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Abstract

DNA methylation is a chemical modification of cytosine bases that is pivotal for gene regulation, cellular
specification and cancer development. Here, we describe an R package, methylKit, that rapidly analyzes genome-
wide cytosine epigenetic profiles from high-throughput methylation and hydroxymethylation sequencing
experiments. methylKit includes functions for clustering, sample quality visualization, differential methylation
analysis and annotation features, thus automating and simplifying many of the steps for discerning statistically
significant bases or regions of DNA methylation. Finally, we demonstrate methylKit on breast cancer data, in which
we find statistically significant regions of differential methylation and stratify tumor subtypes. methylKit is available
at http://code.google.com/p/methylkit.

Rationale
DNA methylation is a critical epigenetic modification that
guides development, cellular differentiation and the mani-
festation of some cancers [1,2]. Specifically, cytosine
methylation is a widespread modification in the genome,
and it most often occurs in CpG dinucleotides, although
non-CpG cytosines are also methylated in certain tissues
such as embryonic stem cells [3]. DNA methylation is one
of the many epigenetic control mechanisms associated
with gene regulation. Specifically, cytosine methylation can
directly hinder binding of transcription factors and methy-
lated bases can also be bound by methyl-binding-domain
proteins that recruit chromatin-remodeling factors [4,5].
In addition, aberrant DNA methylation patterns have been
observed in many human malignancies and can also be
used to define the severity of leukemia subtypes [6]. In
malignant tissues, DNA is either hypo-methylated or
hyper-methylated compared to the normal tissue. The
location of hyper- and hypo-methylated sites gives distinct
signatures within many diseases [7]. Often, hypomethyla-
tion is associated with gene activation and hypermethyla-
tion is associated with gene repression, although there
are many exceptions to this trend [7]. DNA methylation
is also involved in genomic imprinting, where the

methylation state of a gene is inherited from the parents,
but de novo methylation also can occur in the early stages
of development [8,9].
A common technique for measuring DNA methylation

is bisulfite sequencing, which has the advantage of pro-
viding single-base, quantitative cytosine methylation
levels. In this technique, DNA is treated with sodium
bisulfite, which deaminates cytosine residues to uracil,
but leaves 5-methylcytosine residues unaffected. Single-
base resolution, %methylation levels are then calculated
by counting the ratio of C/(C+T) at each base. There are
multiple techniques that leverage high-throughput bisul-
fite sequencing such as: reduced representation bisulfite
sequencing (RRBS)[10] and its variants [11], whole-
genome shotgun bisulfite sequencing (BS-seq) [12],
methylC-Seq [13], and target capture bisulfite sequencing
[14]. In addition, 5-hydroxymethylcytosine (5hmC) levels
can be measured through a modification of bisulfite
sequencing techniques [15].
Yet, as bisulfite sequencing techniques have expanded,

there are few computational tools available to analyze the
data. Moreover, there is a need for an end-to-end analysis
package with comprehensive features and ease of use. To
address this, we have created methylKit, a multi-threaded
R package that can rapidly analyze and characterize data
from many methylation experiments at once. methylKit
can read DNA methylation information from a text file
and also from alignment files (for example, SAM files)
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and carry out operations such as differential methylation
analysis, sample clustering and annotation, and visualiza-
tion of DNA methylation events (See Figure 1 for a dia-
gram of possible operations). methylKit has open-source
code and is available at [16] and as Additional file 1 (see
also Additional file 2 for the user guide and Additional
file 3 for the package documentation ). Our data frame-
work is also extensible to emerging methods in quantiza-
tion of other base modifications, such as 5hmC [14], or
sites discovered through single molecule sequencing
[17,18]. For clarity, we describe only examples with DNA
methylation data.

Flexible data integration and regional analysis
High-throughput bisulfite sequencing experiments typi-
cally yield millions of reads with reduced complexity
due to cytosine conversion, and there are several differ-
ent aligners suited for mapping these reads to the gen-
ome (see Frith et al. [19] and Krueger et al. [20] for
a review and comparison between aligners). Since
methylKit only requires a methylation score per base for

all analyses, it is a modular package that can be applied
independent of any aligner. Currently, there are two
ways that information can be supplied to methylKit:: 1)
methylKit can read per base methylation scores from a
text file (see Table 1 for an example of such a file); and,
2) methylKit can read SAM format [21] alignments files
obtained from Bismark aligner [22]. If a SAM file is sup-
plied, methylkit first processes the alignment file to get
%methylation scores and then reads that information
into memory.
Most bisulfite experiments have a set of test and control

samples or samples across multiple conditions, and
methylKit can read and store (in memory) methylation
data simultaneously for N-experiments, limited only by
memory of the node or computer. The default setting of
the processing algorithm requires that there be least 10
reads covering a base and each of the bases covering the
genomic base position have at least 20 PHRED quality
score. Also, since DNA methylation can occur in CpG,
CHG and CHH contexts (H = A, T, or C) [3], users of
methylKit have the option to provide methylation

Figure 1 Flowchart of possible operations by methylKit. A summary of the most important methylKit features is shown in a flow chart. It
depicts the main features of methylKit and the sequential relationship between them. The functions that could be used for those features are
also printed in the boxes.
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information for all these contexts: CpG, CHG and CHH
from SAM files.

Summarizing DNA methylation information over
pre-defined regions or tiling windows
Although base-pair resolution DNA methylation informa-
tion is obtained through most bisulfite sequencing experi-
ments, it might be desirable to summarize methylation
information over tiling windows or over a set of prede-
fined regions (promoters, CpG islands, introns, and so on).
For example, Smith et al. [9] investigated methylation pro-
files with RRBS experiments on gametes and zygote and
summarized methylation information on 100bp tiles
across the genome. Their analysis revealed a unique set of
differentially methylated regions maintained in early
embryo. Using tiling windows or predefined regions, such
as promoters or CpG islands, is desirable when there is
not enough coverage, when bases in close proximity will
have similar methylation profiles, or where methylation
properties of a region as a whole determines its function.
In accordance with these potential analytic foci, methylKit
provides functionality to do either analysis on tiling
windows across the genome or predefined regions of the
genome. After reading the base pair methylation informa-
tion, users can summarize the methylation information on
pre-defined regions they select or on tiling windows cover-
ing the genome (parameter for tiles are user provided).
Then, subsequent analyses, such as clustering or differen-
tial methylation analysis, can be carried out with the same
functions that are used for base pair resolution analysis.

Example methylation data set: breast cancer cell lines
We demonstrated the capabilities of methylKit using an
example data set from seven breast cancer cell lines from
Sun et al. [23]. Four of the cell lines express estrogen
receptor-alpha (MCF7, T47D, BT474, ZR75-1), and from
here on are referred to as ER+. The other three cell lines
(BT20, MDA-MB-231, MDA-MB-468) do not express
estrogen receptor-alpha, and from here on are referred to
as ER-. It has been previously shown that ER+ and ER-
tumor samples have divergent gene expression profiles
and that those profiles are associated with disease outcome

[24,25]. Methylation profiles of these cell lines were mea-
sured using reduced RRBS [10]. The R objects contained
the methylation information for breast cancer cell lines
and functions that produce plots and other results that
are shown in the remainder of this manuscript are in
Additional file 4.

Whole methylome characterization: descriptive
statistics, sample correlation and clustering
Descriptive statistics on DNA methylation profiles
Read coverage per base and % methylation per base are
the basic information contained in the methylKit data
structures. methylKit has functions for easy visualization
of such information (Figure 2a and 2b for % methylation
and read coverage distributions, respectively - for code see
Additional file 4). In normal cells, % methylation will have
a bimodal distribution, which denotes that the majority of
bases have either high or low methylation. The read cover-
age distribution is also an important metric that will help
reveal if experiments suffer from PCR duplication bias
(clonal reads). If such bias occurs, some reads will be
asymmetrically amplified and this will impair accurate
determination of % methylation scores for those regions. If
there is a high degree of PCR duplication bias, read cover-
age distribution will have a secondary peak on the right
side. To correct for this issue, methylKit has the option to
filter bases with very high read coverage.

Measuring and visualizing similarity between samples
We have also included methods to assess sample similar-
ity. Users can calculate pairwise correlation coefficients
(Pearson, Kendall or Spearman) between the %methylation
profiles across all samples. However, to ensure comparable
statistics, a new data structure is formed before these cal-
culations, wherein only cytosines covered in all samples
are stored. Subsequently, pairwise correlations are calcu-
lated, to produce a correlation matrix. This matrix allows
the user to easily compare correlation coefficients between
pairs of samples and can also be used to perform hierarch-
ical clustering using 1- correlation distance. methylKit can
also further visualize similarities between all pairs of sam-
ples by creating scatterplots of the %methylation scores
(Figure 3). These functions are essential for detecting sam-
ple outliers or for functional clustering of samples based
on their molecular signatures.

Hierarchical clustering of samples
methylKit can also be used to cluster samples hierarchi-
cally in a variety of ways. The user can specify the
distance metric between samples (‘1 - correlation’ ‘Eucli-
dean’, ‘maximum’, ‘manhattan’, ‘canberra’, ‘binary’ or ‘min-
kowski’) as well as the agglomeration method to be used
in the hierarchical clustering algorithm (for example,
‘Ward’s method’, or ‘single/complete linkage’, and so on).

Table 1 Sample text file that can be read by methylKit.

chrBase chr base strand coverage freqC freqT

chr21.9764539 chr21 9764539 R 12 25 75

chr21.9764513 chr21 9764513 R 12 0 100

chr21.9820622 chr21 9820622 F 13 0 100

chr21.9837545 chr21 9837545 F 11 0 100

chr21.9849022 chr21 9849022 F 124 72.58 27.42

chr21.9853326 chr21 9853326 F 17 70.59 29.41

methylKit can read tab-delimited text files with the following format: the text
file should include a unique.id, chromosome name, base position, strand, read
coverage, % of C bases and % of T bases on that location.
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Results can either be returned as a dendrogram object or a
plot. Dendrogram plots will be color coded based on user
defined groupings of samples. For example, we found that
most ER+ and ER- samples clustered together except
MDMB231 (Figure 4a). Moreover, the user may be inter-
ested in employing other more model-intensive clustering
algorithms to their data. Users can easily obtain the %
methylation data from methylKit object and perform their
own analysis with the multitude of R-packages already

available for clustering. An example of such a procedure
(k-means clustering) is shown in Additional file 4.

Principal component analysis of samples
methylKit can be used to perform Principal Component
Analysis (PCA) on the samples’ %-methylation profiles
(see for example [26]). PCA can reduce the high dimen-
sionality of a data set by transforming the large number
of regions to a few principal components. The principal
components are ordered so that the first few retain
most of the variation present in the original data and
are often used to emphasize grouping structure in the
data. For example, a plot of the first two or three princi-
pal components could potentially reveal a biologically
meaningful clustering of the samples. Before the PCA is
performed, a new data matrix is formed, containing the
samples and only those cytosines that are covered in all
samples. After PCA, methylKit then returns to the user
a ‘prcomp’ object, which can be used to extract and plot
the principal components. We found that in the breast
cancer data set, PCA reveals a similar clustering to the
hierarchical clustering where MDMB231 is an outlier.

Differential methylation calculation
Parallelized methods for detecting significant
methylation changes
Differential methylation patterns have been previously
described in malignancies [27-29] and can be used to dif-
ferentiate cancer and normal cells [30]. In addition, nor-
mal human tissues harbor unique DNA methylation
profiles [7]. Differential DNA methylation is usually calcu-
lated by comparing methylation levels between multiple
conditions, which can reveal important locations of diver-
gent changes between a test and a control set. We have
designed methylKit to implement two main methods for

Figure 2 Descriptive statistics per sample. (a) Histogram of %methylation per cytosine for ER+ T47D sample. Most of the bases have either
high or low methylation. (b) Histogram of read coverage per cytosine for ER+ T47D sample. ER+, estrogen receptor-alpha expressing.

Figure 3 Scatter plots for sample pairs. Scatter plots of %
methylation values for each pair in seven breast cancer cell lines.
Numbers on upper right corner denote pair-wise Pearson’s
correlation scores. The histograms on the diagonal are %
methylation histograms similar to Figure 2a for each sample.
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determining differential methylation across all regions:
logistic regression and Fisher’s exact test. However, the
data frames in methylKit can easily be used with other sta-
tistical tests and an example is shown in Additional file 4
(using a moderated t-test, although we maintain that most
natural tests for this kind of data are Fisher’s exact and
logistic regression based tests). For our example data set
we compared ER+ to ER- samples, with our ‘control
group’ being the ER- set.

Method #1: logistic regression
In logistic regression, information from each sample is
specified (the number of methylated Cs and number of
unmethylated Cs at a given region), and a logistic
regression test will be applied to compare fraction of
methylated Cs across the test and the control groups.
More specifically, at a given base/region we model the
methylation proportion Pi, for sample i= 1,...,n (where n
is the number of biological samples) through the logistic
regression model:

log(Pi/(1 - Pi)) = β0 + β1 ∗ Ti (1)

where Ti denotes the treatment indicator for sample i, Ti

= 1 if sample i is in the treatment group and Ti = 0 if sam-
ple i is in control group. The parameter b0 denotes the log
odds of the control group and b1 the log oddsratio
between the treatment and control group. Therefore, inde-
pendent tests for all the bases/regions of interest are
against the null hypothesis H0: b1= 0. If the null hypothesis
is rejected it implies that the logodds (and hence the
methylation proportions) are different between the treat-
ment and the control group and the base/region would
subsequently be classified as a differentially methylated

cytosine (DMC) or region (DMR). However, if the null
hypothesis is not rejected it implies no statistically signifi-
cant difference in methylation between the two groups.
One important consideration in logistic regression is the
sample size and in many biological experiments the num-
ber of biological samples in each group can be quite small.
However, it is important to keep in mind that the relevant
sample sizes in logistic regression are not merely the num-
ber of biological samples but rather the total read cov-
erages summed over all samples in each group separately.
For our example dataset, we used bases with at least 10
reads coverage for each biological sample and we advise
(at least) the same for other users to improve power to
detect DMCs/DMRs.
In addition, we have designed methylKit such that the

logistic regression framework can be generalized to han-
dle more than two experimental groups or data types.
In such a case, the inclusion of additional treatment
indicators is analogous to multiple regression when
there are categorical variables with multiple groups.
Additional covariates can be incorporated into model
(1) by adding to the right side of the model:

α1 ∗ Covariate1,i + ... + αK ∗ CovariateK,i

where Covariate1,i, ..., CovariateK,i denote K measured
covariates (continuous or categorical) for sample
i = 1,...,n and a1,..., ak denote the corresponding
parameters.

Method #2: Fisher’s exact test
The Fisher’s exact test compares the fraction of methy-
lated Cs in test and control samples in the absence of
replicates. The main advantage of logistic regression

Figure 4 Sample clustering. (a) Hierarchical clustering of seven breast cancer methylation profiles using 1-Pearson’s correlation distance. (b)
Principal Component Analysis (PCA) of seven breast cancer methylation profiles, plot shows principal component 1 and principal component 2
for each sample. Samples closer to each other in principal component space are similar in their methylation profiles.
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over Fisher’s exact test is that it allows for the inclusion
of sample specific covariates (continuous or categorical)
and the ability to adjust for confounding variables. In
practice, the number of samples per group will deter-
mine which of the two methods will be used (logistic
regression or Fisher’s exact test). If there are multiple
samples per group, methylKit will employ the logistic
regression test. Otherwise, when there is one sample per
group, Fisher’s exact test will be used.
Following the differential methylation test and calcula-

tion of P-values, methylKit will use the sliding linear
model (SLIM) method to correct P-values to q-values [31],
which corrects for the problem of multiple hypothesis test-
ing [32,33]. However, we also implemented the standard
false discovery rate (FDR)-based method (Benjamini-
Hochberg) as an option for P-value correction, which is
faster but more conservative. Finally, methylKit can use
multi-threading so that differential methylation calcula-
tions can be parallelized over multiple cores and be com-
pleted faster.

Extraction and visualization of differential methylation
events
We have designed methylKit to allow a user to specify the
parameters that define the DMCs/DMRs based on: q-
value, %methylation difference, and type of differential
methylation (hypo-/hyper-). By default, it will extract
bases/regions with a q-value <0.01 and %methylation dif-
ference >25%. These defaults can easily be changed when
calling get.methylDiff() function. In addition, users can spe-
cify if they want hyper-methylated bases/regions (bases/
regions with higher methylation compared to control sam-
ples) or hypo-methylated bases/regions (bases/regions
with lower methylation compared to control samples). In
the literature, hyper- or hypo-methylated DMCs/DMRs
are usually defined relative to a control group. In our
examples, and in methylKit in general, a control group is
defined when creating the objects through supplied

treatment vector, and hyper-/hypomethylation definitions
are based on that control group.
Furthermore, DMCs/DMRs can be visualized as hori-

zontal barplots showing percentage of hyper- and hypo-
methylated bases/regions out of covered cytosines over
all chromosomes (Figure 5a). We observed higher levels
of hypomethylation than hypermethylation in the breast
cancer cell lines, which indicates that ER+ cells have
lower levels of methylation. Since another common way
to visualize differential methylation events is with a gen-
ome browser, methylKit can output bedgraph tracks
(Figure 5b) for use with the UCSC Genome Browser or
Integrated Genome Viewer.

Annotating differential methylation events
Annotation with gene models and CpG islands
To discern the biological impact of differential methyla-
tion events, each event must be put into its genomic
context for subsequent analysis. Indeed, Hansen et al.
[34] showed that most variable regions in terms of
methylation in the human genome are CpG island
shores, rather than CpG islands themselves. Thus, it is
interesting to know the location of differential methyla-
tion events with regard to CpG islands, their shores, and
also the proximity to the nearest transcription start site
(TSS) and gene components. Accordingly, methylKit can
annotate differential methylation events with regard to
the nearest TSS (Figure 6a) and it also can annotate
regions based on their overlap with CpG islands/shores
and regions within genes (Figures 6b and 6c are output
from methylKit).

Annotation with custom regions
As with most genome-wide assays, the regions of interest
for DNA methylation analysis may be quite numerous.
For example, several reports show that Alu elements are
aberrantly methylated in cancers [35,36] and enhancers
are also differentially methylated [37,38]. Since users may

Figure 5 Visualizing differential methylation events. (a) Horizontal bar plots show the number of hyper- and hypomethylation events per
chromosome, as a percent of the sites with the minimum coverage and differential. By default this is a 25% change in methylation and all
samples with 10X coverage. (b) Example of bedgraph file uploaded to UCSC browser. The bedraph file is for differentially methylated CpGs with
at least a 25% difference and q-value <0.01. Hyper- and hypo-methylated bases are color coded. The bar heights correspond to % methylation
difference between ER+ and ER- sets. ER+, estrogen receptor-alpha expressing; ER-, estrogen receptor-alpha non-expressing. UCSC, University of
California Santa Cruz.
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need to focus on specific genomic regions and require
customized annotation for capturing differential DNA
methylation events, methylKit can annotate differential
methylation events using user-supplied regions. As an
example, we identified differentially methylated bases of
ER+ and ER- cells that overlap with ENCODE enhancer
regions [39], and we found a large proportion of differen-
tially methylated CpGs overlapping with the enhancer
marks, and then plotted them with methylKit (Figure 6d).

Analyzing 5-hydroxymethylcytosine data with
methylKit
5-Hydroxymethylcytosine is a base modification asso-
ciated with pluropotency, hematopoiesis and certain
brain tissues (reviewed in [40]). It is possible to measure
base-pair resolution 5hmC levels using variations of tra-
ditional bisulfite sequencing. Recently, Yu et al. [41] and
Booth et al. [15] published similar methods for detecting
5hmC levels in base-pair resolution. Both methods

Figure 6 Annotation of differentially methylated CpGs. (a) Distance to TSS for differentially methylated CpGs are plotted from ER+ versus ER-
analysis. (b) Pie chart showing percentages of differentially methylated CpGs on promoters, exons, introns and intergenic regions. (c) Pie chart
showing percentages of differentially methylated CpGs on CpG islands, CpG island shores (defined as 2kb flanks of CpG islands) and other
regions outside of shores and CpG islands. (d) Pie chart showing percentages of differentially methylated CpGs on enhancers and other regions.
ER+, estrogen receptor-alpha expressing; ER-, estrogen receptor-alpha non-expressing, TSS, transcription start site.
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require measuring 5hmC and 5mC levels simultaneously
and use 5hmC levels as a substrate to deduce real 5mC
levels, since traditional bisulfite sequencing cannot dis-
tinguish between the two [42]. However, both the 5hmC
and 5mC data generated by these protocols are bisulfite
sequencing based, and the alignments and text files of
5hmC levels can be used directly in methylKit. Further-
more, methylKit has an adjust.methylC() function to
adjust 5mC levels based on 5hmC levels as described in
Booth et al. [15].

Customizing analysis with convenience functions
methylKit is dependent on Bioconductor [43] packages
such as GenomicRanges and its objects are coercible to
GenomicRanges objects and regular R data structures
such as data frames via provided convenience functions.
That means users can integrate methylKit objects to
other Bioconductor and R packages and customize the
analysis according to their needs or extend the analysis
further by using other packages available in R.

Conclusions
Methods for detecting methylation across the genome
are widely used in research laboratories, and they are
also a substantial component of the National Institutes
of Health’s (NIH’s) EpiGenome roadmap and upcoming
projects such as BLUEPRINT [44]. Thus, tools and tech-
niques that enable researchers to process and utilize
genome-wide methylation data in an easy and fast man-
ner will be of critical utility.
Here, we show a large set of tools and cross-sample

analysis algorithms built into methylKit, our open-source,
multi-threaded R package that can be used for any base-
level dataset of DNA methylation or base modifications,
including 5hmC. We demonstrate its utility with breast
cancer RRBS samples, provide test data sets, and also
provide extensive documentation with the release.

Additional material

Additional file 1: methylKit v0.5.3. This version of methylKit is included
for archival purposes only. Please download the most recent version
from [16].

Additional file 2: methylKit User Guide. A vignette file to accompany
the methylKit software package; the most recent software and vignette
can be downloaded at [16].

Additional file 3: methylKit documentation. Documentation for
functions and classes in the methylKit software package; the most recent
software and documentation can be downloaded at [16].

Additional file 4: R script for example analysis. The file contains R
commands that are needed to do analysis and to produce graphs used
in this manuscript. The file contains both the commands and detailed
comments on how those commands can be used. An up to date version
of this script will be consistently maintained at [16].

Abbreviations
5hmC: 5-hydroxymethylcytosine; 5mC: 5-methylcytosine; bp: base pair; BS-
seq,:bisulfite sequencing; DMC: differentially methylated cytosine; DMR:
differentially methylated region; ER: estrogen receptor alpha; FDR: false
discovery rate; PCA: principal component analysis; PCR: polymerase chain
reaction; RRBS: reduced representation bisulfite sequencing; SLIM: sliding
linear model; TSS: transcription start site.
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