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Transposable elements reveal a stem cell-specific
class of long noncoding RNAs
David Kelley1,2,3 and John Rinn1,2,3*

Abstract

Background: Numerous studies over the past decade have elucidated a large set of long intergenic noncoding
RNAs (lincRNAs) in the human genome. Research since has shown that lincRNAs constitute an important layer of
genome regulation across a wide spectrum of species. However, the factors governing their evolution and origins
remain relatively unexplored. One possible factor driving lincRNA evolution and biological function is transposable
element (TE) insertions. Here, we comprehensively characterize the TE content of lincRNAs relative to genomic
averages and protein coding transcripts.

Results: Our analysis of the TE composition of 9,241 human lincRNAs revealed that, in sharp contrast to protein
coding genes, 83% of lincRNAs contain a TE, and TEs comprise 42% of lincRNA sequence. lincRNA TE composition
varies significantly from genomic averages - L1 and Alu elements are depleted and broad classes of endogenous
retroviruses are enriched. TEs occur in biased positions and orientations within lincRNAs, particularly at their
transcription start sites, suggesting a role in lincRNA transcriptional regulation. Accordingly, we observed a dramatic
example of HERVH transcriptional regulatory signals correlating strongly with stem cell-specific expression of
lincRNAs. Conversely, lincRNAs devoid of TEs are expressed at greater levels than lincRNAs with TEs in all tissues
and cell lines, particularly in the testis.

Conclusions: TEs pervade lincRNAs, dividing them into classes, and may have shaped lincRNA evolution and
function by conferring tissue-specific expression from extant transcriptional regulatory signals.

Background
Recent comprehensive transcriptome sequencing studies
uncovered a large class of previously unannotated long
noncoding RNA (lncRNA) genes in various species with
similar splicing and polyadenylation properties to mRNAs
[1-8]. Genome-wide analyses found that human lncRNAs
are more tissue-specific than protein coding genes and are
preferentially proximal to developmental regulators [2,9].
Accumulating evidence suggests lncRNAs are key regula-
tors in cell differentiation and disease pathways [10-18].
Initial progress has been made to understand the evolu-

tion and origins of lncRNAs [6]. The nucleotide-level con-
servation of lncRNAs is well-studied in vertebrates using
simple substitution and indel-based models, which suggest
that lncRNAs are more conserved than neutrally evolving
regions of the genome, but less conserved than protein

coding genes [1,2,19,20]. Though extensive lncRNA cata-
logs have been discovered in diverse organisms, recently
including zebrafish [3,4], Drosophila [5], and nematode
[21], distant homologues to human lncRNAs are less fre-
quent and more diverged than protein coding gene homo-
logues [2-4,21,22]. Collectively, these studies suggest that
while many species have numerous lncRNAs, they rapidly
evolved in a species-specific manner or exhibit other
mechanisms of evolutionary constraints.
One important method by which the genome, including

lncRNA sequence, evolves is transposable element (TE)
insertions. TEs are nucleic acid sequences capable of
inserting into genomic DNA that are typically considered
‘selfish’ genomic parasites and have conquered 45 to 65%
of the human genome [23,24]. Despite the selfish origins
of TEs, their activity occasionally has subtle evolutionary
benefits [25,26], which has allowed TEs to significantly
shape the evolution of the human genome [27].
In a few known cases, TE proteins required for trans-

position have seeded novel genes in the host genome
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[28-31]. More often, TEs influence transcriptional regula-
tory networks. For example, TE promoters, particularly
the long terminal repeats (LTRs) of endogenous retro-
viruses (ERVs), initiate transcription at some protein cod-
ing genes, typically as alternative promoters [32-34].
Further, TEs have shaped gene regulation by distributing
transcription factor binding sites [35-39], spawning
enhancers [40,41], and possibly by composing highly con-
served noncoding regions [42,43]. In addition to proteins,
ncRNA genes, particularly microRNAs [44], can be
derived from TEs [45]. Post-transcriptionally, Alu ele-
ments (and potentially other TEs) harbor splicing signals,
and insertions in protein coding genes have created new
splice sites and exons [46-49]. Taken together, these stu-
dies demonstrate extensive shaping of gene regulatory
networks by TE insertions.
Whether TEs have similarly influenced lncRNA

sequence and regulation is largely unexplored, but numer-
ous recent studies point to interesting TE-associated
lncRNA functions. For example, Alu elements in lncRNAs
play a significant role in STAU1-mediated mRNA decay
by duplexing with complementary Alu elements in the 3’
UTRs of mRNAs [50]. A mutated L1 element in a lncRNA
is associated with infantile encephalopathy [51]. We pre-
viously identified ten lncRNAs that were significantly
upregulated in induced pluripotent stem cells (iPSCs) rela-
tive to human embryonic stem cells (ESCs) [52]. Seven of
these ten lncRNAs, including one that was required for
reprogramming (linc-ROR), have HERVH elements near
the 5’ transcript end, suggesting HERVH elements may
shape lncRNA regulation in the pluripotent state.
Here we comprehensively characterize the TE compo-

sition of long intergenic noncoding RNAs (lincRNAs)
and their functional relationships in the human genome.
We find that lincRNAs contain TEs at a far greater rate
than protein coding genes and are highly enriched for
ERVs and depleted of LINEs and SINEs. TEs have posi-
tion and orientation preferences in lincRNAs, including
a frequent association of LTRs with lincRNA transcrip-
tion start sites (TSSs) that suggests a role in the genes’
origins. In a number of intriguing cases, TE content cor-
related with lincRNA expression properties. Strikingly,
lincRNAs containing HERVH elements exhibit a stem
cell-specific expression pattern. These results demon-
strate that lincRNAs have nonrandom composition of
TEs that strongly correlates with their functional and
regulatory properties, suggesting a mechanism for malle-
able evolution of lincRNAs.

Results
Human reference catalogs of lincRNAs and TEs
To investigate the relationship between lincRNAs and
TEs, we first established a reference catalog of TEs in the
human genome from RepeatMasker annotations of

Hg19. Removing non-TE repeats left 4.5 million TEs,
covering 49.9% of the genome. Next, we assembled a
catalog of human lincRNAs from RNA sequencing
(RNA-Seq) of 28 different tissues and cell lines using
methods from our previous human lincRNA annotation
effort [2] with careful processing of multi-mapping reads
(Materials and methods). We filtered transcripts
assembled from these data to remove those associated
with protein coding genes, leaving 9,241 lincRNAs
(Materials and methods). A thorough analysis of the
genes determined that our updated lincRNA catalog is
consistent with one recently published (Figure S1 in
Additional file 1) [2].

lincRNAs comprise a nonrandom distribution of TEs
Intersection of the lincRNA and TE catalogs revealed that
the vast majority (7,710, 83.4%) of lincRNAs overlap at
least one TE. In fact, nearly half (41.9%) of lincRNA tran-
script sequence is TE-derived (Figure 1a; Figure S2 in
Additional file 1; Additional file 2). In sharp contrast, TEs
overlap only 6.2% of protein coding sequences and cover
0.32% of their nucleotides (Additional file 3). Including
UTRs, these numbers increase to 39.1% of protein tran-
scripts overlapping TEs and 5.5% of sequence covered.
The median proportion of TE-derived sequence among
lincRNAs is 33%, and there are 2.8 unique TE families per
lincRNA on average (Figure S3 in Additional file 1).
lincRNAs exhibit many biases in their TE composition

relative to genomic averages (Figure 1b; Additional file 2).
The LINE L1 and SINE Alu families are the most preva-
lent in the human genome, together accounting for 29% of
genomic sequence. Though also the most prevalent TE
families in lincRNAs, both are significantly depleted, L1 by
2.0-fold (P 4e-134) and Alu by 1.4-fold (P 1e-29). Other
common LINE and SINE families, L2 and MIR, as well as
DNA transposons hAT-Charlie and TcMar-Tigger, are
also significantly depleted.
Conversely, retroviral elements ERV1, ERVL-MaLR,

ERVL, and ERVK are enriched in lincRNAs (Figure 1b).
ERVs are remnants of exogenous retrovirus insertions into
the germline and contain deteriorating retroviral protein
open reading frames, flanked by transcription-promoting
LTRs [53]. The ERV1 family occurs 2.2-fold more in
lincRNAs (P 2e-140) and makes up the most lincRNA
sequence of these families.
Figure 2 displays the TE composition of several example

lincRNAs. The lincRNA TUG1 interacts with methylated
Polycomb 2 protein to modulate its recognition of histone
modifications [54,55] and serves as an example of typical
multi-family TE composition (Figure 2a). Alternatively, the
lincRNA HOTAIR, located in the HOXC cluster, a geno-
mic region known to be nearly devoid of TEs [23], is one
of 1,531 lincRNAs without any TE-derived sequence
(Figure 2b). Linc-ROR, which modulates reprogramming
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of fibroblasts to a pluripotent state, is almost entirely com-
posed of TE-derived sequence from seven different TE
families and has an ERV1 LTR at its TSS (Figure 2c). The
HERVH element at the TSS of linc-ROR is a common
phenomenon in our lincRNA catalog, elaborated on
below and depicted again for UCSC-annotated BC026300
(Figure 2d).

Properties of lincRNAs containing TEs
We next investigated the basic properties of lincRNAs
containing TEs relative to those that do not. We refer
to the set of 7,710 lincRNAs that overlap a TE as TE-
lincRNAs and the 1,531 that are devoid as dTE-lincRNAs.
Similarly, when discussing a particular TE family, such as
L1, we use L1-lincRNAs to refer to the set of lincRNAs
containing an L1 element. All analyses were also per-
formed for mRNAs. Here, we focus mainly on those prop-
erties that are unique to lincRNAs relative to mRNAs.
Transcript structure
lincRNAs with TEs are larger than those without
(P 1e-168; Figure S5a in Additional file 1), an expected
difference because larger lincRNAs present more sequence
for TE insertions. TE-lincRNAs have geometric mean
length of 1,179 versus 599 for dTE-lincRNAs. TE-lincRNAs
also have greater splicing complexity than dTE-lincRNAs
(Figure S5b, c in Additional file 1), with 2.88 versus 2.59

exons/transcript (P 2e-27) and 2.35 versus 2.09 isoforms/
gene (P 1e-49). The correlation between transcript length
and these splicing complexity statistics is weak and insuffi-
cient to explain the difference.
Though depleted relative to genomic averages, TEs are

far more prevalent at lincRNA splice junctions (donor
30.8%, acceptor 33.8%) than mRNA splice junctions
(donor 0.79%, acceptor 0.76%). Previously observed for
proteins, MIRs are enriched at splice sites relative to the
transcript sequence of both lincRNAs (donor 1.4-fold,
acceptor 1.3-fold) and proteins (donor 2.3-fold, acceptor
1.4-fold) [56]. Taken together, these results suggest TEs
have influenced lincRNA transcript structure.
Gene expression
Next, we examined the expression patterns of lincRNAs
with respect to their TE composition. To this end, we ana-
lyzed lincRNA abundance estimates across an RNA-Seq
database of the 28 tissues and cell lines used for assembly
along with additional iPSC RNA-Seq (a total of > 4 billion
reads; Additional file 4). We estimated gene abundance
(measured as fragments per kilobase per million fragments
(FPKM)) using Cufflinks and took additional measures to
minimize potential artifacts of multi-mapping reads on the
abundance estimates (Materials and methods) [57]. Using
this compendium, we compared the expression patterns of
lincRNAs containing various classes of TEs.
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Figure 1 Transposable element composition of human lincRNAs. We intersected TE annotations with a catalog of 9,241 human lincRNAs.
(a) TEs compose less lincRNA sequence than genomic background but much more than protein coding genes. Promoters for the two gene
classes are more similar than the transcripts. (b) The lincRNA frequencies of many specific TE families differ significantly (based on a shuffling
statistical test) from their genomic averages. Larger families are to the right. Enrichments are above zero on the y-axis, and depletions are below
zero. ERV1 families (labeled in blue) are particularly enriched.
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We observed several intriguing expression biases based
on lincRNA TE composition. In every tissue and cell line,
TE-lincRNAs were less expressed than dTE-lincRNAs, with
nearly all of the differences statistically significant. This
observation is not confounded by the difference in length
between the two gene classes (Figure S7 in Additional file
1). The expression divergence in testis was the most strik-
ing and significant (P 3e-10; Figure S6a in Additional file
1). Despite the relative difference, FPKM values of both
TE- and dTE-lincRNAs rank highest in testis over all other
tissues and cell lines, consistent with previous observations
of widespread transcription in testis [58]. In sharp contrast
to TEs overall, the presence of an Alu element correlates
with greater expression in all tissues and cell lines except
testis (P 3e-8; Figure S6b in Additional file 1).
Previously, lincRNAs were observed to be far more

tissue-specific than protein coding genes [2]. As in Cabili
et al. [2], we define tissue specificity as a function of the
Jensen-Shannon divergence between expression profiles.
Overall, the tissue specificity of TE-lincRNAs and dTE-
lincRNAs is similar, despite their abundance differences.
However, Alu-lincRNAs are less tissue-specific (P 6e-57),

refining our observation above that Alu-lincRNAs are
more expressed in all tissues but testis. Collectively, these
results suggest an intriguing relationship between lincRNA
TE composition and expression patterns.
Conservation
Though less conserved than protein coding genes, lincR-
NAs are more conserved than neutrally evolving sequence
by traditional substitution-based statistics [2,59-61].
Furthermore, prior analysis of a mouse lincRNA catalog
concluded that TEs within lincRNAs are no more con-
served than those genome-wide [59]. Working towards a
better understanding of the functional significance of TEs
in human lincRNAs, we analyzed lincRNA mutation pat-
terns through the more refined lens of TE annotations
using PhastCons and PhyloP conservation scores assigned
based on the placental mammal phylogeny [62,63].
Consistent with observations in mouse [59], conservation

of TEs in lincRNAs is low and nearly indistinguishable
from that of TEs genome-wide (Figure S8a in Additional
file 1). We next explored the relationship between lincRNA
TE composition and conservation by comparing conserva-
tion scores between TE- and dTE-lincRNAs. Strikingly, we

TUG1

MIR3
MIRc

Charlie4z

L2c MIRc
Charlie15a

MLT1K
L1ME4

HOTAIR

BC026300

LTR7
HERVH-int

HERVH-int

LTR7
L2 MER3

Tigger3b

MER94
AluSc5

MSTA
AluSx1

LTR40b
MamTip1

AluJb
MIRb

1kb

1kb

linc-ROR

LTR7
HERVH-int

LTR7
MIRMER20B

LTR16D
AluSz

MER20B
MIR3

MIRb
MIRb

MLT1J
MamGypLTR1c

L1MB7
AluJb

L3 MIR L3 L1MB2

2kb

2kb

(a)

(b)

(c)

(d)

Figure 2 Example lincRNAs with TE annotations. lincRNA exons are drawn above in blue, with introns colored lighter. TEs are colored by family,
matching the legend in Figure 1a. (a) TUG1 serves as a typical example of a lincRNA containing multiple TE families. (b) Alternatively, HOTAIR and
1,531 (17%) of the lincRNAs in our catalog are devoid of TEs. (c) Linc-ROR is almost entirely composed of TEs, including its TSS in the LTR of a HERVH
element. (d) BC026300 also initiates transcription in a HERVH. The images were created using the software AnnotationSketch [93].
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found that dTE-lincRNAs are far more conserved, with
mean PhastCons conservation probability 16.0% versus
8.0% for TE-lincRNAs (P ~ 0; Figure S8b in Additional
file 1). Thus, these 1,531 lincRNAs experience strong nega-
tive selection against both nucleotide substitutions and TE
insertions.
To explore the degree to which the lower conservation

of TE-lincRNAs is driven by the TE sequence itself, we
compared the conservation scores of TE and non-TE
sequence in these genes. The non-TE sequence has
slightly greater conservation, with mean PhastCons prob-
ability 8.5% versus 7.6% for TE sequence, but still less than
that of dTE-lincRNAs. Statistical significance of this com-
parison is challenging due to the widely different distri-
bution shapes, which is viewed most clearly in the
substantially decreased variance in PhyloP scores assigned
to TE sequence - most are near zero (Figure S8c in Addi-
tional file 1). This pattern suggests a scarcity of alignments
to other mammalian genomes, unsurprising for these
repetitive and often lineage-specific elements. Overall,
these results highlight the conservation of dTE-lincRNAs,
while indicating that TE-lincRNAs mutate more freely.
TE position and orientation biases in lincRNAs
Based on the intriguing enrichment of LTRs at lincRNA
TSSs, we hypothesized that TEs have influenced lincRNA
transcriptional regulation, similarly to protein coding
genes [32-34]. In search of evidence, we analyzed TE
position and orientation within lincRNA gene loci. For
each TE family, we plotted its coverage around the 5’ and
3’ ends of all lincRNAs. To examine coverage in the
lincRNA interior, we divided each lincRNA into 100 uni-
formly spaced bins and plotted TE coverage of the bins.
In addition, we looked for biases from a null model of
50/50 sense/antisense orientation of the TEs with respect
to the lincRNAs they compose (Additional file 5).
Our analysis revealed several TE position biases in

lincRNA loci. For example, Alu elements exhibit a distinc-
tive peak approximately 250 nucleotides downstream of
the 3’ ends of lincRNAs (Figure S9 in Additional file 1),
where they appear more often in the sense orientation
(61%, P 2.7e-7). AluY drives the 3’ peak and is sense
oriented in 71% (P 4.7e-4) of the 108 lincRNA 3’ ends that
it marks. This observation is consistent with the known
role of Alu elements in contributing polyadenylation sig-
nals to the 3’ ends of many protein coding genes [64,65].
In our data, Alu elements, and AluY in particular, exhibit
similarly biased orientation at the 3’ ends of protein coding
genes (81%, P 6e-47), albeit without a coverage peak
(Figure S9 in Additional file 1).
At lincRNA TSSs, both LINE families L1 and L2 tend to

be oriented antisense (P 2.6e-6 and 1.2e-7, respectively).
This suggests a minor role for the L1 antisense promoter
in initiating lincRNA transcription, which has been docu-
mented for protein coding genes [66]. The various L1PA

families are most responsible for this effect - 91% of the 53
full-length elements at a TSS are antisense to the lincRNA
(P 2.6e-6).
Further substantiating our hypothesis that ERVs have

influenced lincRNA transcriptional regulation, we found
that all ERV families significantly prefer the sense orienta-
tion with respect to lincRNAs. Driving this bias is an asso-
ciation between LTRs, which are known to harbor
promoter signals, and TSSs. ERV1 LTRs occur 72% in the
sense orientation at TSSs (P 4e-12) and have a large cover-
age peak directly at the TSS (Figure 3). Three prevalent
ERV LTR families epitomize this association throughout
the genome - ERV1 elements LTR7 and LTR12 and
ERVL-MaLR element THE1. Each family is enriched at
lincRNA TSSs, peaks in coverage at the TSS, and prefers
the sense orientation (Figure S10 in Additional file 1). In
contrast, these ERV LTRs are severely depleted at protein
coding gene TSSs (Figure S11 and S12 in Additional file 1).
However, their few occurrences have the same orientation
bias (22 sense, 2 antisense), suggesting that they may also
serve as regulatory factors in the promoter regions of these
few protein coding genes.
Intrigued by the possibility that these ERV insertions

mark the originating event for these many lincRNAs, we
conducted additional analysis of their TSSs. Because we
chose the most expressed isoform from each gene loci, we
have focused the analysis towards the primary TSS rather
than a weak alternative TSS, as LTRs have been found to
mark in protein coding genes [32-34]. Furthermore, in a
stringent set of 298 lincRNAs with an ERV LTR in the
sense orientation directly at their TSS, 65% have only that
single start site for all isoforms. For these lincRNAs, there
is considerable evidence that the ERV insertion originated
the gene; at least, it significantly shaped transcription at
the loci.
In summary, lincRNAs exhibit biased position and

orientation at transcript endpoints. In particular, ERV
LTR patterns at lincRNA TSSs suggest that TEs may have
originated and imparted regulatory signals to lincRNAs.
HERVH elements associate with stem cell-specific expression
of lincRNAs
The most significantly enriched individual TE family in our
human lincRNA catalog is the human endogenous retro-
virus H (Figure 1b). HERVH is annotated by RepeatMasker
as an interior component HERVH-int, flanked on both
sides by LTR7 (Figure 4a). Further piquing our interest, we
previously observed HERVH in the promoter regions of
seven out of ten lincRNAs highly expressed in iPSCs rela-
tive to ESCs, including linc-ROR, which modulates repro-
gramming [52]. Strikingly, we found that the 127 HERVH-
lincRNAs in our catalog are expressed at much higher
levels in pluripotent cells, H1-hESCs and iPSCs, than any
other tissue or cell line (Figure 4b). Rank sum statistical
tests comparing expression of lincRNAs with and without
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specific TE elements highlighted HERVH-lincRNAs in H1-
hESC and iPSC with 8.3- and 4.3-fold greater FPKM geo-
metric means over lincRNAs devoid of HERVH (P 5e-37,
3e-39; Figure 4c). This property is specific to lincRNAs - it
does not apply to 5 mRNAs for which the primary isoform
overlaps HERVH, nor 30 mRNAs with a HERVH up to 2
kb upstream (Figure S13 in Additional file 1).

As alluded to and exemplified in Figure 2c, d, HERVH
shows a strong preference for the sense orientation at
lincRNA TSSs. LTR7 coverage rises sharply, starting
approximately 500 nucleotides upstream and peaking
directly at the TSS (Figure S10a in Additional file 1). In
the lincRNA interior, LTR7 coverage subsequently drops,
verifying that the pattern is truly a peak rather than the
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Figure 3 ERV1 LTRs associate with lincRNA TSSs. We plotted the coverage of various TE families approaching lincRNA TSSs. The prevalent L1 and
Alu families are depleted in lincRNAs. Accordingly, their coverage drops throughout lincRNA promoters leading up to the TSS. Alternatively, ERV1
elements are enriched in lincRNAs, and coverage of the transcription-promoting ERV1 LTRs peaks at the TSS. This pattern was not observed for mRNAs
(Figure S11 in Additional file 1).
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Figure 4 HERVH elements associate with stem cell-specific lincRNA expression. (a) HERVH is a primate-specific 9 kb endogenous retrovirus
containing the group specific antigen (Gag), protease (Pro), polymerase (Pol), and envelope (Env) proteins, surrounded on both sides by
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boundary of a coverage plateau (Figure S10a in Additional
file 1). Given the propensity of LTRs to act as promoters, it
is plausible that HERVH LTR7 have donated cell-specific
transcription initiation signals to many of these lincRNAs.
Consistent with this notion, we noticed a strong correla-

tion between HERVH elements and histone modifications
that is restricted to pluripotent cells. Trimethylation of
lysine 4 on histone 3 (H3K4me3) plays a major role in
activating transcription in ESCs [67]. We found that
HERVH elements in lincRNAs are the most significantly
enriched of all TE families for H3K4me3 ChIP-Seq reads
generated by ENCODE in both H1-hESCs (P ~ 0) and
H7-hESCs (P ~ 0). Enrichment of reads could be found at
nearly all HERVH elements in lincRNAs - peak calls over-
lapped 92% (Additional file 6). In contrast, HERVH
elements in lincRNAs are depleted for H3K4me3 in
GM12878 cells, where expression of HERVH-lincRNAs is
far reduced. While H3K4me3 typically has a signature
bimodal peak surrounding gene TSSs (Figure S5 in Addi-
tional file 1), coverage of HERVH-lincRNAs tends to be
downstream of the TSS (Figure 4d), suggesting that pri-
marily the HERVH-int downstream of the LTR is
methylated.
Similar to H3K4me3, occupancy of the transcription

factor SP1 also correlates with HERVH-lincRNA expres-
sion in stem cells. Prior work discovered that SP1 acts as
a transcriptional activator for HERVH by binding to the
5’ LTR [68]. We found that SP1 is ubiquitously expressed
across many cell types with similar FPKMs in H1-hESC
and GM12878 (Figure S15a in Additional file 1). Using
SP1 ChIP-Seq generated by ENCODE, we verified that
SP1 occupies the TSSs of proteins and lincRNAs in both
cell types (Figure S15b, c in Additional file 1). In H1-
hESCs, the LTRs of HERVH-lincRNAs are enriched for
SP1 ChIP-Seq reads (P ~ 0) and 93% overlap an SP1 peak
call (P 4e-67). In contrast, SP1 ChIP-Seq reads are
depleted at HERVH-lincRNAs in GM12878 (P 6e-69).
Accordingly, SP1 coverage peaks at the TSS of HERVH-
lincRNAs in H1-hESC, but not GM12878 (Figure 4e).
We also detected occupancy of the pluripotency tran-

scription factors Oct4 and Nanog on HERVH in lincRNAs
via enrichment of reads (Oct4 2.1-fold, P ~ 0; Nanog 7.3-
fold, P ~ 0) and overlap with peak calls (Oct4 73%, P 2e-
17; Nanog 91%, P 2e-16), suggesting that many of these
lincRNAs have been fully incorporated into pluripotency
regulatory networks (Figure S16 in Additional file 1).
Finally, HERVH-lincRNAs have a number of interesting

evolutionary properties. First, HERVH elements associated
with lincRNAs are evolutionarily younger than HERVH
elements genome-wide. We classified every HERVH
element in the human genome by the earliest primate
ancestor where the homologous region in that genome
(mapped via BlastZ whole-genome alignments [69]) has
a RepeatMasker-annotated HERVH (Figure S17a in

Additional file 1). We found that HERVH elements asso-
ciated with lincRNAs inserted more recently than other
HERVH elements genome-wide (P 1.6e-3). Second, in
lincRNAs, the flanking LTR7 appears to be evolving
slower than HERVH-int. lincRNA LTR7 annotations are
significantly more similar to RepeatMasker’s LTR7 con-
sensus than are LTR7 annotations outside of lincRNAs
(85.8% nucleotide identity versus 81.8%, P 3.1e-4), unlike
HERVH-int annotations, which are slightly less similar to
the consensus in lincRNAs (83.5% versus 84.2%). In every
primate genome, LTR7 is present at a greater proportion
than HERVH-int in the mapped lincRNA HERVH ele-
ments (Figure S17b in Additional file 1); that is, the inter-
ior has more often been deleted or mutated beyond
recognition.
Altogether, these observations suggest that HERVH

insertions may have originated or altered 127 lincRNAs to
have stem cell-specific expression by imparting transcrip-
tional regulatory signals. Accordingly, the signal-heavy
LTR is more robust to mutation than the HERVH interior.
Mouse TE-lincRNAs exhibit similar properties to human
To assess whether the properties of TEs in lincRNAs
observed in human carry over to other mammalian gen-
omes, we performed the same analyses on a previously
published catalog of mouse lincRNAs built from RNA-
Seq of ESCs, lung fibroblasts, and neural precursor cells
[1] and filtered down to 981 multi-exon > 200-nucleo-
tide transcripts. The mouse genome contains fewer TEs
than the human genome (41.4% versus 49.9%) and,
accordingly, less mouse lincRNA sequence is TE-derived
(33.0% versus 41.9%) (Figure 5a); 66% of these mouse
lincRNAs contain some TE sequence, less than the 83%
in human.
Mouse lincRNAs also comprise a nonrandom distribu-

tion of TEs. Similar to the human genome, L1 is depleted
in lincRNAs (3.2-fold, P 3e-25) and ERV1 is enriched (3.1-
fold, P 3e-16) - though the specific ERV1 families differ
from human. In contrast to human, Alu elements are
enriched 1.5-fold (P 1.9e-6), and other SINEs, MIR, B2, and
B4, differ insignificantly from the genome. An unknown
repeat family named MurSatRep1 is enormously enriched
108-fold (P ~ 0) and overlaps 81 lincRNAs. The ERV1
family MMERGLN-int, recently discovered to undergo sig-
nificant reduction of DNA methylation between mouse
sperm to zygote [70], is 33-fold enriched (P 1.2e-130) and
overlaps 10 lincRNAs.
TEs in mouse lincRNAs also display biased position and

orientation. For example, ERVK associates with TSSs, visi-
ble as peaked coverage (Figure S18 in Additional file 1)
and a significant preference for the sense orientation (78%,
P 1e-4). MurSatRep1 appears in the sense orientation in a
striking 96% of its 81 lincRNAs (P 4e-32).
Finally, we found several interesting relationships

between the TE content of a lincRNA and its expression
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profile in these three cell types. Similar to human, TEs
correlate with expression biases in mouse. TE-lincRNAs
have significantly reduced expression in lung fibroblasts
(P 2e-23) and neural precursor cells (P 3e-17) but
increased expression in ESCs (P 2e-10) relative to dTE-
lincRNAs (Figure S19a in Additional file 1). The ERVK
family has a particularly strong effect in ESCs; the FPKM
geometric mean of 142 lincRNAs is 2.1-fold greater
(Figure S19b in Additional file 1). In summary, although
the specific TEs in mouse mostly differ from human, they
associate with lincRNAs comparably to our observations
in human, suggesting that the properties described here
may be more broadly applicable to lincRNAs throughout
the mammalian phylogeny.

Discussion
It is now clear that there are many thousands of lincRNA
transcripts encoded in the human genome that play criti-
cal functional roles across a spectrum of cellular processes
[6-8,71-74]. However, lincRNA sequence properties and
evolutionary origins are just emerging [1-3,5,21,22]. One
intriguing hypothesis is that TEs have significantly shaped
the noncoding transcriptome. By stochastically inserting
around the genome, TEs may modify the regulation,
sequence, and structure of existing lincRNAs and establish
new lincRNA loci through their transcription promoting
abilities. Here, we investigated this hypothesis by compre-
hensively characterizing the TE composition of lincRNAs

and exploring correlations with their functional and evolu-
tionary properties.
Indeed, we uncovered many new aspects of lincRNA

biology related to TE content. lincRNAs contain a high
proportion of TE-derived sequence, less than the genomic
background but much greater than protein coding genes.
The highly abundant LINE and SINE families are depleted
in lincRNAs, indicating that they may be deleterious to
lincRNA functions. Conversely, we observed a strong
enrichment of many ERV families. ERVs also exhibit posi-
tion and orientation biases, preferring the 5’ end of
lincRNA transcripts and sense orientation with the tran-
script, consequently placing their LTRs in proper position
to promote transcription. This suggests that transposition
of ERVs may play a role in lincRNA transcriptional regula-
tion. Interestingly, although both are regulated by RNA
polymerase II, this enrichment is unique to lincRNAs and
absent at mRNA TSSs.
Exemplifying this phenomenon, we discovered that 127

HERVH-lincRNAs are strikingly enriched for HERVH
LTR7 in the sense orientation at their TSSs and exhibit
dramatic stem cell-specific expression, observed in both
H1-hESCs and iPSCs. Consistent with the notion of TEs
contributing promoter regulatory signals, the HERVH
elements in these lincRNAs are highly enriched for tran-
scription activation signals in ESCs, but not other cell
types. Presence of the activating histone modification
H3K4me3 and SP1, a transcription factor previously
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found to be critical for transcription of HERVH [68], sug-
gests that lincRNAs can acquire the remnant regulatory
signals of their comprising TEs. Linc-ROR is an example
of a HERVH-lincRNA, which we previously showed
modulates the reprogramming process from fibroblasts
into iPSCs [52]. Similar to linc-ROR, we observed strong
enrichment of the core pluripotency factors (Oct4 and
Nanog) at the 127 HERVH-lincRNAs. Collectively, these
data suggest that HERVH retrotransposition may have
shaped pluripotency networks via lincRNA regulation.
We found that TEs partition lincRNAs into two classes

with divergent properties; 1,531 lincRNAs are devoid of
TEs (dTE-lincRNAs), unlike the majority of 7,710 lincR-
NAs that contain TEs (TE-lincRNAs). This classification
of lincRNAs uncovered another example of TE content
influencing lincRNA expression as TE-lincRNAs are less
expressed in every tissue and cell line, particularly testis.
The relative decrease in expression of TE-lincRNAs may
be due to lasting effects of well-established TE silencing
mechanisms in germline cells [75], which have been
described in TE-derived promoters of protein coding
genes [76]. Despite TE-lincRNAs exhibiting lower expres-
sion overall, Alu-lincRNAs are significantly more
expressed in all tissues except testis. Whether this increase
is attributable to a transcriptional or post-transcriptional
regulatory effect of the Alu sequence remains to be
determined.
dTE-lincRNAs also have greater evidence of conserva-

tion by substitution-based statistics than TE-lincRNAs
(even after removal of TE content). The lower conserva-
tion levels of TE-lincRNAs is apparently permissive of
function as there are many examples of important TE-
lincRNAs, including TUG1 [54], linc-ROR [52], PCAT-1
[13], SLC7A2-IT1A [51], BANCR [77], and more. Further
interpretation of the low conservation of TE-lincRNAs
requires knowing the age of the lincRNAs and the evolu-
tionary order of events of TE insertions and the origin of
transcription of the loci. More specifically, (1) did a young
lincRNA arise from previously neutrally evolving sequence
containing TEs or (2) did the lincRNA exist first and
evolve rapidly via TE insertions?
The first scenario is highly plausible. Furthermore, we

found evidence that TE insertions may have even played a
role in creating those new lincRNAs. Retrotransposons
contain promoters to transcribe the element, but, as selfish
genomic parasites, typically mutate freely after insertion.
This arrangement provides an opportunity for a new
lincRNA to arise in the region downstream of an intergenic
retrotransposon insertion where the sequence would
usually have been evolving neutrally. In our data, we found
many examples of TEs associating with lincRNA TSSs; a
number of families, particularly ERV LTRs, peak in cover-
age at the TSS with biased orientation matching the
known promoter direction. Whether these TE insertions

truly spawned novel lincRNAs or simply donated an alter-
native TSS to an existing lincRNA will be the focus of
future comparative transcriptome analyses. Nonetheless, it
appears that TEs may lend regulatory signals to these
lincRNAs, exemplified by the stem cell-specific expression
of HERVH-lincRNAs.
The second scenario - a TE insertion altering a pre-

viously existing lincRNA - may also often occur. One
hypothesis regarding lincRNA function and evolution
proposes a language of independent, small sequence-
structure domains [72]. Thus, lincRNAs may be resilient
to mutations and TE insertions that avoid altering the
resident domains. An intriguing follow-up question is
whether some TE-derived sequence in lincRNAs may
itself be functional. Recent research has described a num-
ber of groundbreaking examples of TEs in DNA affecting
transcriptional regulation - for example, by distributing
transcription factor binding site motifs inherent in the
element throughout the genome [35-38]. Given the pre-
valence and biased composition of TEs in lincRNAs, it is
tempting to hypothesize that TEs transcribed into lincR-
NAs may function analogously in post-transcriptional
processes. For example, perhaps some TEs inherently
contain binding sites for RNA binding proteins or inter-
act with nucleic acids via sequence complementarity.
Indeed, some evidence already exists for this model - Alu
elements in lncRNAs can bind matching Alu elements in
the 3’ UTRs of mRNAs to form a binding site for Staufen
1 to initiate RNA decay [50]. Furthermore, TEs have
been shown to act in a variety of post-transcriptional
processes regulating mRNAs, such as RNA editing
[78,79], stability [80], and translation efficiency [46,81].
To comprehensively explore the possibility of additional
functional TE sequence in lincRNAs, more experimental
data are needed.
More definitive answers to the evolutionary and regula-

tory questions raised by this study will require additional
computational and experimental analyses. Specifically, this
will require deep coverage RNA-Seq datasets to annotate
lincRNA loci across primates and eutherian mammals.
Such data would generalize trends in the TE composition
of lincRNAs and reveal how lineage-specific TEs such as
ERVs have shaped transcriptional regulation at lincRNA
loci. Future experimental work will focus on exploring the
functional role of TE sequence in lincRNAs through
detailed mapping of lncRNA molecular interactions. In
the meantime, it is now clear that TEs have significantly
shaped the noncoding RNA landscape.

Materials and methods
Materials
We built the lincRNA catalog used in this analysis using
RNA-Seq experiments from 28 different tissues and cell
lines (Additional file 4) and UCSC, RefSeq, and GENCODE
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v4 annotations on the human genome assembly Hg19. We
annotated transposons using RepeatMasker [82] on Hg19
with the RepBase repeat library 20110920 after subtracting
non-coding RNA, satellite, low complexity, and simple
repeats [83]. Protein coding transcript analyses were per-
formed on UCSC annotations.

lincRNA catalog
We mapped RNA-Seq reads to the Hg19 reference gen-
ome using the spliced alignment software TopHat [84].
We assembled transcripts for each tissue or cell line indi-
vidually using Cufflinks [57]. We estimated gene abun-
dance using Cuffdiff, simultaneously normalizing all
libraries with the geometric mean normalization option.
Similarly to a recent lncRNA catalog release [2], we imple-
mented a set of filters for the assembled transcripts
(Additional files 7, 8 and 9). To overcome transcriptional
noise, we required two or more exons, length greater than
200 bp, and abundance estimate greater than 1 FPKM in
at least one of the tissues or cell lines. Next, we removed
transcripts with evidence of protein coding potential via
either overlap with a UCSC/RefSeq/GENCODE v4 protein
annotation or a Phylo-CSF score > 100 [85]. The threshold
of 100 was found to correspond to a 10% false negative
rate for known lncRNAs and 15% false positive rate for
protein coding genes [2]. We also removed transcripts
overlapping UCSC-annotated tRNA, rRNA, and small
RNAs. We added back lncRNA annotations from UCSC/
RefSeq/GENCODE v4 because these typically have addi-
tional experimental validation. However, we removed all
transcripts antisense to protein annotation or overlapping
a GENCODE v7 pseudogene to separate out these differ-
ent classes of lncRNA. Finally, we analyzed only the iso-
form for each gene locus that had the greatest FPKM
geometric mean across all tissues and cell lines (Additional
file 8). We used the software package BEDtools extensively
in this pipeline and overall analyses [86].

Multi-mapping reads
Given the focus in this analysis on repetitive regions, we
paid careful attention to the difficult issue of RNA-Seq
reads mapping to multiple genomic positions [87]. We
limited the number of alignments per read to 20. Cufflinks
assembles multi-mapping reads in every aligning position,
but discards any transcript consisting of greater than 50%
multi-mapping reads. Thus, combined with the require-
ment of multiple exons, the evidence required for a tran-
script to be included in our catalog is substantial. To
quantify expression, Cufflinks performs an initial FPKM
estimation procedure in order to more accurately distri-
bute multi-mapping reads in a second iteration. Neverthe-
less, in statistical comparisons, we imposed a minimum
FPKM of 0.5 in order to ignore expression differences at

very low levels that may be artifacts from multi-mapping
reads spreading a small amount of supposed expression to
quiescent transcripts.
To further validate the transcript assemblies around

repeats, we re-assembled the reads from H1-hESC using
only uniquely mapping reads. Differences between the two
assemblies were minimal. Most differences were additional
transcripts in the uniquely mapped assembly that failed
the multi-mapping read proportion threshold in the origi-
nal assembly but actually do have substantial support.
Thus, we conclude high confidence in our transcript
assemblies even in the presence of repeats.

Statistical tests
To test for enrichment and depletion of specific TEs in
various annotation sets, such as the lincRNA catalog, we
implemented a shuffling procedure. More specifically, we
shuffled the annotations (while freezing the TEs) and
recomputed the statistic of interest 100 times. We fit a
normal distribution to these null samples and computed
P-values from the parameterized normal cumulative den-
sity function.
For all comparisons of two sets of values where we were

interested in whether one set was greater than another, we
used a Mann-Whitney rank sum test [88]. This included
comparisons between TE-lincRNA and dTE-lincRNA
length, exons/transcript, isoforms/gene, abundance esti-
mates, and conservation scores.
To test for enrichment of ChIP-Seq reads in TEs, we

used a binomial test modeling each read as a sample from
a Bernoulli distribution where the success probability is
proportional to the size of the TE family over the size of
the alignable genome.
P-values in all experiments were corrected for multiple

hypothesis testing using Benjamini and Hochberg’s false
discovery rate procedure [89].

ChIP-Seq analysis
We downloaded fastq files of ChIP-Seq reads generated by
the ENCODE consortium from UCSC (Additional file 6)
and analyzed the data two different ways in order to avoid
multi-mapping read biases. First, we mapped the reads to
the genome using Bowtie [90] with the –best option to
return the single best alignment per read. Using these
alignments, we computed enrichment of reads within TEs
and plotted read coverage at TSSs (normalized by subtrac-
tion of control sequencing coverage). In TE-specific TSS
coverage plots, only genes containing that TE in a promo-
ter region 2,000 nucleotides upstream and 200 nucleotides
downstream were considered. The choice of one align-
ment per read for these meta-feature analyses should miti-
gate multi-mapping read challenges. Second, we remapped
the reads allowing up to 20 alignments and called peaks
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using the AREM software package, which implements an
iterative algorithm to optimally allocate multi-mapping
reads built on top of the MACS method [91,92].

Additional material

Additional file 1: Supplementary results and figures. [94]

Additional file 2: TE content of lincRNAs. Excel table describing TE
content of lincRNAs and statistical analysis.

Additional file 3: TE content of protein coding genes. Excel table
describing the TE content of protein coding genes and statistical
analysis.

Additional file 4: RNA-Seq data. Excel table describing RNA-Seq
datasets used to build lincRNAs and estimate abundances.

Additional file 5: TEs in lincRNAs orientation statistics. Excel table
describing orientation statistics of TEs in lincRNAs.

Additional file 6: ChIP-Seq data. Excel table describing ChIP-Seq
datasets used to study HERHV-lincRNAs.

Additional file 7: GTF file describing our full lincRNA catalog.

Additional file 8: GTF file describing only the most expressed
isoforms of our lincRNA catalog.

Additional file 9: Cufflinks output file describing abundance
estimates for our full lincRNA catalog.
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