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Abstract

Background: Although quiescence (reversible cell cycle arrest) is a key part in the life history and fate of many
mammalian cell types, the mechanisms of gene regulation in quiescent cells are poorly understood. We sought to
clarify the role of microRNAs as regulators of the cellular functions of quiescent human fibroblasts.

Results: Using microarrays, we discovered that the expression of the majority of profiled microRNAs differed
between proliferating and quiescent fibroblasts. Fibroblasts induced into quiescence by contact inhibition or serum
starvation had similar microRNA profiles, indicating common changes induced by distinct quiescence signals. By
analyzing the gene expression patterns of microRNA target genes with quiescence, we discovered a strong
regulatory function for miR-29, which is downregulated with quiescence. Using microarrays and immunoblotting,
we confirmed that miR-29 targets genes encoding collagen and other extracellular matrix proteins and that those
target genes are induced in quiescence. In addition, overexpression of miR-29 resulted in more rapid cell cycle re-
entry from quiescence. We also found that let-7 and miR-125 were upregulated in quiescent cells. Overexpression
of either one alone resulted in slower cell cycle re-entry from quiescence, while the combination of both together
slowed cell cycle re-entry even further.

Conclusions: microRNAs regulate key aspects of fibroblast quiescence including the proliferative state of the cells
as well as their gene expression profiles, in particular, the induction of extracellular matrix proteins in quiescent
fibroblasts.

Keywords: MicroRNA, Quiescence, Cell cycle, Proliferation, Extracellular matrix, Fibroblast, Microarray, miR-29

Background
When mammalian cells are in an environment unfavor-
able for continued proliferation, they can exit the cell
cycle in early to mid-G1 phase at the ‘restriction point’
[1] and enter a reversible, out-of-cell cycle state denoted
‘quiescence’. Many cells in the human body are quies-
cent, and the ability of cells to exit the cell cycle but
retain their capacity to re-enter the cell cycle as needed
(for instance, when required to replenish a cell lineage,
mount an immune response, or heal a wound) is central
to normal physiology. Failures in this process may
underlie a wide range of pathologies including excessive

scarring, fibrotic disease, chronic wounding, and cancer,
yet we have a poor understanding of the changes that
occur when cells become quiescent or the molecular
basis for these changes.
Widespread gene expression changes occur when cells

enter quiescence, including both repression and activation
of genes [2-9]. These changes can vary among cell types
and in response to different antiproliferative signals, but
there are also commonalities in different types of quies-
cence and in different quiescent cell types [2,7-9]. Several
important regulators of the gene expression changes that
occur with quiescence have been described, including the
MYC and E2F family transcription factors that coordinate
cell cycle re-entry and repress cell cycle genes during quies-
cence [5,10-13], and the HES1 transcriptional repressor
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that preserves the reversibility of quiescence [14]. There are
also hundreds of genes that are upregulated when cells
become quiescent, whose possible regulators include fork-
head transcription factors [15,16], ELK1, NF-�B, MEF2,
IRF, AP-1, SALL2, and MXI1 [5]. Despite these proposed
factors, however, the drivers and mechanisms of many of
the gene expression changes in quiescence are still not
known.
In addition to regulation of quiescence by transcription

factors, there is likely also regulation of quiescence gene
expression changes at the post-transcriptional level. micro-
RNAs are 20 to 23 nucleotide non-coding RNAs that reg-
ulate a wide variety of transcripts post-transcriptionally by
inducing transcript degradation or inhibiting protein
translation [17-19]. microRNAs have been implicated in a
wide range of biological processes related to quiescence,
including cell proliferation control, stem cell renewal,
developmental timing, and cancer [20]. Medina and collea-
gues, for example, discovered that four microRNAs were
upregulated and over 100 microRNAs were downregulated
as T98G glioblastoma cells progress from quiescence into
the proliferative cell cycle [21]. They and others demon-
strated that miR-221 and miR-222 target the cyclin-depen-
dent kinase inhibitors p27Kip1 and p57Kip2, such that
overexpression of miR-221 and miR-222 during growth
factor deprivation induces S-phase entry and triggers cell
death [21-25].
Another example is the let-7 family of microRNAs,

members of which are important regulators of cellular
differentiation [26-34] and proliferation [29,35-37] in
mammals, C. elegans, and Drosophila melanogaster. let-7
family members can behave as tumor suppressors
and antagonize oncogenes such as MYC and RAS
[28,35,38-45].
As a final example, the miR-17-92 cluster of six micro-

RNAs, which is induced by the MYC oncogene [46], can
itself act as an oncogene. Enforced expression of the miR-
17-92 cluster, in concert with MYC expression, can accel-
erate tumor development in a mouse B-cell lymphoma
model [47]. While MYC can induce transcription of E2F
transcription factors, two of the members of the microRNA
cluster, miR-17-5p and miR-20a, negatively regulate levels
of E2F1, demonstrating a complex network of interactions
that may affect the cell’s commitment to proliferation or
apoptosis [46-51].
We investigated the role of microRNAs in a fibroblast

model of quiescence and discovered that microRNA
expression is broadly and similarly altered by two different
quiescence signals: contact inhibition and serum withdra-
wal. We further found that microRNAs regulate some of
the changes in gene expression and cellular function asso-
ciated with quiescence, as well as the transition between
proliferation and quiescence.

Results
microRNAs exhibit a strong quiescence signature
We have developed a model system of quiescence in pri-
mary human fibroblasts in which quiescence can be
induced by either serum starvation or contact inhibition.
Either condition results in an accumulation of quiescent
cells, as indicated by cell cycle markers and RNA content
[52]. Using one-color microRNA microarrays, we moni-
tored microRNA expression levels in proliferating, serum-
starved, and contact-inhibited primary human dermal
fibroblasts (Figure 1A). Among the 209 microRNAs
detected above background, 142 (68%) were expressed at
different levels in proliferating compared with either
serum-starved or contact-inhibited fibroblasts at a false-
discovery rate of 1% (Figure 1B). microRNA expression
patterns for contact inhibition and serum starvation were
extremely similar, with a 95% confidence interval (CI)
Pearson’s correlation of 0.952 to 0.975, much more so
than the mRNA expression patterns for the same condi-
tions (Pearson’s correlation of 0.319 to 0.341, 95% CI)
(Additional File 1, Figure S1). This large difference in the
amount of correlation between quiescence states may be
due to experimental design or microarray platform differ-
ences, but an alternative explanation is that microRNAs
exhibit more of a common quiescence signature than pro-
tein-coding transcripts [2]. microRNAs downregulated in
quiescent cells included miR-18, miR-20, miR-29, and
miR-7, and microRNAs upregulated with quiescence
included let-7b, miR-125a, miR-30, miR-181, miR-26, and
miR-199. With a stringent cutoff of greater than two-fold
expression change due to quiescence, eight microRNAs
were expressed at higher levels in proliferating cells and
eight were expressed at higher levels in quiescent cells
(Additional File 1, Table S1).
We sought to validate the changes in microRNA levels

with an independent method. In collaboration with
Rosetta Inpharmatics, we used massively parallel, multi-
plexed qRT-PCR [53] to monitor the abundance of 219
microRNAs in fibroblasts collected during proliferation
or after 4 days of serum starvation. There was strong
agreement between the fold-change values obtained via
the microarray and the multiplex qRT-PCR (Pearson’s
correlation 0.504 to 0.751, 95% CI) (Additional File 1,
Figure S2).

Targets of microRNAs change with quiescence
In order to identify microRNAs with a functional, regula-
tory role in quiescence, we analyzed the gene expression
patterns of microRNA target genes in two whole-genome
mRNA microarray timecourses comparing proliferating
cells to cells induced into quiescence by contact inhibition
or serum starvation (Figure 2A). In one timecourse, fibro-
blasts were made quiescent by serum withdrawal for 4
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Figure 1 Widespread changes in microRNA abundance with quiescence. (A) The log2 fold-change in the expression of the 142 microRNAs
that change expression at a 1% FDR during serum starvation (SS) or contact inhibition (CI) are depicted with respect to their average expression
in proliferating (P) cells. Blue and yellow indicate negative and positive values, respectively. Genes are in order of the magnitude of their mean
log2 fold change from proliferation to quiescence. (B) ‘Volcano’ plot of microRNA average log2 fold-change in quiescence conditions on the
x-axis versus the log10 P value for the significance of the quiescence parameter in gene expression on the y-axis.

Figure 2 Changes in target genes with quiescence. (A) Hierarchical clustered heat map representing the log2 fold change of gene expression
for all 15,560 consistently detectable genes during 1, 2, 4, 8, 24, and 96 h of serum starvation (SS), 1, 2, 4, 8, 24, and 48 h serum restimulation
(SR), and 7 and 14 days (each repeated twice) of contact inhibition (CI). Expression in serum starvation and contact inhibition is shown relative
to proliferating cells, and expression during serum restimulation is shown relative to 4-day serum-starved cells. Colors are as in Figure 1A.
Numerals designate 4 different clusters chosen from the hierarchical clustering tree. Select enriched gene ontology terms for each of the clusters
are shown in Additional File 1, Table S2. (B) Volcano plot of the mean projection of the microRNA target genes’ log2 expression onto the array’s
first eigengene (Additional File 1, Figure S3B) on the x-axis versus the log10 P value of the mean projection on the y-axis.
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days and then re-stimulated with serum for 48 h [54]. In
another, fibroblasts were sampled after 7 or 14 days of
contact inhibition [52]. Using singular value decomposi-
tion of the combined timecourses, we found that the
strongest orthonormal gene expression pattern (’eigen-
gene’) correlated with the proliferative state of the cell
(Additional File 1, Figure S3B). This eigengene explained
approximately 40% of the gene expression variation (Addi-
tional File 1, Figure S3A). The linear projection of each
gene to that eigengene gave a ‘proliferation index’ for each
gene that summarized its association with proliferation or
quiescence. For each microRNA, we averaged the prolif-
eration indexes of its predicted target genes as provided by
the TargetScan algorithm [55,56] and assigned a P value
to that mean using bootstrap resampling (Figure 2B). The
miR-29 family’s targets had the most statistically extreme
mean proliferation index, with a P value <10-4 (the lowest
P value possible based on the 104 bootstrap resamplings
taken). miR-29 expression is strongly associated with pro-
liferation (Additional File 1, Figure S4), and its predicted
targets are upregulated by both methods of quiescence
induction.
Besides miR-29, however, there were few microRNAs

with strongly anti-correlated target genes. There are multi-
ple possible explanations. First, expression levels and activ-
ity need not be completely correlated, as microRNA
activity can be affected by the cooperation or antagonism
of RNA-binding proteins [57-60] as well as changing
mRNA abundance, dynamics, and primary and secondary
structure [61-66]. Second, the microRNAs may be affect-
ing translation rate but not transcript abundance, in which
case their effects would not be detectable by microarray
analysis. Finally, many of the microRNAs investigated
likely regulate too few genes to be considered significant
by this whole-genome target analysis, since a small list of
targets can lead to artificially low statistical significance by
bootstrap analysis. Indeed, some microRNAs might regu-
late a small number of critical genes and thereby produce
an important functional effect even without a statistically
significant change in the average proliferation index for all
of its targets. For these reasons, we chose to investigate
further miR-29 and other candidates identified based on
their previously reported associations with proliferation
and cell cycle regulation: let-7 [35,36] and miR-125 [32,33].

miR-29 regulates collagen and collagen-chaperone genes
Gene ontology analysis of predicted, evolutionarily con-
served miR-29 targets revealed an enrichment for multiple
categories including collagen fibril organization and extra-
cellular matrix formation (Additional File 1, Table S3),
indicating that miR-29 most likely regulates extracellular
matrix (ECM) biosynthesis in fibroblasts, consistent with
previous reports on miR-29 in fibroblasts and other cell
types [67-72]. We identified miR-29 targets in dermal

fibroblasts by overexpressing miR-29 in asynchronously
proliferating fibroblasts and analyzing the ensuing changes
in gene expression by microarray analysis. As expected,
genes predicted to be miR-29 targets by TargetScan were
more likely to be repressed by miR-29 overexpression than
genes not predicted to be miR-29 targets (Figure 3B). We
identified genes that both changed significantly in the
microarray analysis and contained predicted miR-29 bind-
ing sites. Of the 15 genes that met these criteria, nine are
involved in extracellular matrix formation (Figure 3A and
Table 1). When we plotted the behavior of these same
genes in the serum starvation and contact inhibition
microarray timecourse data, we discovered that these
genes display a quiescence-associated gene expression pat-
tern. The genes encoding miR-29 targets followed a gen-
eral pattern of increasing expression as fibroblasts are
serum-starved, decreasing expression as they are restimu-
lated, and highest expression in cells that were contact-
inhibited for 7 or 14 days (Figure 3C). These genes were
therefore highly anti-correlated with the pattern of expres-
sion for miR-29 itself (Additional File 1, Figure S4). These
results suggest that the downregulation of miR-29 expres-
sion levels in quiescent fibroblasts is an important contri-
butor to the induction of extracellular matrix genes with
quiescence.
We sought to confirm whether miR-29 regulates not just

transcript abundance, but also protein levels of extracellu-
lar matrix components in quiescent cells. We investigated
three proteins encoded by miR-29 targets (collagen I, col-
lagen III, and collagen VI) by immunoblot analysis of pro-
tein lysates isolated from proliferating cells and cells made
quiescent by mitogen (PDGF) withdrawal or contact inhi-
bition. As anticipated, all three proteins were upregulated
in both quiescence conditions compared with proliferating
cells. These three miR-29 targets were also strongly
repressed at the protein level by transfection of miR-29 as
compared to transfection of a negative control, non-target-
ing microRNA, while protein levels of GAPDH and a-
tubulin (two proteins from genes not targeted by miR-29)
were unaffected (Figure 3D).

Autocrine TGF-ß is unlikely to mediate miR-29 expression
changes in quiescence
TGF-ß signaling leads to an increase in collagen synthesis
[73] and can repress miR-29 [69,74,75]. We confirmed
that exogenous addition of TGF-ß repressed miR-29
expression, as measured by qRT-PCR (Additional File 1,
Figure S5A), in our dermal fibroblast model. Although
exogenous TGF-ß can downregulate miR-29, immuno-
blots for Smad3 phosphorylation levels showed no signif-
icant difference in autocrine TGF-ß signaling between
proliferating and quiescent fibroblasts (Additional File 1,
Figure S5B), indicating that the TGF-ß signaling pathway
is unlikely to be responsible for the reduction in miR-29
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expression in quiescent fibroblasts. In addition, although
TGF-ß can regulate collagen expression independently of
miR-29 [76,77], the similar phospho-Smad3 levels in pro-
liferating and quiescent fibroblasts implies that changes
in TGF-ß activity are unlikely to significantly regulate
collagen biosynthesis in quiescence, further emphasizing
the importance of miR-29 as a regulator of quiescence-
associated changes in ECM expression.

miR-29 hastens cell cycle re-entry from quiescence
We also tested whether miR-29 has a role in the cell cycle
transition between proliferation and quiescence by simul-
taneously restimulating serum-starved fibroblasts to pro-
liferate with full serum medium and transfecting them
with miR-29. Over the next 36 h, we quantified by flow
cytometry the rate of EdU nucleotide analogue incor-
poration by the cells and their overall DNA content,

which allowed us to assign cells to G0/G1, S, and G2/M
phases of the cell cycle [78]. When compared to cells
transfected with a control non-targeting microRNA, cells
transfected with miR-29 contained fewer cells in G0/G1

and more cells in S phase at 20 and 24 h post transfec-
tion (Figure 4A, P = 1.9× 10−7, 3.0× 10−11 for 20 and
24 h timepoints, respectively). At 28 and 32 h after trans-
fection, cells transfected with miR-29 contained fewer
cells in S phase and more cells in G2/M phase than those
transfected with the control (P = 0.012 for 28 h time-
point). miR-29 overexpression thus hastens re-entry into
the cell cycle from a quiescent state.
To further explore the effects of miR-29 expression on

the cell cycle, we transfected miR-29 or a negative control
microRNA into asynchronously cycling fibroblasts. Forty-
eight hours post transfection, miR-29 transfection led to
more cells in G2/M (Figure 4B). As expected considering

Figure 3 miR-29 repression of extracellular matrix protein production with quiescence. (A) Gene expression changes induced 48 h after
miR-29 transfection into fibroblasts. The x-axis denotes the mean log2 fold change in expression compared to negative control, and the y-axis
denotes -log10 of the P value of a one-sided t-test. (B) Empirical cumulative distribution function of log2 fold-changes induced by miR-29
transfection, comparing predicted targets to all other non-target genes. (C) Quiescence microarray expression timecourses (Figure 2A) of each
miR-29 target in Table 1 (shown in gray), along with the mean log2 fold change at each timepoint (shown in red). (D) Protein expression, as
determined by immunoblotting, of selected miR-29 targets in proliferating (P), mitogen-starved (MS), or contact inhibited (CI) states with
transfection of a negative control microRNA or miR-29. Collagen III here appears as a doublet corresponding to its two isomers. Immunoblots to
GAPDH and a-Tubulin are shown as examples of genes not targeted by miR-29 and as loading controls.
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that cells in the G2/M phase tend to be larger than cells
in other phases of the cell cycle, miR-29 transfection also
led to larger cells (Figure 4D). Further experimentation
revealed that miR-29 transfection resulted in fewer cells
than the negative control transfection (Figure 4C,
P = 0.025). Thus, miR-29 transfection in proliferating
cells led to G2/M arrest rather than increased mitosis.
This may reflect the activity of a miR-29 target gene;
indeed, one target, RCC2 (TD-60), is repressed about
57% upon miR-29 transfection (Figure 3A and Table 1),
and it plays an essential role in progression through
metaphase [79].

let-7 and miR-125 non-redundantly delay cell cycle entry
from quiescence
let-7 plays roles in differentiation, cancer, and the cell cycle,
as discussed above. In C. elegens, the lin-4 microRNA
(miR-125 in mammals) acts in the same heterochronic
pathway of temporal differentiation as let-7 [27]. The two
microRNAs are also frequently located together in micro-
RNA clusters across many phylogenetic lineages [80]. In
multiple species, they are co-regulated and share partly
overlapping roles during development [81-86]. Because
both let-7 and miR-125 are upregulated in quiescence, we
investigated whether let-7 and miR-125 have complemen-
tary roles in cell cycle regulation.
We monitored the functional roles of let-7 and miR-125

on cell cycle re-entry from quiescence using the same
method we used for miR-29 as described above. Compared
with control-transfected cells, cells transfected with let-7
contained an elevated fraction of cells in the G0/G1 phase

at 20 and 24 h post transfection and fewer cells in S phase
at 20 h post transfection (Figure 4A, P = 0.0042, 0.0083
for 20 and 24 h timepoints, respectively), indicating that
cell cycle re-entry is delayed by let-7 overexpression. By 32
h post transfection, the let-7-overexpressing population
contained more cells in the G2/M phase than control cells
(P = 0.0013) , as we have previously reported [36]. We
observed an even stronger effect on cell cycle re-entry
with miR-125 than for let-7. At 20 and 24 h after transfec-
tion, cells transfected with miR-125 contained more cells
in G0/G1 and fewer cells in S phase than controls (Figure
4A, P = 7.5× 10−6, 6.0× 10−9 for 20 and 24 h time-
points, respectively). To assess whether let-7 and miR-125
have complementary effects on cell cycle progression, we
overexpressed a combination of the two microRNAs.
Overexpression of let-7 and miR-125 together resulted
in a further accumulation of cells in G0/G1 and even
slower S phase entry than either individually (Figure 4A,
P = 1.0× 10−8, 1.0× 10−4 compared to let-7 and
miR-125, respectively, at the 20 h timepoint), implying
that their cell cycle effects are non-redundant and
complementary.

Discussion
A microRNA quiescence program
While the predominant view of quiescent cells is that
they are inactive or ‘shut down’, our data from several
different lines of experimentation indicate that the tran-
sition into quiescence in fibroblasts is a highly regulated
and active process [2,14,52]. We previously reported [2],
and we again confirmed by our SVD analysis of quies-
cence gene expression timecourse data (Figure 2), that
entry into quiescence in fibroblasts is associated with
large-scale remodeling of gene expression patterns
affecting a significant fraction of all genes within the
genome, with comparable numbers of genes both
increasing and decreasing in expression. We show here
that entry into quiescence is also associated with wide-
spread changes in the abundance of a significant num-
ber of microRNAs. microRNAs both increase and
decrease in abundance upon entry into quiescence, simi-
lar to the effects on mRNA expression.
One clear distinction between microRNAs and

mRNAs was noticed: while gene expression patterns
have both a common component and a signal-specific
component [2] (Figure 2A), microRNA patterns with
quiescence were very similar for samples made quies-
cent by two distinct quiescence signals (contact inhibi-
tion and serum starvation). This finding is in accord
with previous studies that indicated that microRNA pro-
files are extremely informative about a human cancer’s
developmental lineage and differentiation state, and that
microRNAs are particularly valuable for classifying

Table 1 miR-29 experimentally-determined targets.

Gene Log2 fold change Function

ARRDC4 -1.19 N/A

BLMH -1.05 N/A

CDK6 -1.27 Cell cycle

COL1A1 -1.44 ECM

COL3A1 -1.85 ECM

COL5A2 -1.87 ECM

FBN1 -1.27 ECM

FSTL1 -1.51 BMP antag.

LAMC1 -1.06 ECM

MFAP2 -1.11 ECM

PPIC -1.28 ECM?

RCC2 -1.21 Cell cycle

SERPINH1 -1.09 ECM

SPARC -1.34 ECM

TBC1D7 -1.12 N/A

Genes listed were significantly repressed by miR-29 transfection according to
a one-sided t-test at 5% FDR, had log2 fold changes of <-1.0, and are
evolutionarily conserved miR-29 targets as annotated by TargetScan.
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poorly differentiated tumors [87,88]. Indeed, our data
suggest that there may be a quiescence microRNA pro-
gram that is stronger and more consistent than a quies-
cence gene expression program. Such a signature may
facilitate the identification of universal quiescence-
related pathways.

The complementarity of let-7 and miR-125
In many organisms, lin-4 (miR-125) and let-7 are both
important for developmental programs involving differen-
tiation or cell cycle arrest [26,31]. Low levels of let-7, for
example, are associated with pluripotency and proliferation,
while higher let-7 levels are associated with cell cycle exit
and differentiation [28,34,89]. In vertebrates, mature let-7
and miR-125 are largely absent from early embryos and are
induced upon differentiation [84-86]. We previously
reported that let-7 targets the E2 ubiquitin ligase CDC34
and that let-7 overexpression in fibroblasts results in a
G2/M arrest [36]. Here we show that, when overexpressed,

both miR-125 and let-7 specifically affect the ability of
quiescent fibroblasts to re-enter the proliferative cell cycle
from quiescence induced by serum starvation.
Our data and the literature, taken together, support a

model in which miR-125 and let-7 family members are
induced upon the commitment to a cell state lineage or
reversible cell cycle exit. During differentiation or quies-
cence, let-7 and miR-125 may actively suppress the expres-
sion of cell cycle-associated transcripts through a
post-transcriptional mechanism that reinforces the out-of-
cycle state established by transcriptional mechanisms.
Possible candidates for these transcripts include previously
reported cell cycle targets of let-7 such as RAS [39], CCND1
[90], CDC25 [35], and CDC34 [36], and miR-125 targets
such as BCL3 [91] and ETS1 [92]. Our results indicate that
in reversibly arrested cells, miR-125 and let-7 downregulate
cell proliferation-promoting genes. Upon restimulation,
these genes are released from let-7 and miR-125-mediated
repression and are required for normal cell cycle re-entry.

Figure 4 Cell cycle and cell size effects of microRNAs let-7, miR-125, and miR-29. (A) Cell cycle progression of serum-restimulated quiescent
cells with simultaneous transfection of miR-29, let-7, miR-125, a combination of let-7 and miR-125, or a negative control (NC) non-targeting
miRNA. The fraction of cells in different cell cycle phases is plotted with error bars of the residual sums of squares from two timecourses
measured in triplicate. (B) Cell cycle phase distribution of asynchronously proliferating fibroblasts 48 h after transfection with miR-29. (C) Cell
numbers 48 h after miR-29 transfection. (D) Cell sizes 48 h after miR-29 transfection.
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Although miR-125 and let-7 are co-conserved and co-
regulated in many organisms, the two microRNAs also
share some overlapping target genes [33,93,94], which
suggests the possibility that some of the functional effects
on the cell cycle exerted by each microRNA are redun-
dant. Our results demonstrate that introduction of both
microRNAs together had a stronger effect on cell cycle
re-entry than introduction of either one alone, suggesting
that they cooperate and play non-redundant roles in sup-
pressing the expression of proliferation-associated genes
in quiescent cells. This finding helps to explain the strong
evolutionary selection to retain both microRNAs. Exo-
genous delivery of the let-7 microRNA has been shown
to cause regression of murine lung tumors through an
effect on cell proliferation distinct from apoptosis [45].
Our data indicate that administration of miR-125 or a
combination of let-7 and miR-125 might have even
greater effects.

miR-29’s role in quiescence
One of the functional changes that we previously observed
in quiescent fibroblasts is an overall induction of extracel-
lular matrix proteins [52]. We report here that downregu-
lation of the microRNA miR-29 is likely regulating the
induction of extracellular matrix protein expression with
quiescence: as miR-29 levels decline with quiescence,
levels of miR-29 targets increase, and miR-29 overexpres-
sion represses the levels of these targets. Reporter assays
by multiple independent groups have found in several dif-
ferent cell types that miR-29 directly targets collagens
COL1A1, COL3A1, and COL4A2 in a seed sequence-
dependent manner [95-97]. Based on those studies and
our microarray and immunoblot results, miR-29 likely also
represses collagens directly in proliferating fibroblasts. The
findings place miR-29 among the very few molecules dis-
covered, along with FoxO [98-100], and FoxP [101,102]
transcription factors, and the regulators of miR-29 itself, to
regulate the induction (as opposed to the repression) of
genes in quiescent cells. Because our data indicate that the
activity of the TGF-ß signaling pathway is similar in prolif-
erating and quiescent fibroblasts, it is not likely that TGF-
ß is regulating the changes in miR-29 expression between
these states. Other possible candidates for miR-29 tran-
scriptional regulation include NF-�B and sonic hedgehog
[70,103]. Further study is necessary to elucidate which fac-
tors are responsible in quiescence.
Repression of RCC2 could explain the G2/M arrest phe-

notype seen with miR-29 transfection. Targets identified in
other model systems could also be relevant. miR-29 target-
ing of DNA methyltransferases 3A and 3B, for example,
can inhibit lung cancer cell tumorigenicity [104]. miR-29
can also induce apoptosis in cholangiocarcioma cells via
the miR-29 target MCL-1 [105], and induce replicative
senescence in HeLa cells by targeting B-MYB [106].

We suggest that the role of miR-29 in hastening cell
cycle re-entry, however, may reflect its effects not on vali-
dated cell cycle regulators, but instead on extracellular
matrix proteins. Quiescent cells, in general, are relieved
of the biosynthetic requirement of synthesizing the con-
stituents of new cells, but in our fibroblast model system
they also retain a comparable rate of metabolic activity as
proliferating fibroblasts [52]. Indeed, we discovered that
fibroblasts express increased levels of several extracellular
matrix proteins during quiescence compared with prolif-
eration [52] (Figures 3C and 3D). From this perspective,
it is particularly interesting that miR-29 overexpression
results in more rapid cell cycle entry. Although miR-29
has been reported to be an oncogene (transgenic mice
overexpressing miR-29 in their B cells develop B-cell
chronic lymphocytic leukemia [107]) our microarray data
revealed no clear candidate cell cycle genes that would
explain the early re-entry phenotype we observed in our
model system.
We suggest an alternative possibility: relieved of the

commitment to translate and fold extracellular matrix
proteins like collagen, miR-29-overexpressing cells may
be able to commit more rapidly to the cell cycle. If a
competition exists for translational resources between
the synthesis of proteins required for cell duplication and
the synthesis of proteins targeted for secretory pathways,
then miR-29 may be able to direct resources between
those two processes depending on the proliferative state
of the cell. Further studies, especially on fibroblast cell
lines derived from patients with idiopathic pulmonary
fibrosis, which are characterized by excessive secretion of
extracellular matrix proteins [108,109], will be able to
elucidate whether miR-29 is an important regulator of a
tradeoff between proliferative and secretory modes.

Conclusions
Our data indicate that quiescence is associated with
widespread, consistent changes in microRNA abundance.
The regulated microRNAs contribute to gene expression
programs that form the characteristic attributes of quies-
cent cells by reinforcing the non-proliferative nature of
the cells and also regulating their cell-type specific roles.
As such, further investigation into microRNAs should
lead to a greater understanding of both universal aspects
of quiescence programs as well as the regulation of pro-
cesses specific to a quiescent cell’s in vivo roles. Our
results support some of the ongoing efforts to administer
microRNAs to patients of cancer and fibrotic disease and
suggest some new strategies.

Materials and methods
Cell culture
We isolated primary fibroblasts from neonatal human
foreskin tissue samples provided by the National Disease
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Research Interchange (NDRI) as described in the supple-
mentary methods for Legesse-Miller et al. [36] We routi-
nely cultured the fibroblasts aseptically at 37°C with 5%
CO2 in high-glucose DMEM with 4.5 mM glutamine (Life
Technologies) supplemented with 10% (v/v) fetal bovine
serum (FBS) (Hyclone) and 100 μg/mL penicillin and
streptomycin (Life Technologies). Cells were serum-
starved by reducing the serum concentration to 0.1% (v/v).
To generate contact-inhibited samples, we plated fibro-
blasts and changed their culture medium regularly (every
2 or 3 days) without passaging them.

microRNA microarrays
Three isolates of dermal fibroblasts were harvested in pro-
liferative conditions, that is, sparsely subcultured 2 days
before harvest, after 4 days of serum starvation, or after
7 days of contact inhibition. Cells were harvested by tryp-
sinization, centrifuged at 160 × g, and snap-frozen in liquid
nitrogen. Total RNA was isolated from the frozen cells
using the mirVana miRNA isolation kit (Life Technolo-
gies). RNA quality was confirmed using a Bioanalyzer
2100 (Agilent Technology) and the concentration was
determined with a NanoDrop spectrophotometer (Nano-
Drop Technologies). 100 ng of each sample was 3′-labeled
with Cy3-pCp in two separate reactions and hybridized to
microarray slides using the Agilent microRNA microarray
kit (Agilent, G4470A). Microarray features were extracted
with Feature Extractor 9.5.3.1. We normalized arrays for
total intensity and then regressed each gene’s expression
using the model

Yi = mi + Bi,QxQ + Bi,sxs + Bi,c1xc1 + Bi,c2xc2 + Bi,SVAxSVA + Ei,Q,s,c1,c2,SVA,

where i denotes the index for a microRNA, Q, S, C1,
and C2 are annotations for quiescence, serum starvation,
and the different fibroblast cell isolates, respectively, and
SVA denotes the one significant surrogate variable we
found as described below. Yi is the measured log2 expres-
sion for microRNA i and mi is its baseline expression.
The x variables are the given experimental variables
(indexed by subscripts) with values 0 or 1, the B coeffi-
cients are the gene-specific responses to a particular
x variable, and E is the error term. Surrogate variable
analysis (SVA) was performed with the R package from
Leek et al. [110], giving the one significant surrogate vari-
able we included in the multiple regression analysis.
Differential expression due to quiescence was determined
with an F-test for the significance of the microRNA’s
response to variable xQ, with a false-discovery rate of 1%
deemed statistically significant. microRNAs without sta-
tistically significant gene expression change from quies-
cence were not shown in Figure 1A and 1B.
We denoted the overall biological response to serum

starvation and contact inhibition (plotted log2 transformed

in both Figure 1A as the heat-map intensities and Figure
1B along the x-axis) as the sum of the responses Bi,Q,Bi,S

and the residuals Ei,Q,S,C1,C2,SVA . The Pearson correlation
coefficient was calculated comparing these values in the
serum starvation and contact inhibition conditions.

Multiplexed real-time PCR for microRNA expression levels
We collected primary human fibroblasts over a timecourse
during serum starvation. Copy number of each microRNA
per 10 pg of total RNA was determined using the protocol
described in [53]. In summary, RNA was extracted using
the mirVana microRNA isolation kit as described above,
and a tailed, gene-specific primer was used to convert the
RNA template into cDNA with a universal PCR binding
site at one end. The resulting primer-extended, full-length
cDNA was amplified in a highly multiplexed manner for
219 individual microRNAs. Real-time PCR was performed
with a combination of an LNA-containing microRNA/
siRNA-specific ‘reverse’ primer and a generic universal pri-
mer complementary to the universal binding site intro-
duced during reverse transcription. Amplification was
monitored with SYBR green fluorescence. The cycle num-
ber at which the signal exceeded the background was used
to determine the absolute abundance of the monitored
microRNA in the sample. The Pearson’s correlation
between the real-time PCR data and the microRNA
microarray data was determined between the 4-day
serum-starved data point for the qRT-PCR and the mean
of the Bi,S serum starvation responses from the multiple
regression for the microarray.

Gene expression microarrays for quiescence and mir-29
targets
Contact-inhibited fibroblast gene expression microarrays
and serum starvation and restimulation arrays have been
previous described [52,54]. To summarize briefly, total
RNA was isolated from proliferating, serum-starved, and
serum-stimulated fibroblasts as described above for the
microRNA microarray. Total RNA from each sample, 325
ng each, was amplified and labeled using the Low RNA
Input Fluorescent Labeling Kit (Agilent Technologies) to
incorporate Cyanine 3-CTP (Cy-3) or Cyanine 5-CTP
(Cy-5). Cy-3-labeled time zero samples were used as a
reference for serum withdrawal samples, which were
labeled with Cyanine 5-CTP. For serum stimulation, 4-day
serum-starved fibroblasts were labeled with Cy-3 and sti-
mulated samples were labeled with Cy-5. Labeled cRNA
was mixed and co-hybridized to whole Human Genome
Oligo Microarray slides (Agilent Technologies) at 60°C for
17 h and subsequently washed with the Agilent Oligo
Microarray Hybridization Kit. Slides were scanned with a
dual laser scanner (Agilent Technologies). The Agilent fea-
ture extraction software, in conjunction with the Princeton
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University Microarray database, was used to compute the
log ratio of the difference between the two samples for
each gene after background subtraction and dye normali-
zation. Of the approximately 44,000 probes on the micro-
array, probes that generated signal in at least 80% of arrays
were identified. Fluorescence data for each probe were
mapped to genes based on UniGene Clusters. If multiple
probes mapped to a single gene, the values were averaged.
The Pearson correlation coefficient was computed
between the 96h serum-starved sample and the mean of
the 7d contact-inhibited samples. Hierarchical clustering
was performed on centered genes via centroid linkage, and
four clusters were chosen based on the resulting dendro-
gram. Gene ontology (GO) term enrichment was deter-
mined using the Generic Gene Ontology Term Finder
[111]. Qualitatively non-informative or redundant GO
terms (for example, ‘Biological process’ or ‘cell cycle’ vs.
‘cell cycle process’) were removed to give a selected subset.
For miR-29 overexpression microarrays, fibroblasts

were transfected as described below with Pre-miR miR-
29b or Negative Control #2 oligonucleotide duplexes
(Life Technologies). Forty-eight hours after transfection,
total RNA from the cells was harvested and hybridized
to microarrays as above. The experiments were repeated
on three different dermal fibroblast isolates. Target
genes annotated by TargetScan 5.1 [55,56,112] were
considered well-conserved miR-29 targets if PCT >0.5. A
one-sided t-test was used to calculate the significance of
the log2 fold change between the miR-29b transfection
and the control, and a gene was declared ‘changing’ if it
was repressed greater than two-fold at 5% FDR.

Singular value decomposition to identify microRNAs with
significantly changing predicted targets
The matrix of gene expression arrays was filtered to
exclude genes with missing values in any array, and this
matrix was decomposed by singular value decomposi-
tion (SVD) to obtain 16 eigengenes. Each gene’s expres-
sion profile was then linearly projected onto the first
eigengene to obtain one summarizing number, dubbed
the ‘proliferation index’, as genes with a strong positive
projection tend to be associated with proliferation and
genes with a strong negative projection tend to be asso-
ciated with quiescence. Sets of computationally-pre-
dicted target genes were obtained from TargetScan by
excluding all predictions with context scores >-0.5
(negative numbers indicate more confident predictions).
The mean projection of each of these target gene sets
and its additive inverse were used as two-tailed test sta-
tistics on a null hypothesis distribution of 10,000 mean
projections of randomly sampled gene sets. Each sample
gene set was the same size as the original target gene
set for which the linear projection was calculated.

Overexpression of microRNA mimics
Proliferating or 4-day serum-starved primary fibroblasts
were reverse-transfected using Oligofectamine (Life Tech-
nologies) with a 50 nM final concentration of Pre-miR
microRNA duplexes let-7b, miR-125a, miR-29a, a 1:1
combination of let-7b and miR-125a, or the Negative Con-
trol #2 non-targeting control (Life Technologies). The
microRNA duplexes and Oligofectamine were diluted in
OptiMEM I (Life Technologies) and incubated at room
temperature for 15 min. Human fibroblasts were trypsi-
nized, washed, and then re-suspended in OptiMEM I at a
concentration of 375,000 cells/mL. One milliliter of the
transfection mixture was added to 4 mL of the cell suspen-
sion and plated on a 10 cm plate. The cells were incubated
for 4 h and then supplemented with 5 mL of DMEM with
20% FBS. Twenty-four hours post transfection the med-
ium was changed to DMEM containing 10% FBS.
For the serum-restimulation timecourses, we measured

the duration of serum restimulation from the moment at
which DMEM with 20% FBS was added. These experi-
ments were done in triplicate on two different days (six
timecourses in total). Standard error was calculated for
both G0/G1 and S phase percentages at each timepoint as
the square root of the total sum of square residuals from
the mean percentage on each day. Proliferating cells were
harvested 48 h after transfection for the assays described
below.

Cell cycle progression assay
We determined cell cycle phases using Click-iT EdU Alexa
Fluor 488 according to the protocol in [78]. Briefly, we
added 10 μL of a 10 mM EdU solution (Life Technologies)
in phosphate-buffered saline (PBS) (Life Technologies)
directly to 10 mL of culture medium on fibroblasts for a
final concentration of 10 μM. We incubated the cells for
2 h with the EdU, and then trypsinized and re-suspended
them to 1 × 107 cells/mL in PBS containing 1% bovine
serum albumin (BSA) (Amresco). A total of 100 μL of this
cell suspension was added to 100 μL of freshly prepared
4% formaldehyde in PBS (Thermo Scientific) and incu-
bated in the dark at room temperature for 15 min. Three
milliliters of PBS with 1% BSA was added to quench the
fixation. The cells were then resuspended in 100 μL of
PBS containing 1% BSA and added to 100 μL of 0.2%
Triton X-100 in PBS. We added to each sample 500 μL of
Click-iT reaction cocktail: 100 mM Tris-Cl, pH 8.5, 2 mM
CuSO4, 10 μM Alexa Fluor 488 azide (Life Technologies),
and 100 mM ascorbic acid. The mixture was incubated in
the dark at room temperature for 30 min. Two milliliters
of wash buffer (1% BSA, 0.2% Triton X-100 in PBS) was
added, the cells were pelleted at 200 × g for 5 min, and
the supernatant was discarded. We then resuspended the
labeled cells in 500 μL of DAPI solution containing
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1 μg/mL of DAPI in 0.1% Triton X-100 in PBS and ana-
lyzed them by flow cytometry on an LSR II flow cyt-
ometer (BD Biosciences, San Jose, CA, USA). DAPI was
excited at 345 nm and its emission was detected at 458
nm. Alexa Fluor 488 was excited at 494 nm and its emis-
sion was detected at 519 nm.
Statistical significance of the changes was determined

using a Dirichlet likelihood ratio test that is similar to a
χ2 test of independence. To summarize, the cell cycle
phase proportions at each timepoint for each microRNA
transfection were fit to a maximum likelihood Dirichlet
distribution by an iterated, alternating mean/precision esti-
mation method [113]. The distributions and their log likeli-
hoods were calculated for the null hypothesis of identical
Dirichlet distributions and the alternative hypothesis of
two different Dirichlet distributions for the negative control
transfection and the microRNA transfection of interest.
The log likelihoods of the two hypotheses were compared
using the test statistic

D = −2 log L (Ho|C) + 2 log L (Ha|C) ,

where C is the flow cytometry data at the particular
timepoint. D was then evaluated on the χ2 distribution
for three degrees of freedom to calculate a P value (the
alternative hypothesis calculates two three-parameter
Dirichlet distributions instead of one).

Cell size and number analysis
Dermal fibroblasts were trypsinized and resuspended in
PBS, and cell size was measured in triplicate for each sam-
ple using the Beckman Coulter counter. Cell numbers
were determined using the Countess automated cell coun-
ter (Invitrogen). For miR-29 transfection, cell numbers
were evaluated using a one-sided t test.

Immunoblotting for miR-29 targets
Fibroblasts were reverse transfected with miR-29b or a
negative control microRNA as above, but cells were plated
at either 7,500 cells/cm2 (proliferating and mitogen-starved
conditions) or 750,000 cells/cm2 (contact-inhibited condi-
tion). Twenty-four hours post transfection, cells were
washed with warm PBS and then switched to low-serum
conditions for collecting extracellular matrix proteins: FBM
(Lonza), insulin (Lonza), and 0.1% FBS (v/v). Proliferating
and contact-inhibited conditions were additionally supple-
mented with 30 ng/mL recombinant human PDGF-BB.
After culturing for 4 days in low-serum medium,

intracellular proteins were collected by washing cells in
ice-cold PBS followed by scraping cells into a solution
of 4% SDS, 100 mM Tris-HCl pH 7.5, 1 mM DTT, and
an EDTA-free protease inhibitor cocktail (Roche).
Lysates were vortexed, heated briefly (5-10 min at 95°C),

sonicated until the solutions became non-viscous, and
then centrifuged at 10,000 × g for 10 min. The soluble
lysates were transferred to new tubes and insoluble pel-
lets were discarded. Determination of soluble lysate con-
centration and immunoblotting conditions were
otherwise identical to those previously described in
Lemons et al. and Pollina et al. [52,54]. Antibodies and
specific blotting conditions used are described below.

TGF-ß treatment and signaling analysis
Cells were treated with recombinant human TGF-ß1 (Life
Technologies) for 48 h in low-serum medium: high glu-
cose DMEM with 4.5 mM glutamine, serum replacement
(Sigma-Aldrich, S2640), and 30 ng/mL PDGF-BB. Cells
were lysed in TRIzol, and RNA was harvested with the
Direct-zol RNA Miniprep Kit (Zymo Research). The
expression of miR-29b was measured in cell samples on a
small scale normalized to miR-100 using the miRCURY
LNA Universal RT microRNA PCR kit (Exiqon) with miR-
29b and miR-100 primer sets and an ABI 7900 real-time
PCR system. Total RNA samples were extracted using
TRIzol reagent (Life Technologies) along with the Direct-
zol RNA Miniprep kit (Zymo Research). Relative expres-
sion changes were quantified in triplicate using the ��Ct

method on SYBR green fluorescence. Cell lysates from
proliferating, 4 days serum-starved, and 7 days contact-
inhibited fibroblasts were harvested according to the pro-
cedures above.

Antibodies
The following primary antibodies were used for immuno-
blotting: rabbit polyclonal IgG against collagen I (Calbio-
chem, 234167), rabbit polyclonal IgG against COL3A1
(Santa Cruz Biotechnology, sc-28888), biotinylated rabbit
polyclonal IgG against Collagen VI (Acris Antibodies,
R1043B), rabbit monoclonal IgG against Phospho-Smad3
Ser423/425 (Cell Signaling Technology, 9520), rabbit
monoclonal IgG against a-Tubulin (Cell Signaling Tech-
nology, 2125), and rabbit polyclonal IgG against GAPDH
(Abcam, ab9485). Each antibody was diluted in Tris-buf-
fered saline containing 0.1% Tween-20 and 5% BSA and
incubated with immunoblot membranes overnight at 4°C.

Accession numbers
The microarray data generated for this study (the micro-
RNA microarrays and the miR-29 overexpression microar-
rays) have been deposited in the NCBI Gene Expression
Omnibus (GEO) [114] as one SuperSeries under the acces-
sion number GSE42614. Serum starvation/restimulation
timecourse microarrays [54] and contact inhibition micro-
arrays [52] were published in prior studies and are avail-
able in GEO with accessions GSE42681 and GSE42612,
respectively.
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Additional material

Additional file 1: Contains additional tables and figures referred to
in the text.
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