVM) at each cycle on the intensities of the
current, previous and next cycles. The SVM is trained
on true calls for some subset of the data, and these are
estimated by mapping Bustard calls back to the refer-
ence; the trained SVMs are specific to given read
lengths and cluster densities and may also incorporate
artifacts that are specific to given run. If sequencing de
novo then correct calls may not be available but an
SVM from a similar run could be used, with potential
reduced performance, or a small amount of a known
genome could have been ‘spiked-in’ and the SVM
trained using these reads. Ibis was trained by mapping
the Bustard calls for a training set to the reference gen-
ome using the default aligner (a modified version of
SOAP [14]), the training set comprising every tenth tile
starting from the fifth for our full lane sets of data (B.
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pert., BGI and Illumina) and all reads for the reduced
sets (X174 L2, X174 L4, X174 L6, Ibis Test and
HiSeq; see below for full details of test data sets).

Here we compare the three base callers using six sets
of data of varying read lengths, cluster densities and vin-
tage typical of everyday use and of our extensive testing.
The data sets are summarised in table 1 and may be
freely obtained from the AYB website [15]. The callers
were compared by both the percentage of reads that
map to the reference genome and the percentage of
reads that map back with no mismatches (‘perfect’ calls).
The BWA short read aligner [16] was used to map reads
back to the appropriate reference genome (edit distance
of five) for all comparisons in this paper, having been
chosen for its speed and its ability to deal with inser-
tions and deletions.

The following subsections describe features of each set
of data and compare the performance of the base callers
in more detail but a general summary is provided in
table 2. Table 3 shows the time taken for both the
model training and base calling steps where appropriate.
Times are not given for Bustard since these calls are
produced as part of the sequencing process and so are
essentially free.

¢X174, 76 cycle and 51 cycle

Two test sets from the bacteriophage ¢X174 were used:
nine tiles each from three lanes of 76 cycle data pro-
duced by the Sanger Institute and differing in cluster
density (named X174 L2, X174 L4, X174 L6), and a
decimated run containing 200K clusters of 51 cycle data
that is distributed as a test set with Ibis [17] (Ibis Test).
Reads from the 27 tiles from the Sanger Institute were
aligned against a SNP-corrected genome (two SNPs cor-
rected), such a correction being possible because of the
high coverage produced by these tiles. Reads called from
the Ibis Test set were mapped to the genome distributed
with it. Given the small number of clusters in the Ibis
Test set, it was analysed as whole with AYB rather than
on a tile by tile basis.
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Both AYB and Ibis improve the number of mapped
reads over Bustard by a small amount, with Ibis gener-
ally producing a few tenths of a percent more (table 2).
The differences between AYB and Ibis are statistically
significant only for the X174 L4 and Ibis Test data
sets. In contrast, AYB always produces several percent
more perfect reads than Ibis, which itself produces sev-
eral percent more than Bustard. All these differences
represent an appreciable fraction of all reads which may
have consequences for down-stream analysis since the
per-mapped-base error rate for AYB is between 80%
and 90% of that for Ibis (82%, 90%, 86% and 85% for the
@X174 L2, X174 L4, ¢X174 L6 and Ibis Tests sets
respectively). The improvement in error rate of AYB
over Ibis and Bustard for a variety of mapping criteria is
shown graphically in Figure 1, AYB almost always hav-
ing a lower percentage error than the other base callers.

Bordetella pertussis, 76 cycle paired-end

A second comparison was based on a data set compris-
ing an entire lane (100 tiles) of 76 cycle paired-end
reads from the coccobacillus Bordetella pertussis (data
sets denoted B. pert./1 and B. pert./2 for the two paired
ends, respectively), using the complete genome of the
Tohoma I strain as a reference. The tiles from this run
showed a large variation in the number of clusters, ran-
ging from 345 to 82,000, with the tiles close to the ends
of the flow cell containing fewer clusters. The sequence
produced was generally of low quality, with Bustard pro-
ducing an error rate of 50% for the final five bases of
the first end of the read-pairs, which suggests that a
problem occurred during the sequencing. Oddities in
the cross-talk matrix, the channels corresponding to A
and C nucleotides being noticeably brighter than those
corresponding to G and T, suggest that there may have
been illumination problems with one of the lasers.
Because of the problems with this run and the presence
of polymorphisms relative to the reference genome, it
provides a useful comparison between the base callers
when problems occur.

Table 1 Summary of data sets analysed and reference genomes used for mapping.

Name Reference genome Num. reads Read length Paired-end Date sequenced

X174 1.2 X174 677538 76 no Aug. 2008
X174 L4 X174 1299052 76 no Aug. 2008
X174 L6 X174 900291 76 no Aug. 2008
Ibis Test X174 200000 51 no Apr. 2009
B. pertt B. pertussis Tohama | 4250058 76 yes Dec. 2009
BGIT H. sapiens GRCh37 9611783 45 yes Jul. 2008
[lluminat H. sapiens GRCh37 13974025 51 yes Jun. 2008
HiSeq H. sapiens GRCh37 + @X174 7813098 101 yes Oct. 2010

The individual ends from paired-end sets are referred to with a suffix indicating the end, for example BGI/1, BGI/2. tThese sets contain a whole lane; other sets
have either been decimated (Ibis Test & HiSeq) or contain only a few tiles (X174 L2, pX174 L4 and ¢X174 L6). ‘Date sequenced’ is approximate, representing our
best effort to quantify the vintage of the data. All intensity data are freely available from the AYB website [15] in the lllumina CIF format.
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Table 2 Performance comparison of Bustard, Ibis and AYB on several sets of reads of varying read length and

chemistry versions.

Reads mapped, %

Reads perfect, %

Bustard Ibis A% AYB A% Bustard Ibis A% AYB A%
eX174 L2 76.62 78.33 +2.23 78.25 +2.13 55.88 5894 +5.48 62.29 +11.48
oX174 L4 63.02 66.11 +4.90 65.09 +3.29 40.09 43.08 +7.46 44.74 +11.60
X174 L6 72.09 74.07 +2.75 74.08 +2.77 51.19 5334 +4.20 56.00 +9.40
Ibis Test 84.77 8845 +4.34 88.19 +4.03 44.34 66.14 +49.16 69.32 +56.34
B. pert/1 2876 39.16 +35.94 45.80 +58.98 253 3.14 +23.70 413 +62.86
.. timmed 77.35 81.06 +4.80 81.14 +4.90 3952 4764 +20.55 55.24 +39.79
B. pert/2 3433 4741 +38.75 53.50 +55.57 6.22 17.69 +183.98 2667 +32797
.. timmed 66.54 7022 +5.53 72.07 +8.31 3013 40.72 +35.18 48.25 +60.15
BGI/1 8741 89.01 +1.82 88.85 +1.64 59.62 68.39 +14.70 69.29 +16.22
BGI/2 84.58 86.29 +2.03 86.52 +2.29 5595 61.90 +10.64 63.30 +13.14
lllumina/1 97.58 97.80 +0.22 97.85 +0.28 72.55 75.80 +4.49 76.70 +5.73
lllumina/2 96.29 96.73 +0.46 96.82 +0.55 7061 73.88 +4.63 74.66 +5.74
HiSeq/1 84.97 85.24 +0.32 85.97 +1.18 60.29 62.55 +3.75 64.50 +6.98
HiSeq/2 79.78 T 8134 +1.76 49.79 t 55.58 +11.63

Performance is compared in terms of the percentage of reads mapped back to the reference with five edits or fewer, and the percentage of reads which
perfectly match the reference; the ‘A%’ figures for Ibis and AYB, where given, are the percentage improvements over Bustard. See text for further details. tlbis

failed to process the second end of the HiSeq data.

Mapping back to the reference revealed a marked dif-
ference in base-caller performance (table 2): AYB pro-
duced more than four times as many perfect reads as
Bustard (1,133k vs. 265k reads) and 1.5 times as many
as Ibis (752k reads) for the second end of the read-pairs.
AYB produces 56% more mapped reads than Bustard
and 13% more than Ibis. The increased number of per-
fect and close to perfect reads produced by AYB has
real consequences for down-stream analysis, with the
genome being covered to an average depth of 29.3 x for
AYB, 9.5 x for Bustard and 21.7 x for Ibis. Greater

Table 3 Training and base calling time for Ibis and AYB.

Ibis AYB

Training Base calling Total Base calling A%
oX174 1.2 68 2 70 12 -83
X174 L4 121 4 125 21 -83
X174 L6 114 3 117 15 -87
Ibis Test 6 4 10 1 -90
B. pert/1 21 13 34 119 +250
B. pert/2 33 21 54 163 +202
BGI/N 126 17 143 96 -32
BGI/2 117 29 146 96 -34
lllumina/1 136 27 163 196 +20
lllumina/2 136 41 177 197 +11
HiSeg/1 94 34 128 276 +116
HiSeq/2 T 274

AYB does not require training, so only base calling time is reported. The A%
figure for AYB is the percentage difference compared to the Ibis total time. All
times are the real time, in minutes, running on four cores of an Intel Xeon
L5420 running at 2.5 GHz. tlbis failed to train on the second end of the HiSeq
data so no time is reported.

coverage means more confident SNP and variant detec-
tion, which in turn leads to improved mapping of reads.
For the first end of the read, AYB produces a greater
number of perfect reads (176k reads) than Bustard
(108k) or Ibis (133k) and 59% and 17% more mapped
reads than Bustard or Ibis, respectively.

As well as mapping to a reference genome, the length
of contigs produced by de novo assembly is a useful guide
to the quality of reads produced and of relevance in cases
where a reference is not available. Applying Velvet [18]
to the second end of the B. pertussis paired-end reads
(kmer length 31; automatic coverage cut off; default
options otherwise) produces a N50 contig length of 6690
bases for the AYB reads; the reads from both Bustard
and Ibis produce much shorter contigs on average, with
N50 lengths of 2029 and 4473 bases, respectively.

These results are further illustrated in Figure 2, along
with the same data trimmed to the first 50 bases to
show that AYB still produces more accurate reads even
after the later (worst) cycles have been discarded (again,
results in table 2). The per-mapped-base error rates are
shown in Figure 1, AYB having a lower error rate than
Ibis and Ibis having a lower error rate than Bustard for
B. pert./2 and both trimmed data sets. B. pert./1 shows a
different pattern with the three callers having about the
same error rate, but this should be interpreted in the
light of the huge differences in the number of mapped
reads produced by the base callers: for reads mapping
with either no errors or exactly one error, AYB pro-
duced 50% more reads than Ibis, which produced 25%
more than Bustard.



Massingham and Goldman Genome Biology 2012, 13:R13
http://genomebiology.com/content/13/2/R13

Page 5 of 15

B. p rt/l B. pert./1
] — trimmed O Reads with=<5 errors
O Reads with=<4 errors
O Reads with=<3 errors
< B Reads with=<2 errors
L B Reads with=<1 error
@
] B. pert./2  B. pert./2
kel trimmed
° m-
23
Qo —
© ®© —
€€ —
oY)
o5
% 2~ Ibis Test
8
] BGI/1 BGI/2
X174 L2 X174 L4 X174 L6
- 1] 1 2
— ﬁ ﬁ i ii umina/. umina/; Hiseq/1 HiSeq/2
N
o ﬁﬁﬁ EEE ﬁ i iii ﬁﬁﬁ ﬁﬁﬁ E/A
5 S 0 S 0 S o T o S o T 0 O T o T 8 T 0 T T O T O
9
‘2: ‘b ‘2> ‘b ‘b Q; ‘b ‘b ‘2: ‘b ‘27 ‘2> ‘2> °

Figure 1 Comparison of per-mapped-base error rates. Percentage per-mapped-base error rates for the Bustard, Ibis and AYB base callers

compared over several sets of reads of varying read length and chemistry versions. The height of the bars are the percentage of bases that
differ from the reference genome, conditioned on reads having been mapped with the stated criteria (a total of 1,.. ., 5 edits relative to the
reference). Ibis failed to process the second end of the HiSeq data so no bars are shown.

Human NA19240, 45 cycle and 51 cycle paired-end

Much of the pilot data for the 1000 Genomes project
[19] has been archived and is publicly available for rea-
nalysis, allowing for a further comparison between the
base-callers and showing that AYB can be usefully
applied to improve the analysis of existing data. Two
sequencing runs for NA19240 (Yoruban daughter) were
reanalysed: ERR000479 (9.6 million 45bp paired-end
reads, part of ERA000013 by the Beijing Genomics Insti-
tute, referred to as sets BGI/1 and BGI/2) and
ERR000610 (14.0 million 51bp paired-end reads, part of
ERA000023 by Illumina Inc., referred to as sets Illu-
mina/1 and/2). The accuracy of the base-calling was
assessed by mapping to the human reference provided
by the 1000 Genomes Consortium, based on GRCh37.
This genome has variants relative to the sample
sequenced but their presence penalises all callers
equally. The raw intensities submitted to the archive
have apparently been filtered for quality since an abnor-
mally high proportion of the reads map back to the
reference when called with Bustard: 86% for the BGI
run and 97% for the Illumina run.

Despite the limited scope for improvement, both AYB
and Ibis produce slightly more mappable reads than
Bustard (table 2): a 1.97% or 1.92% increase respectively
for the BGI data and 0.41% or 0.38% increase for the
[lumina data averaged over both ends of each set. Large
increases over Bustard are observed for the proportion
of reads that match the reference exactly, AYB showing
a clear lead over Ibis on both sets of data with 14.65%
and 5.73% increases over Bustard for the BGI and Illu-
mina sets respectively, compared to increases of 12.74%

and 4.56% for Ibis. The superiority of AYB here is sur-
prising as this is not a situation where it would be
expected to do particularly better: the number of cycles,
and so phasing, is comfortably small in both cases. The
read length, vintage and error-rate of the BGI run is
consistent with the older “sticky-T” chemistry (incom-
plete cleavage of the “T” FLN, leading to an increased
concentration in later cycles) and the improvement seen
is typical for similar data.

The per-mapped-base error rate for reads produced
from all BGI and Illumina data sets by AYB is lower
than that of either Bustard or Ibis for a variety of map-
ping criteria (Figure 1).

Variant calling of NA19240

Following the guidance for best practice variant calling
[20] using the Genome Analysis Tool Kit [21], we
implemented a SNP calling pipeline including the full
recalibration and realignment of reads. For each base
caller, the both BGI and Illumina sets of paired-end
reads were combined and then variants for the
NA19240 data set were called against the human refer-
ence GRCh37. After variant recalibration, 399091 of
AYB’s 438486 SNP predictions passed the truth sensitiv-
ity filter (set to 99.0), compared to 371959 of 407110 for
Bustard and 386056 of 413198 for Ibis. Base calls pro-
duced by AYB show a 7.3% increase in filtered variant
predictions over Bustard, compared with a 3.8% increase
shown for variant calls produced by Ibis. The median
quality of the calls was 29.9, 29.0 and 27.0 for AYB, Bus-
tard and Ibis, respectively, so calling bases using the
AYB base caller results in more variant calls with a
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Figure 2 Number of reads mapped to B. pertussis. Number of mapped reads and base substitution errors in 4.2 million reads of 76 cycle
paired-end B. pertussis data relative to a reference genome. The base callers Bustard, Ibis and AYB are compared on ends 1 and 2 of the reads
by the number of differences to the reference, to a maximum of five differences, with the total percentage of mapped reads displayed at the
top of each bar. Results for both the full reads (left, ‘All 76 cycles’) and reads trimmed to the first 50 cycles (right, ‘First 50 cycles’) are shown.
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higher average recalibrated quality than either of the
other two callers.

A set of variant calls for NA19240 produced by deep
sequencing with the Complete Genomics technology has
been previously published [22] and these allow further
verification of the calls produced by each base caller. To
permit comparison, all SNP predictions were further fil-
tered to remove those that mapped to genome regions
not included in the CG-HQ results, resulting in the
removal of 2.3%, 2.2% and 2.3% of predicted SNPs for
AYB, Bustard and Ibis, respectively. Validating the
remaining predicted variants against the Complete
Genomics ‘high-quality’ set (CG-HQ) [23], the calls pro-
duced by AYB show a 6.6% increase over Bustard in
validated predictions compared to a 0.4% increase for
Ibis. The false discovery rate for AYB was lower than
that for either Bustard or Ibis. Full results are shown in
table 4.

All three callers predicted a number of SNPs that
were not contained in the CG-HQ set: 9.4% of the total
for AYB, 8.8% for Bustard and 11.4% for Ibis table 4
(column labelled ‘Extra’). Although potentially false posi-
tives, these predictions show a good degree of congru-
ence with 40% of the total being common to all three
base-callers and 57% being made by at least two base-
callers, and so cannot all be discounted as errors.
Finally, the median quality of these ‘Extra’ SNP predic-
tions was lower than those that the CG-HQ set validates
('Match’): 24.1, 24.1 and 20.2 versus 30.0, 29.0 and 27.0
for AYB, Bustard and Ibis, respectively. For comparison,
the average quality of SNP predictions at sites where the
CG-HQ set predicted a different SNP (‘Mismatch’) was
24.1, 23.0 and 20.4, respectively. Possible explanations
for these discrepancies are variation between the
sequence libraries or in the cell lines used [24].

Table 4 Comparison between SNP predictions made by
the three base callers and the ‘CG-HQ’ high-quality set of
variant calls from Complete Genomics.

Match A% Mismatch Extra Complex Total FDR

AYB 339908 +6.65 299 36524 13251 389982 879 x
10"

Bustard 318725 284 32165 12476 363650 890 x
10"

Ibis 319907 +0.37 342 42865 14210 377324 1068
x 107

SNP predictions for sites that are SNPs in CG-HQ either ‘match’ or ‘mismatch’
depending on whether they agree; for AYB and Ibis matches we also record
the percent improvement over Bustard (A%). ‘Extra’ SNP predictions are those
for sites that are not present in the CG-HQ data. Predicted SNPs at sites for
which the CG-HQ results indicate complex variations from GRCh37, mainly
insertions and deletions, are counted as ‘complex’. The false discovery rate
(FDR) is calculated across matches and mismatches only, since the high level
of congruence across base callers in the ‘extra’ category suggests many of
these predicted SNPs may be correct (see text for details). Only variant calls
for the autosomal, x or mitochondrial chromosomes are considered.
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HiSeq, 101 cycle paired-end

[llumina Inc. made available to us a decimated set of
data produced on an Illumina HiSeq machine, compris-
ing 7.8 million paired-end reads (8 lanes with a read
length of 101 bases) of human sequence with a ¢pX174
spike-in (approximately 0.43% of reads). Ibis was trained
separately for each of the 8 lanes, although cross validat-
ing revealed little difference in performance since all
lanes were from the same sequence library. All statistics
reported for Ibis are an average over all 8 models and
lanes. The reads were mapped against the reference
human genome and that of ¢X174 and, again, the error
rates reported are all slightly inflated due to the gen-
omes sequenced having variants relative to the
references.

Even on the modern HiSeq chemistry AYB and Ibis
improve on the base calls produced by Bustard,
although the increase in mapped reads is quite small:
0.32% and 1.18% for the first end for Ibis and AYB,
respectively. Larger improvements are seen for the num-
ber of perfect reads where both base callers improve on
Bustard by several percent (3.75% for Ibis, 6.98% for
AYB) so AYB improves on Ibis by almost as much as
Ibis improves on Bustard. Greater improvements are
seen for AYB on the second end of these reads, with an
11.63% increase over Bustard in the number of perfect
reads. We were unable to get Ibis to train on the second
end of the reads so results are not available.

For the HiSeq data sets, the per-mapped-base error
rate for reads produced by AYB is lower than that of
either Bustard or Ibis for a variety of mapping criteria
(Figure 1).

Quality scores

Looking only at per-mapped-base error rates does not
tell the whole story of base caller accuracy. Some reads
are produced from extremely clean intensities whereas
others may have been extracted from very noisy data,
and base callers assign each base a quality score to indi-
cate their confidence in that call.

Typically, the quality score is a discrete value related
to the estimated probability that the call is correct.
Given a set of mapped reads, the actual proportion of
bases in error can be found for each (estimated) quality
value assigned by the base caller; these proportions can
be used to calculate empirical quality values to which
the estimated values can be compared to assess their
accuracy. If the estimated quality values were perfectly
calibrated then they would agree, to within sampling
error, with the empirical quality values (a linear relation-
ship with unit slope and zero intercept). For model-
based methods like AYB, major discrepancy between
estimated and empirical qualities is indicative of poor fit
of the model to experimental data. Importantly,
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knowledge of the accuracy of quality scores, often
dependent on per-experiment differences, can be used
to calibrate them to give better error probability
estimates.

The accuracy of quality scores for AYB, using a cali-
bration function with parameters derived from X174
L2, and Ibis is compared in Figure 3 on the Ibis Test
data set. Both base callers produce scores that are fairly
reliable for the majority of the quality range, being close
to linear with a slight tendency to overestimate confi-
dence in low-quality bases. The scores of extremely high
and low quality calls for Ibis are unreliable but, as evi-
denced by the frequency at which such qualities occur
and the width of the 99% confidence intervals, bases
with these scores are in the tail of the distribution and
so occur rarely. The histogram of the frequency with
which a particular quality score is assigned for AYB has
a noticeable skew towards higher values whereas the
histogram for Ibis has a more Gaussian nature with a
lower median.

The Root Mean Squared (RMS) error between the
estimated and empirical qualities, weighted by the num-
ber of bases assigned to each category, has previously
been used to measure quality score accuracy [25]. The
RMS criterion is not ideal since it penalises inaccurate
qualities for low-quality bases as much as similar errors
for the more important high quality bases, and over-esti-
mation of quality is penalised the same as under-
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estimation despite these two types errors having differ-
ent consequences for down-stream analysis since over-
confidence in a erroneous result will tend to lead to a
false positive whereas under-confidence in a true result
is conservative. The alternative ‘S, criterion, inspired by
information theoretic considerations, has been suggested
to overcome these flaws (Richard Durbin, personal com-
munication) and may be thought of as measuring the
informativeness of a set of calls with a penalties for
being over- or under-confident. Here we define a modi-

fied form, S, constructed so that its maximum occurs
when the calibration is exactly correct and its value at

this maximum is equal to the average quality score. The
criterion is

1 — 10(—qz)/10
. o )
Za Nq

where the discrete range of quality values is indexed
by a and a base caller assigns 7, bases to quality ¢,, for
which the empirical quality is ¢j;. Notice that the sec-
ond term of the numerator is negative when the quality
is over-estimated and its magnitude increases exponen-
tially with increasing error, whereas the ‘bonus’ for mak-
ing a conservative prediction is bounded.

The quality scores produced by the three base-callers
for all our sets of data are compared in table 5 using
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Figure 3 Quality calibration curves for AYB and Ibis. Quality calibration curves for AYB (left) and Ibis (right) on the Ibis Test data set of 200K
50 cycle reads. For each base-caller, two graphs are superimposed: a line chart with error bars showing how the empirical quality changes with
estimated quality (left axis) and a histogram of how many bases have a given estimated quality (right axis, as a proportion of mapped bases).
The error bars represent 99% confidence intervals, obtained by transforming the Wilson interval [32] for the proportion into a quality score. On
each graph, straight lines are shown representing perfect correlation between estimated and empirical qualities (solid) and the best linear
weighted fit (dashed).
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Table 5 Assessment of quality score accuracy across all data sets for the three base callers under a variety of criteria;
see text for details.

SpMax RMS Qror X107

Bustard Ibis AYB AYB* Bustard Ibis AYB Bustard Ibis AYB Bustard Ibis AYB
X174 12 350 234 315 261 247 321 124 36 23 10 10 12
oX174 L4 95 223 301 258 230 310 838 24 25 16 15 19
X174 L6 56 232 315 26.8 24.0 322 10.1 29 2.3 13 12 1.6
Ibis Test N/A 236 30.7 N/A 24.0 320 N/A 1.7 32 N/A 0.2 03
B. pert/1 13 213 120 22.1 203 225 25.5 8.1 1.8 59 19 28 36
.. trimmed -1.5 17.0 230 24.5 232 20.3 27.0 9.1 3.1 44 38 35 45
B. pert/2 49 164 239 24.2 224 203 266 9.6 14 3.7 2.5 3.1 44
.. trimmed -3.7 14.0 236 24.5 223 19.9 26.7 93 26 40 3.1 3.0 39
BGI/1 -29.0 216 0.0 229 227 222 24.0 113 2.5 87 8.6 85 838
BGI/2 -9.8 206 1.0 223 22.3 212 236 1.1 2.5 85 82 79 84
lllumina/1 -14 22.8 13 23.8 240 232 249 9.8 19 88 16.7 14.8 16.7
lllumina/2 34 224 3.1 237 239 228 249 9.7 19 8.6 164 15.7 16.5
HiSeq/1 -03 249 116 256 259 258 266 9.6 2.7 7.5 174 173 17.7
HiSeq/2 14 N/A 124 24.9 255 N/A 265 92 N/A 7.3 16.1 N/A 16.7

Note that higher values of §, and S, Max and lower values of RMS are better. The scores for AYB were calculated using a calibration function with parameters
derived from the X174 L2 data set; the scores reported under AYB* are those achieved using run-specific calibration on the larger data sets (see text for details).

Quality scores were not available for Bustard on the Ibis Test data set and Ibis failed to train on the second end of the HiSeq data.

both the RMS and S, criteria. Qualities were not avail-

able for Bustard on the Ibis Test data set and Ibis failed
to process the second end of the HiSeq data set. Only
Ibis performs uniformly well under both of these cri-
teria, as is expected given that it was trained (calibrated)
on the data it was calling or similar (see individual dis-
cussion of each data set, above, for details) and should
really be compared to recalibrated Bustard and AYB
data. The results for AYB may be considered adequate,
especially on the four sets (X174 L2, X174 L4, ¢X174
L6 and Ibis Test) which are similar to the one from
which its calibration table was obtained (X174 L2), but
there is scope for improvement. Bustard’s poor scores
highlight the desirability of incorporating run-specific
recalibration into analysis pipelines; the often poor cali-
bration of its raw scores has been noted previously [21].
The column AYB* in table 5 shows how AYB improves
if run-specific calibration is used, the constants for the
calibration function in each case being derived from the
same subsets of tiles that Ibis was trained on and so

producing comparable RMS and S, scores. Even with

our simplistic attempt at run-specific recalibration, see
Methods, the quality scores from AYB are consistently
more informative than qualities produced by Ibis and
this lead can only increase if more sophisticated and
accurate recalibration methods were to be applied.

The maximum value of S, assuming perfect calibra-

tion, S, Max, is also shown in table 5 as a measure of

the maximum amount of information that could be
extracted from the base calls assuming further, probably

reference-based, calibration. For these scores, Bustard
outperforms Ibis, with the sole exception of the first end
of the B. pertussis data set, in complete contrast to their
relative performance for the other criteria. While Ibis
makes fewer base calling errors than Bustard, it does
not do such a good job of separating the bases accord-
ing to confidence and so the total information content
of the calls is lower. AYB outperforms both Bustard and
Ibis, particularly on the four sets of data that are similar
to that which its calibration table was estimated (¢X174
L2, X174 L4, X174 L6 and Ibis Test).

The “Total Quality’, Qo is @ measure of the total
information content of the entire set of called bases and

is equal to S, Max multiplied by the number of mapped

bases. As it is a sum rather than an average, the Q. cri-
terion allows base callers to compensate in bulk for pro-
ducing low quality calls. The values of Q.. are also
shown in table 5 and have trends that are broadly simi-

lar to those for S, Max, with Ibis generally having a

slightly worse scores than Bustard and AYB performing
best for all data sets. A notable difference between the

Sp Max and Qq results is that Ibis has a much better

Qior score than Bustard on both ends of the B. pertussis
data, reflecting the increased proportion of mapped
reads (see table 2). Ibis has an important advantage over
the other base-callers on the RMS and S, criteria as it
was always trained on representative data, and so effec-
tively recalibrated using a reference each time. This
advantage is evidenced by the poor performance of Bus-
tard and the improvement in AYB’s performance when
run-specific calibration is used. These results should not
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be taken as a indication of the superiority of the quality
scores or calibration of Ibis since whatever data was
used to train Ibis could also have been used to come up
with a good calibration for either AYB or Bustard.
While the calibration of neither Bustard nor AYB is

exceptional, their performance on the S, Max and Q.

criteria, as well as the S, scores for AYB on the ¢X174

sets of data and after recalibration for other data sets,
suggest that bases from both callers can be recalibrated
to produce qualities whose informativeness equals or
exceeds those from Ibis.

Conclusions

A particular focus when developing AYB was to make
the algorithms robust to problems that might arise dur-
ing normal use, so it can be used confidently in cases
where other base-callers require manual intervention to
get the best results. The B. pertussis example was pre-
sented as such a case; another is data produced using
the TraDIS technique [26] where the first few cycles of
every cluster consist of known identical sequence, caus-
ing algorithms that estimate cross-talk from a single
early cycle to fail.

The statistical model underlying AYB has several
weaknesses that could be addressed in future work. The
model assumes that the descriptive parameters of the
sequence process are constant across a tile but this is
only going to be approximately true in practice: differ-
ences in illumination (e.g. mode scrambler problems)
and the relative intensities of the two lasers will affect
the cross-talk and background noise; also the expected
amount of phasing might be affected by fluctuations in
the chemistry. The phasing matrix represents an average
over many clusters and the actual amount of phasing at
a particular cluster is subject to stochastic variation. The
fewer molecules contained in the cluster, the further
from the average it is likely to deviate and this can lead
to counter-intuitive consequences as a small cluster that
has, by chance, undergone little phasing may fit the
average model as poorly as one that has undergone a lot
of phasing — clusters could then be penalised despite
giving clear signal.

Sequence-like errors, for example mutations intro-
duced during sample preparation, short fragments ligat-
ing together or adapter sequence, are essentially
invisible to any base-caller and render it impossible to
call the original sequence accurately. Other sources of
error may not appear sequence-like: for example, micro-
scopic particles of dust can get entangled in a cluster
and produce bright artefacts for one or more cycles.
Since very bright peaks deviate from the average bright-
ness of the read, AYB penalises these calls heavily and
they rarely contribute to the higher quality base-calls;
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they also reduce the quality of the surrounding calls due
to over-correction for pre- and post-phasing. Ideally
over-bright peaks would be removed prior to analysis
and treated as missing data, with the actual intensity
and base-call imputed from the remaining three intensi-
ties and the effect the position has on the neighbouring
cycles through the phasing correction. A similar idea
could be used to deal with clusters where intensities are
missing (i.e. unrecorded, perhaps due to image registra-
tion problems) for some cycles, producing low quality
calls rather than as at present where they are treated as
a cycle with four exactly zero intensities.

A final issue that AYB fails to account for is that of
heterogeneous clusters of sequence, a common cause of
which is two clusters merging into each other during
the amplification step, since there is an implicit assump-
tion that each cluster only contains fragments from one
particular sequence. The intensities from such clusters
appear to be extremely noisy, far above the stochastic
background, and AYB’s criteria to assess model fit are
misled since the effects of both constituent sequences
need to be be removed to get the residual noise. Failure
to do so means that the calls from the strongest
sequence get penalised for badly fitting the model; in
particular, cycles where the two constituent clusters
have the same base appear much brighter than expected
given the intensities from other positions and are thus
penalised despite the fact we should be more confident
about these calls. In principle heterogeneous sequence
could be explicitly estimated for each cluster, the rela-
tive brightness being used to separate contributions, but
this will result in a loss of power in the majority of
cases where the cluster is homogeneous and may not
result in high-quality calls otherwise.

Despite being noticeably better than those produced
by Bustard, the uncalibrated quality values for AYB are
worse than might be desired. Improvements to these
could be the subject of further work. Run-specific recali-
bration leads to significant improvement, with AYB out-
performing Ibis. As with Bustard, and indeed all other
base callers, we recommend that the qualities produced
by AYB should be recalibrated whenever possible as
part of the analysis pipeline. The superiority of AYB on
both the S,Max and Q. criteria suggest that such reca-
libration would be fruitful. Where a good quality refer-
ence is not available, recalibration based on reads from
a spiked-in known genome is a promising approach that
could be taken advantage of. Such spike-in data may
also help with convergence and improve the estimate of
the interaction matrix since it provides a set of reads
whose sequence does not have to be estimated.

The speed at which tiles can be analysed is extremely
important given the vast amount of data produced by
current and future platforms. AYB is much quicker than
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many competitive base callers, taking only a few minutes
to analyse each tile on ordinary computing hardware
and of comparable speed to Ibis, the most accurate
alternative base caller (table 3).

Even AYB’s speed could be prohibitive if computing
resources are limited. There are, however, avenues to
increase the speed of AYB with possible trade-offs
against accuracy. As noted previously, AYB assumes
that the sequencing process is constant within a tile and
this assumption could be to strengthened to assuming it
is constant across multiple tiles or across lanes, a similar
assumption to that which Bustard and other base calling
programs implicitly make when they train or estimate
parameters on a subset of the data. The parameters
describing the sequencing process could be estimated
from a subset of data and then held fixed so AYB need
only perform a base calling step for the majority of the
clusters with a considerable reduction in processing
time. The major bottleneck for AYB is processing the
raw intensities for each cluster, a step that is repeated
every iteration and is quadratic in the number of cycles,
and speeding up this calculation would greatly accelerate
the algorithm. One potential approach would be to
assume that the interaction matrix A (see Methods) is
sparse, the intensities at one cycle only depending on
the sequence at nearby cycles for example.

AYB is more accurate than other methods of base-
calling. In comparison with the leading competitor, Ibis
[9], it generally gives similar or improved performance
in the number of mapped reads, and in our tests it
always performed considerably better in the number of
perfect (error-free) reads (table 2) and almost always
achieves a lower per-mapped-base error rate (Figure 1).
As the yield from sequencing machines increases, speed
of analysis becomes important and our base-calling
method offers a unique combination of speed and accu-
racy. Such a combination is ideally suited for use with
more recent ‘personal’ platforms, such as Illumina’s
MiSeq [27], which are aimed at smaller institutes and
research groups who will be interested in a diverse
range of organisms for which a good reference genome
is not likely to be available. In addition to its speed and
accuracy, AYB has two other desirable properties. First,
it does not require training data so calls can be made
where a reference sequence is unknown. Second, it uses
robust statistical methods to limit undesirable conse-
quences of gross errors in a few clusters.

The AYB base-calling software is written in C and
available under the GPL v. 3 licence from http://www.
ebi.ac.uk/goldman-srv/AYB/. A set of utilities for
extracting and manipulating CIF format intensity data
files, under the same licence as AYB, is available from
http://www.ebi.ac.uk/goldman-srv/ciftools/.
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Materials and methods

The two major differences between AYB and other
base-callers are its empirical model of the sequencing
process, potentially allowing the intensities at a given
cycle to depend on the entire sequence rather than just
a few neighbouring cycles, and its focus on robust algo-
rithms so that sensible base calls are still made even
when problems have occurred during a run. Here we
describe the underlying statistical model used by AYB,
the method of estimation and the techniques used to
make the procedure robust.

The foundation of AYB is a mechanistic model of the
sequencing process, relating what is observed at each
cycle to the underlying sequence of nucleotides. Clusters
are analysed in groups, the natural such group being a
tile, with the interaction between cycles assumed to be
constant and common to all clusters within each group.
Other parameters such as the luminescence and the
sequence are specific to each cluster. We first describe a
simple model of how the observed intensities might be
related to the underlying sequence and then show how
AYB generalises it.

Each cluster (indexed by i) is considered to contain
homogeneous sequence, represented by the base x posi-
tion matrix S; whose (b, j) entry is one if the base at the
j™ position of the sequence is base ‘b’ or zero otherwise.
Each column of S; therefore contains exactly one non-
zero entry. The amount of light emitted by a cluster in
a given cycle is proportional to the number of FLNs
bound to the cluster, which in turn is proportional to
the number of molecules in the cluster; this cluster-spe-
cific scaling is represented by the scalar 4;, referred to
as the luminescence since it also incorporates a factor
representing the intensity of light incident on the cluster
and implicitly models variation in incident radiation
across the slide.

Due to phasing, the molecules within a cluster lose
synchronicity with each other and the relationship
between position and cycle becomes blurred; the proces-
sion from one cycle to the next of an average cluster is
described by the position x cycle phasing matrix P. Each
column of P corresponds to one cycle and describes the
distribution of sequence positions where the FLNs bind,
so the (j, k) entry is the relative proportion of FLNs
bound to position j of the sequence on cycle k of the
sequencing process. As sequencing progresses, the signal
decreases as molecules randomly become inactive and
stop contributing (dimming) and this is incorporated
into P by scaling its columns so each sums to the pro-
portion of molecules in the cluster expected to be still
active. An ideal P would have ones down its leading
diagonal with all other elements being zero; a good P
will be dominated by its diagonal and each column sum
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will be close to one. Elements of P are non-negative, and
its column sums are < 1.

Finally, the emissions from each cluster are observed
via the four channels and the cross-talk, the relationship
between fluorophore emission and what is observed in
each channel, is represented by a channel x base (4 x 4)
matrix M. Column b of M describes the strength of sig-
nal in each of the four channels for a unit emission of
the FLN b. In principle the cross-talk is determined by
the physics of system, and so it is assumed to be the
same for all cycles.

Putting together all the components of the sequencing
process model described above, the observed intensities
I; (a channel x cycle matrix) for cluster i is related to
the underlying sequence by the relationship

I; = AiMS;P + N + & (2)

where N is systematic background noise for all clus-
ters and ¢; is the residual error for the fit to the intensi-
ties, an observation of a random variable with
expectation zero. Both N and ¢; are channel x cycle
matrices. Note that the number of channels is equal to
the number of bases and that the number of positions is
equal to the number of cycles, so both M and P are
square matrices. Equation 2 can be expressed to show
that the observed intensities are a linear function of the
sequence

vecl; = 1;(P' ® M)vecS; + vecN + vecs;

where vec is the operator that forms a vector from a
matrix by stacking its columns in order, P* is the trans-
pose of P and ® is the Kronecker product of two
matrices. AYB generalises this model by assuming a
general linear relationship between the sequence and
the intensities,

vecl; = LjAvecS; + vecN + vecs; (3)

where A is the interaction matrix, a (channel x cycle)
x (base x position) matrix describing the effect that spe-
cific bases at each cycle have on the intensities for all
cycles. Note that A allows for the cross-talk to vary
between cycles and for the rate of phasing to depend on
previous bases.

The statistical model described by equation 3 could be
fitted to the raw intensity data using a variety of criteria
(maximum likelihood, Bayesian techniques, etc.) but we
chose a least squares criterion using an iterative
approach. The major reasons for the use of least squares
are that analytic solutions exist for many of the steps of
the iteration, making it computationally efficient, and
that the simple Iteratively reWeighted Least Squares
(IWLS) technique can be used to fit the model in a
manner robust to contamination [28]. The IWLS
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approach is similar to Ordinary Least Squares (OLS),
seeking to minimise the sum of squared errors over all
the clusters, but the squared error for each cluster is
weighted and the algorithm proceeds iteratively with the
weights being updated between iterations; each iteration
is equivalent to the Weighted Least Squares (WLS) cri-
terion, which has an analytic solution. The weights are
defined by a function of how well each cluster fits the
model relative to the other clusters, so badly fitting clus-
ters (high residual error) get progressively down-
weighted. AYB uses the Cauchy function for weighting
but many alternatives have been described and are sum-
marised in the subsection on ‘Robust Estimation’ in
Numerical Recipes [29].

Given this statistical formulation, the core of the AYB
method can be described by the following seven steps,
the solution of which will be described in the following
sections:

1. Initialise estimates; set all weights to one.

2. Estimate interaction A and systematic noiseN.
3. Estimate cluster-specific luminescence A;.

4. Call bases for each cluster, giving sequence S;.
5. Update weights for all clusters.

6. Iterate steps 2-5 to refine estimates.

7. Assess quality of calls.

Initialisation

Initialising to good values greatly helps the speed of the
AYB algorithm, reducing the number of iterations
needed until a good solution is found. A good starting
value may be available from previous analyses using the
same machine and protocol but, by default, AYB uses
the more crude approach of ignoring phasing and dim-
ming and assuming that the cross-talk is the same at all
cycles: if M is a cross-talk matrix then the initial esti-
mate of the interaction matrix is Ag = Ip ® M where Ip
is the identity matrix of dimension cycle x position. An
initial cross-talk matrix M can be found from the inten-
sities of an early cycle of the run [5], making the impli-
cit assumption that phasing does not contribute a
significant amount to these observed intensities, but,
since cross-talk is primarily determined by physics and
has a similar form on different runs and machines, AYB
instead initialises M to a fixed good value. Systematic
noise is initially assumed to be absent.

Setting A to Ay and solving equation 3 for A;S,,
assuming that the systematic and random noise (N and
€,) are zero, gives a set of corrected intensities from
which bases and luminescence can be estimated. The
initial estimate of the base at each position is that
which has the greatest intensity, and the luminescence
of the cluster is the mean of the intensities of the
called bases.
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Estimation of the interaction matrix and noise
Equation 3, relating the sequence to the expected inten-
sities, is linear but standard linear regression techniques
produce unstable estimates for the interaction matrix; to
see why, notice that any permutation of the columns of
A and rows of §; leaves the intensities unchanged and
so, when estimating the interaction is iterated with
base-calling, the solution can jump between permuta-
tions. We use generalized Tikhonov regularisation [30]
in a weighted least squares solution for A and N to
favour there being no permutation of A and S..
Defining the adjusted interaction matrix A’ and
adjusted sequence S’ by

A = (A vecN) S = (vacsi)
then the regularised weighted least squares estimate

A’ for A’, and thus for A and N, is

-1
A'= <pID + ZwiSQSQ[) (pB + Zwisg Veclf)
i i

where I is an identity matrix of the appropriate
dimension, p is a constant specifying the strength of
regularisation, and B = (A}, 0) with 0 being a vector
consisting of zeros. For convenience, the solution is reg-
ularised towards the value used to initialise the algo-
rithm, although this is not a requirement and other
choices may be more desirable.

There is an arbitrary scaling factor implicit in equation
3, corresponding to the scale that the luminescence is
measured on. If all elements of interaction matrix are
doubled and every A, is halved, then the expected inten-
sities are unchanged. This ambiguity is resolved by scal-
ing the interaction matrix so that its determinant is one.

Estimation of luminescence

The estimation of luminescence for each cluster can be
found simply by least squares, using the same criterion
as that used to estimate the interaction and systematic
noise. The least squares estimate of the luminescence };
of each cluster is

~ vec St Alvecl;

"~ vec SiAtAvecsS;

which is an ordinary least squares estimate since the
weights used for the estimation of the interaction matrix
are cluster-specific and so cancel.

Base calling
As well as being linear in the interaction matrix, the
observed intensities in equation 3 are also a linear function
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of the sequence. As described, equation 3 assumes that
each element of the random error is independent and iden-
tically distributed (IID) but this is not found to be the case
in real data (results not shown). The violation of the IID
assumption is not a problem when estimating the interac-
tion matrix, since these estimates are produced from a
large number of independent clusters and so the random
error is small, but is much more significant when trying to
estimate the sequence since there are many fewer, depen-
dent, observations. Forcing the IID assumption onto the
random noise produces poor base calls (results not shown)
and so correlation between the elements of ¢; must be
taken into account and the sequence that minimises the
generalised least squared error must be found.

Intensities after correction for interaction and sys-
tematic noise are defined to be

Ci=Alvec(; = N)

and the sequence that minimises the generalised least
square error of equation 3 also minimises the generalised
least square error of the same relation written in terms of
the corrected intensities C;. This latter formulation is
more convenient to work with. Finding the minimum
generalised least square is a type of constrained binary
quadratic programming problem and so difficult to solve
exactly. Instead of solving directly, we make the addi-
tional assumption that each read position only depends
on its immediate neighbours and so most positions are
conditionally independent of each other. This depen-
dence structure requires that the inverse of the covar-
iance matrix is block tridiagonal; that is, it consists of a
grid of base x base matrices and this grid is tridiagonal.
The maximum likelihood estimate of the required covar-
iance matrix is found by numerical optimisation (conju-
gate gradient algorithm) of the log-likelihood function
parametrised in terms of the Cholesky factorisation of
the matrix; full details are contained in Additional file 1.

The structure of the inverse covariance matrix means
that the log-likelihood for a cluster i having the sequence

n
S 815 - - . 5 S, can be written as k + E ORI for suita-
]:

bly chosen tensor a,;, and a constant k, and so is a one-
dimensional Gibbs field. The classic Viterbi and For-
ward/Backward dynamic programming algorithms can be
used to find the most likely sequence or the posterior dis-
tribution of bases at each position.

Updating weights

The weighting of the clusters plays an important part in
making the AYB method robust to contamination and
other misleading observations, reducing their influence
on the parameter estimates. The weight for each cluster
is calculated, after all model parameters have been fitted,
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using the Cauchy function so w; = 1/(1 + L;/2u) where
L, is the least square error for cluster i and y is a mea-
sure of the central trend of the L; (their mean, for exam-
ple). In contrast to OLS, where every cluster would
receive a weight of one, this weighting function means
that only perfect observations, those with a least square
error of zero, receive full weight whereas worse-fitting
observations receive progressively lower weights.

Iteration and termination

As the luminescence and individual bases are estimated
(steps 3-4 above) using a different criterion to that used
to estimate the interaction matrix (step 2), the least
squares error is not guaranteed to decrease when the
parameter estimation and base calling steps are iterated.
Theoretically this could lead to problems with conver-
gence but this was not found to be the case, a small
number of cycles sufficing to get good estimates.
Numerical experiments suggest that three to five itera-
tions are sufficient, with little change in accuracy for
addition iterations (results not shown).

Assessment of quality

To differentiate between good and bad reads, each base
is assigned a quality score — a measure of the probability
that it has been correctly called. Commonly these are
reported as Phred scores: Qppreq = -10 logyo e, where e
is the probability of a base being incorrect [31]. It is tri-
vial to convert these scores to and from probabilities, so
one only needs to assess the probability of each call
being incorrect. We treat base calling quality assessment
as a model selection problem, choosing between the
four models ‘A’, ‘C’, ‘G’ and ‘T’ for each cycle of each
cluster, and apply Bayes theorem to get the posterior
probability p;;;,; that the base at position j in cluster i is
b:

Tofi bj

er {A,C,G,T} Tifing

pivj = (5)

where fiy = (1 + Lij)~(#")/2 is the (scaled) probabil-
ity density of the observed intensities, L;,; is the least
square error for cluster i given that the base at position
j is %, and 7, is the prior probability of base x. The
required least squared errors can be calculated for all
bases and positions simultaneously using a Forwards/
Backwards modification of the Viterbi algorithm used to
find the best sequence of bases (step 4 above). The par-
ticular form of f;;,; comes from assuming that the ran-
dom error has an elliptical distribution defined by the
Cauchy function, in keeping with our choice of weight-
ing function for the IWLS estimation. The parameter »*
should normally be equal to the dimension of the
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elliptical distribution but, instead, we use the median of
the observed least squared errors as this helps to correct
for skews in the distribution.

Reads can also be wrong for reasons other than base
calling error, a good example of this being polymerase
errors during sample preparation. The net effect of
these ‘generalised’ errors is to bound the maximum pos-
sible quality of a call and they are incorporated into
AYB’s quality scores as a constant probability of error
independent of the probability that the base was called
incorrectly. The final probability that a base is correct,
incorporating the notion of generalised error, is
pipi = (1
of a generalised error. The corresponding quality score

— €) pinj where ¢ is the constant probability

is Qi = —10logy, (1 - p,’-‘;bj) .. Despite the methods

incorporated into AYB being robust and attempts being
made to compensate for effects of unusual clusters, the
quality scores produced may not be accurate because of
differences between AYB’s assumptions and how the
sequencing machines actually operate: not every source
of error can be incorporated into the model and the var-
ious distributional assumptions made can only be
approximate. To improve concordance, quality scores
may be calibrated to real data [31] using some form of
table look-up or calibration function. There are many
good methods to calibrate quality scores [21,25,31] but,
for the purposes of the comparisons in this paper, we
use a simple linear calibration function for AYB and
note that it could be improved upon.

The calibrated quality Qf% of the called base b; at

position j in cluster i is defined by
cal *
ibj = ®by bt B Qi;bj

where the base x base x base table o and the constant
B are chosen to agree with representative data from a
real sequencing run. We expect these parameters to
vary with difference machines, chemistries and experi-
mental protocols, and typical values based on the sets of
data analysed within this paper are distributed with the
AYB software. We provide a tool to produce bespoke
constants given a set of mapped data; however, we
reiterate our recommendation that quality scores should
be recalibrated using a reference whenever possible.

Additional material

Additional file 1: Fitting a block tridiagonal information matrix by
ML. Additional data file 1 is a document describing how to find the
maximum likelihood estimate of the inverse covariance matrix
when several of its components are conditionally independent.
http://genomebiology.com/imedia/5688411755799342/supp1.pdf.
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