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Abstract

DNA methylation is an important epigenetic modification involved in gene regulation, which can now be
measured using whole-genome bisulfite sequencing. However, cost, complexity of the data, and lack of
comprehensive analytical tools are major challenges that keep this technology from becoming widely applied.
Here we present BSmooth, an alignment, quality control and analysis pipeline that provides accurate and precise
results even with low coverage data, appropriately handling biological replicates. BSmooth is open source software,
and can be downloaded from http://rafalab.jhsph.edu/bsmooth.

Background
DNA methylation is an important epigenetic modification
involved in gene silencing, tissue differentiation, and cancer
[1]. High-resolution, genome-wide measurement of DNA
methylation is now possible using whole-genome bisulfite
sequencing (WGBS), a process whereby input DNA is trea-
ted with sodium bisulfite and sequenced. While WGBS is
comprehensive, it is also quite costly [2]. For instance, an
application of WGBS by Lister et al. [3] compared DNA
methylation profiles of an embryonic stem cell line and a
fibroblast cell line. Both were sequenced to about 30× cov-
erage (25× coverage of all CpGs), requiring 376 total lanes
of bisulfite sequencing on the Illumina GA II instrument.
While conventional wisdom is that 30× coverage or deeper
is needed to achieve accurate results, advanced statistical
techniques proposed here, such as local likelihood smooth-
ing, can reduce this requirement to as little as 4×.
It has also been shown that different genomic regions

exhibit different levels of DNA methylation variation
among individuals [4]. As a consequence, regions that are
inherently variable can easily be confused with regions
that differ consistently between groups when few repli-
cates are available [1] (Figure 1). But performing WGBS
on the number of biological replicates required to

overcome such issues can be quite expensive. The techni-
ques proposed here address this issue both by making full
use of replicate information during analysis, and by
potentially reducing the coverage needed for (and there-
fore the cost of) replication.
Analysis of WGBS data starts with alignment of bisul-

fite converted reads. After alignment, statistical methods
are employed to identify differentially methylated regions
(DMRs) between two or more conditions. Extensive work
has been dedicated to alignment [5-10] but methods for
post-alignment analysis are limited. Published work
based on WGBS has relied on a modular approach that
first identifies differentially methylated CpGs that are
then grouped into regions using ad hoc grouping rules.
The first step is carried out using either Fisher’s exact
test [3,11-13], arbitrary cutoffs for differences in observed
methylation levels [14], or a beta-binomial model [15].
None of these methods take biological variability into
account. To the best of our knowledge, no software is
available implementing these approaches.
Here we present BSmooth, a comprehensive analysis tool

for WGBS datasets. The BSmooth pipeline begins with an
unbiased and bisulfite-aware read alignment step, compiles
quality assessment metrics based on stratifying methylation
estimates by read position, applies local averaging to
improve precision of regional methylation measurements,
and detects DMRs accounting for biological variability
when replicates are available. The main methodological
contribution of BSmooth is the ability to identify DMRs
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accounting for biological variability, as well as the quality
control measures we propose. In addition, BSmooth
includes a new aligner, Merman, which appropriately han-
dles colorspace. We demonstrate the benefits of BSmooth
with four publicly available datasets: the Lister data [3], the
Hansen data [1], the Hansen-capture data [1] and the
Tung data [16] (see Materials and methods for details). We
use these data to demonstrate the advantages of BSmooth
over existing algorithms based on Fisher’s exact test.
BSmooth is the first pipeline for WGBS datasets yielding
DMRs as output, while also taking biological variation into
account. It can handle low-coverage experimental designs,
allowing researchers to profile several samples at the same
cost as a high-coverage profile of a single sample.

Results and discussion
Alignment
Sodium bisulfite treatment converts unmethylated cytosine
(C) nucleotides to uracils, which are reported as thymines
(T) by the sequencer, and leaves methylated cytosines
unmodified. When sequencing reads derived from treated
DNA are aligned to a reference genome, the methylation
status of a C in the reference can be measured by examin-
ing aligned reads overlapping it. For instance, when a C in
a bisulfite-treated read overlaps a C in the reference, this
indicates the reference C is methylated in at least one
molecule in the sample.
Alignment of sequencing reads derived from bisulfite-

treated DNA is complicated by the fact that a reference
C’s methylation status affects the scores of alignments cov-
ering it. This can result in bias either toward or against
alignments covering methylated cytosines. Algorithms
have been proposed that avoid bias by removing the pen-
alty associated with aligning a C or T in the read to a C in
the reference genome. One such approach is ‘in silico
bisulfite conversion’, whereby C nucleotides both in the
reads and in the reference genome are converted to T

nucleotides prior to alignment [3,8]. A related approach is
to convert only the reference genome in this way [17,18],
but this results in bias against reads overlapping both
methylated and unmethylated cytosines.
Other approaches avoid bias by, at some point in the

alignment process, considering all possible combinations
of methylation status. VerJinxer [5] and BSMAP [9], for
example, build a ‘seed’ index of the reference genome. For
each seed extracted, multiple versions of the seed are
added to the index: one for each possible assignment of
either C or T to a position that originally contained a C.
This ensures that the index-assisted alignment steps are
not biased by methylation status. The approach of PASH
[6] is similar, with seeds being extracted from the read
rather than the reference.
An advantage of in silico bisulfite conversion is that

post-conversion alignment can be performed using a fast
tool such as Bowtie [19]. A disadvantage is that it does
not straightforwardly handle ‘colorspace’ reads from the
SOLiD sequencing instrument. For this reason, BSmooth
implements two alignment algorithms, which the user
may choose between. The first is based on in silico bisul-
fite conversion and uses Bowtie 2 [20] to align. Because it
uses Bowtie 2, this pipeline fully supports gapped align-
ment and alignment of paired-end bisulfite-treated reads.
The second pipeline uses a new aligner called Merman,
which supports unbiased alignment of colorspace bisul-
fite reads. Merman extends the indexing approach of
VerJinxer [5] and BSMAP [9]; as in those approaches, we
build a ‘seed’ index of the reference genome. Instead of
extracting nucleotide subsequences, though, we extract
corresponding color subsequences. For each subsequence
extracted, multiple versions may be added to the index:
one for each color subsequence resulting from each pos-
sible assignment of either C or T to positions originally
containing a C. This closely follows the approaches of
VerJinxer [5] and BSMAP [9], but additionally translates
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Figure 1 The need for biological replicates. We show smoothed methylation profiles for three normal samples (blue) and matched cancers
(red) from the Hansen data [1]. Also shown is the smoothed methylation profile for an IMR90 cell-line (black) from the Lister data [3]. Had we
only analyzed normal-cancer pair 3 (thick lines), there would appear to be a methylation difference between cancer and normal in this genomic
region. When all three cancer-normal pairs are considered, however, this region does not appear to be a cancer-specific differentially methylated
region.
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nucleotide ambiguity into color ambiguity. The Merman-
based pipeline does not support gapped alignment or
paired-end alignment.
The Merman alignment pipeline is included chiefly to

allow users to align a greater breadth of input types. It
is generally slower and less memory-efficient than the
Bowtie 2-based pipeline. BSmooth also allows the user
to bypass the alignment stage, in which case the user
must provide a collection of SAM [21] files formatted as
though they had been generated by one of BSmooth’s
pipelines. A comparison between different alignment
strategies demonstrated that the effect on downstream
results is negligible (Figure S5 in Additional file 1), com-
pared to technical variation. As we demonstrate below,
the choice of statistical analysis method has a much
stronger impact.

Quality control
Systematic sequencing and base-calling errors that
adversely affect downstream results are common and
increasingly well characterized [22,23]. For instance, incor-
rect base calls toward the 3’ ends of reads can favor speci-
fic nucleotides [23]. We observed similar biases in WGBS
data and developed a sample-specific quality assessment
plot to visualize them. For each uniquely aligned read, we
recorded read positions corresponding to CpG cytosines
in the reference, along with the read base overlapping that
position if it is C (methylated) or T (unmethylated). We
refer to these as the read-level measurements. We then
stratified these measurements by read position, computed
the percent of Cs in each stratum, and plotted them
(Figure 2). Since methylation state should not depend on
read position, these plots ought to show a flat horizontal
line (Figure 2a). However, biases were observed in two of

the three examined datasets (Figure 2b,c). We therefore
refer to them as M-bias plots. For datasets with mixed
read lengths, we recommend one plot per read length
(Figure 2b; Figures S1 to S3 in Additional file 1).
These plots can also be used to make filtering deci-

sions. In the three datasets we examined, inspection of
the M-bias plot motivated restricting the read positions
used to a certain range: read-level measurements for
which the position was outside this range were excluded
from further analysis (but the whole read was still used
for alignment). We refer to this procedure as M-bias fil-
tering. In the Lister data we excluded the last 10 bp
from each trimmed read. In the Hansen dataset we
excluded measurements from the first three and last
three positions (Figure 2a). In the Hansen-capture data-
set we excluded measurements from the first 15 posi-
tions (Figure 2c). This filtering led to substantially
increased agreement between the datasets representing
the same sample processed with two different protocols
(Figure S4 in Additional file 1).

Smoothing
We employed smoothing to estimate the methylation
level in a genomic region for a single sample. We
denote the number of reads associated with the jth CpG
being methylated and unmethylated with Mj and Uj

respectively. The CpG-level summary is simply the pro-
portion Mj/Nj, with Nj=Mj+UJ the coverage for the jth
CpG. We assume each Mj follows a binomial distribu-
tion with success probability πj. The success probability
represents the true proportion of chromosomes for
which the jth CpG is methylated in the sample being
assayed. The proportion Mj/Nj, denoted the single-CpG
methylation estimate, is an unbiased estimate of πj with

Figure 2 Quality control plots. (a) M-bias plot for the Hansen data, a WGBS experiment on cancer samples. Each sample was sequenced on
two flowcells. We show the methylation proportion across each possible read position. This plot shows limited evidence of methylation bias
across the read positions. Vertical lines indicate cutoffs used for M-bias filtering. (b) M-bias plots for the Lister data, a WGBS experiment in a
fibroblast cell line. These data were aligned using iterative trimming and each read length is depicted separately (different colors). The plot
shows methylation bias toward the end of reads for all read lengths. (c) M-bias plot for the Hansen-capture data, a capture bisulfite sequencing
experiment on cancer samples. The plot shows methylation bias at the start of the reads.
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standard error
√

πj(1 − πj)Nj . This has led most
WGBS studies to employ a high coverage design since
even 30× coverage yields standard errors as large as
0.09. However, various authors have noted that methyla-
tion levels are strongly correlated across the genome
[24,25]. Furthermore, functionally relevant findings are
generally associated with genomic regions rather than
single CpGs, either CpG islands [26], CpG island shores
[27], genomic blocks [1], or generic 2 kb regions [3].
This implies that we can assume that πj varies smoothly
along the genome, without distorting signal or losing
functional information. We can therefore improve preci-
sion by the use of modern statistical techniques such as
local likelihood smoothing [28] (see Materials and meth-
ods for details; Figure 3a,b).

Using this method on data with 4× coverage, we
achieved precision comparable to deeper coverage with-
out smoothing. Specifically, we applied BSmooth to a
subset of the IMR90 cell line study with 5× coverage; we
used one of the six different library preparations applied
to two different DNA extractions [3]. We compared the
estimated methylation profile based on the 5× data to
results obtained using the full data; for each CpG we
averaged single-CpG methylation estimates based on the
full 30× data over a 1 kb interval using only loci with at
least 10× coverage. We found close agreement between
the two sets of results (Figure 3c) with a correlation of
0.90 and a median absolute difference of 0.056. Addition-
ally, when smoothing both high coverage data and low
coverage data there was also close agreement: correlation

Figure 3 The advantages of smoothing. (a) Points represent single-CpG methylation estimates plotted against their genomic location. Large
points are based on greater than 20× coverage. The orange circle denotes the location for which we are estimating the methylation profile. The
blue points are those receiving positive weight in the local likelihood estimation. The orange line is obtained from the fitted parabola. The black
line is the methylation profile resulting from repeating the procedure for each location. (b) The curve represents the kernel used in the
weighted regression and the points are the actual weights, which are also influenced by coverage. (c) Points are as in (a) for the 25× coverage
Lister data. The pink line is obtained by applying BSmooth to a the full data. The black line is the estimate from BSmooth based on a 5× subset
of the Lister data. (d) The points are as in (a) but for the Hansen-capture data with average 35× coverage, and average across three replicates.
The black line is the BSmooth estimate obtained from the 4× Hansen data, averaged across three replicates.
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of 0.97 and a median absolute difference of 0.024, using
all CpGs in the genome. These two results show that we
accurately estimate regional methylation level using low
coverage data, and that there is little difference between
the results of smoothing a high coverage dataset and the
results of smoothing a low coverage dataset.
We also compared low coverage colon cancer data to

high coverage capture data obtained with padlock
probes (Figure 3d). For the capture data we only consid-
ered CpGs with 30× coverage or greater and computed
an average methylation level across each capture region.
Using the smoothed methylation profiles, an average
smoothed methylation level was computed by averaging
the smoothed value for all CpGs in the capture region.
We found excellent agreement, with correlations
between 0.89 and 0.92 and median absolute differences
between 0.045 and 0.069. Additionally, there is a striking
qualitative agreement between the single-resolution CpG
estimates from the high-coverage capture data and
the results of smoothing the low-coverage WGBS data
(Figure 3d). Note that the two datasets being compared
here, unlike the IMR90 data described above, were gen-
erated using two very different protocols, performed in
two separate laboratories.

Differentially methylated regions
Previous publications have focused on precisely estimat-
ing methylation levels at single-base resolution. For
example, Fisher’s exact test has been used to identify
CpGs differentially methylated across two samples [3].
However, these studies are ultimately concerned with
DMRs or differences between groups of samples. For
example, Lister et al. [3] searched for genomic regions
containing many differentially methylated CpGs, result-
ing in DMRs that are at least 2 kb long. A problem with
this approach is that Fisher’s exact test accounts for
DNA sampling variability but not biological variability.
Biological variability is well-established [4] and necessi-
tates biological replicates from each group under con-
sideration [1]. The goal is then to find regions that
exhibit consistent differences even when taking biologi-
cal variation into account. The DMR detection algo-
rithm implemented in BSmooth is based on a statistic
that appropriately summarizes consistent differences.
Briefly, we first use the local-likelihood approach to esti-
mate a sample-specific methylation profile, then com-
pute estimates of the mean differences and standard
errors for each CpG to form a statistic similar to that
used in a t-test (see Materials and methods for details).
We applied BSmooth to identify DMRs between nor-

mal colon and colon cancer in the Hansen dataset. To
address how well our method compares to having high-
coverage data, we used the Hansen-capture bisulfite
sequencing data as gold-standard and created receiver

operating characteristic (ROC) curves. Specifically, we
computed the average methylation difference between
the cancer and normal samples inside each capture
region, using only CpGs with 30× or more coverage,
and considered this to be gold-standard measurements.
We defined positives and negatives in two ways: one
based on mean differences and the other taking biologi-
cal variability into account. Specifically, for the first, we
defined positives as capture regions with an average dif-
ference >0.25 using the gold-standard measurements
(364 regions) and negatives as those with average differ-
ences <0.03 (2,012 regions; see Materials and Methods
for details). This definition does not take biological
variability into account. We computed false and true
positive rates for different cutoff choices for the t-statis-
tic by counting how many reported regions overlapped,
by more than 50%, with gold standard positive and
negative regions, respectively. We also required that the
reported regions show methylation differences going in
the same direction as the gold standard differences.
Here, our method achieved 87% sensitivity at 95% speci-
ficity (Figure 4a). In the second definition of positives
and negatives we accounted for biological variability by
using a Welch t-test on the gold-standard measure-
ments. Specifically, positives were defined as regions
with an unadjusted P-value from the Welch t-test of
<1% (114 regions) and negatives as those with an unad-
justed P-value >25% (925 regions). Using this definition,
our method achieved 70% sensitivity at 95% specificity
(Figure 4b). We compared the results of BSmooth to the
results of a method using Fisher’s exact test [3] (see
Materials and Methods for details). Because the Fisher
based method does not account for biological variability,
we pooled the data from the three cancer samples and
the three normal samples. We compared the two meth-
ods using ROC curves and demonstrated that BSmooth
outperforms the existing method (Figure 4a,b).
We also applied BSmooth to the Tung dataset. Tung

et al. [16] studied the relationship between gene expres-
sion and social rank in a cohort of 49 monkeys, using
microarrays. Out of the 6,097 genes studied, they identi-
fied 454 to be significantly related to social rank at a false
discovery rate (FDR) of 5%. These 6,097 genes map to a
total of 9,386 transcription start sites (TSSs). To assess the
extent to which methylation might be involved in regulat-
ing the observed expression changes, they also performed
WGBS on three high ranking and three low ranking indi-
viduals at medium CpG coverage (11× to 14×). Again, we
compare the results of BSmooth to the results of a method
using Fisher’s exact test. Figure 4c depicts the log-odds
ratio for finding a DMR near (within 5kb) the TSS of a dif-
ferentially expressed gene (FDR ≤5%) compared to finding
a DMR near the TSS of a gene not differentially expressed
(FDR ≥25%). This figure shows that BSmooth consistently
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finds more DMRs near TSSs of differentially expressed
genes compared to the method based on Fisher’s exact
test. We note that the odds ratio for Fisher’s exact test is
slightly below one, suggesting that this test is no better
than random guessing at finding DMRs near differentially
expressed genes. Due to the low percentage of differen-
tially expressed genes, Fisher’s exact test does not have
enough sensitivity to detect the associated DMRs.
The code used for the results presented above are

included as Additional files 2 and 3.

Conclusions
We present BSmooth, a data analysis pipeline that permits
precise and accurate estimates of methylation profiles with
low coverage WGBS data. The pipeline starts with sequen-
cing reads, aligns them in a bisulfite-aware fashion, com-
piles per-sample CpG level measurement tables, estimates
methylation profiles precisely and accurately, and reports a
table of DMRs taking biological variability into account.
We demonstrated that our method outperforms existing
methods based on Fisher’s exact test. Although our com-
parison was limited because only two datasets appropriate
for assessment were available, we expect our work to serve
as a model for further assessments based on new datasets
as they become available.
Finally, note that BSmooth assumes that the true

methylation profile is smooth. In genomic regions where
the true methylation profile is not smooth, BSmooth
will still provide smooth estimates. Thus, biological
events involving single CpGs might not be detected by
our procedure. However, our method is well-suited for
functional differences involving multiple CpGs working
in conjunction.

Materials and methods
Datasets
The Lister data are from a WGBS experiment on the
IMR90 fibroblast cell line. Six different library prepara-
tions were sequenced individually on an Illumina sequen-
cer using up to 87 bp single-end reads and subsequently
pooled to yield 25× coverage of CpGs. The Hansen data
are from a WGBS experiment on three paired tumor-
normal colon samples, sequenced on ABI SOLiD using
50 bp single-end reads with a CpG coverage of 4×. These
data were prepared and sequenced in the laboratory of
AP Feinberg. The Hansen-capture data comprise the
same six samples as the Hansen data sequenced on an
Illumina sequencer with up to 80 bp single reads, using a
bisulfite padlock probe (BSPP) capture protocol, yielding
a CpG coverage of 11× to 57× of 40,000 capture regions
(one sample had substantially lower coverage than the
rest, and the capture regions varied in efficiency). These
data were prepared and sequenced in the laboratory of K
Zhang. The Tung data are from a WGBS experiment on
peripheral blood mononuclear cells from six rhesus
macaque individuals, three of high social rank and three
of low social rank. The data were sequenced using an
Illumina sequencer with 75 bp single end reads, yielding
a CpG coverage of 11× to 14×.
The Lister data were created in the following way: we

obtained the raw reads from the IMR90 cell line and
aligned against the hg19 genome using Merman with
iterative trimming. Prior to alignment, two bases were
trimmed from the start of the read and one base from
the end of the read. Based on our M-bias plots, we
furthermore filtered the last ten bases of every read
(based on its trimmed length), when we summarized the

Figure 4 Evaluation of the differentialy methylated regions finder. (a) Specificity plotted against sensitivity for the BSmooth DMR finder
(black) and a method based on Fisher’s exact test (orange) applied to the Hansen data. The gold-standard definition is based on mean
differences. Details are explained in the text. (b) As (a), but using a gold-standard definition accounting for biological variation. (c) Comparison
based on the association between gene expression and methylation changes in the Tung data. For DMR lists of varying sizes (x-axis), the log2-
odds ratios of finding a DMR within 5 kb of the transcription start site of a differentially expressed gene (FDR ≤5%) compared to genes not
differentially expression (FDR ≥25%) are shown. FP, false positive; TP, true positive.
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methylation evidence. Based on the quality control plots,
the flowcells marked ECKER_1062 were discarded.
These data form the basis for all analysis of the Lister
data in the manuscript as well as Figures S1 to S4 in
Additional file 1.
In order to produce Figure S5 in Additional file 1 we

obtained aligned and summarized data from the Salk Insti-
tute website [29], specifically the two files mc_imr90_r1.
tar.gz and mc_imr90_r2.tar.gz. For these two files, methy-
lation calls in non-CpG context (of which there were very
few) were discarded and their stranded methylation calls
were summed into calls without strand. These files were
mapped against the hg18 reference genome. We converted
the coordinates from hg18 to hg19 using the liftOver tool
from University of California, Santa Cruz.
The Hansen WGBS data were aligned against hg19

without iterative trimming due to the short read length.
Prior to alignment, we trimmed the primer base and one
color from the start of the reads (this is a standard proce-
dure before aligning colorspace reads and was not related
to quality control assessment). Based on our M-bias plots
we filtered 3 bp on either side of the read as part of sum-
marizing the methylation evidence.
The Hansen-capture data were aligned using iterative

trimming, without trimming any initial bases before align-
ment. Based on our M-bias plots we filtered the first 15
bases of each read as part of summarizing the methylation
evidence.
The Tung data were aligned against rheMac 2.0 using

Bismark [10]. The reads were truncated to 70 bp prior
to alignment and the first three bases of each read were
filtered as part of summarizing the methylation evi-
dence. Additional detail is in [16]. The WGBS data were
smoothed using the same parameters as for human data.
We obtained the preprocessed gene expression data pre-

sented in the Tung et al. manuscript from the journal
website. TSSs were obtained from the authors (personal
communication).

Smoothing
We denote the number of reads associated with the jth
CpG being methylated and unmethylated with Mj and Uj,
respectively. The CpG-level summary is simply the pro-
portion Mj/Nj, with Nj=Mj+Uj the coverage for the jth
CpG. We assume each Mj follows a binomial distribution
with success probability πj. The success probability repre-
sents the true proportion of cells for which the jth CpG is
methylated in the sample being assayed. The proportion
Mj/Nj is an unbiased estimate of πj with standard error√

πj(1 − πj)/Nj , and we denote π̂j ≡ Mj/Nj the single-

CpG methylation estimate of πj. We furthermore assume
that πj is defined by a smoothly varying function f of
the genomic location, that is, for location lj, πj=f(lj).

We estimate f with a local-likelihood smoother [28]. We
start by choosing a genomic window size h(lj) for each lj.
The window is made large enough so that 70 CpGs are
included but at least 2 kb wide. Within each genomic
window we assume log[f(lj)/{1-f(lj)}] is approximated by a
second degree polynomial. We assume that data follow a
binomial distribution and the parameters defining the
polynomial are estimated by fitting a weighted generalized
linear model to the data inside the genomic window. For
data points inside this window, indexed by lk, weights are
inversely proportional to the standard errors of the CpG-

level measurements,
√

πk(1 − πk)/Nk , and decrease with

the distance between the loci |lk-lj| according to a tricube
kernel (Figure 3a,b). Note that the smoothness of our esti-

mated profile f̂ (lj) depends on genomic CpG density. We

recommend users adapt the algorithm’s parameters when
applying it to organisms other than human.

Identification of differentially methylated regions
To find regions exhibiting consistent differences
between groups of samples, taking biological variation
into account, we compute a signal-to-noise statistic
similar to the t-test. Specifically, we denote individuals
with i and use Xi do denote group; for example, Xi=0 if
the ith sample is a control and Xi=1 if a case. The num-
ber of controls is denoted n1 and the number of cases
n2. We assume that the samples are biological replicates
within a group. Similar to the previous section, we
denote the number of reads for the ith sample asso-
ciated with the jth CpG being methylated and unmethy-
lated with Mi,j and Ui,j, respectively. We assume that Yi,j

follows a binomial distribution with Mi,j+Ui,j trials and
success probability πi,j, which we assume is a sample-spe-
cific smooth function of genomic location lj: πi,j=fi(lj).
Furthermore, we assume that fi has the form fi(lj)=a(lj)+
b(lj)Xi+εi,j. Here a(lj) represents the baseline methylation
profile and b(lj) the true difference between the two
groups. The latter is the function of interest, with non-
zero values associated with DMRs. The εi,j s represent bio-
logical variability with the location-dependent variance var
(εi,j)≡s

2(j) assumed to be a smooth function. Note that
increasing coverage does not reduce the variability intro-
duced by ε; for this we need to increase the number of
biological replicates.
We use the smoothed methylation profiles described in

the previous section as estimates for the fi, denoted f̂i(lj) .

We estimate a and b as empirical averages and difference

of averages: α̂(lj) =
∑
i

f̂i(lj) and β̂(lj) =
∑
i:Xi=1

f̂i(lj) −
∑
i:Xi=0

f̂i(lj).

To estimate the smooth location-dependent standard
deviation, we first compute the empirical standard devia-
tion across the two groups. To improve precision, we used
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an approach similar to [30]: we floored these standard
deviations at their 75th percentile. To further improve pre-
cision, we smoothed the resulting floored values using a
running mean with a window size of 101. We denote this
final estimate of local variation with σ̂ (lj). We then formed

signal-to-noise statistics: t(lj) = β̂(lj)/[̂σ(lj)
√
1/n1 + 1/n2] .

To find DMRs, that is, regions for which b(lj)≠0, we defined
groups of consecutive CpGs for which all t(lj)>c or t(lj)<-c
with c>0 a cutoff selected based on the marginal empirical
distribution of t. We adapted our algorithm so that CpGs
further than 300 bp apart were not permitted to be in the
same DMR.
We recommend including in the procedure only CpGs

that have some coverage in most or all samples.
Furthermore, we recommend filtering the set of DMRs
by requiring each DMR to contain at least three CpGs,
have an average b of 0.1 or greater, and have at least
one CpG every 300 bp.

Practical considerations
Sequencing effort
BSmooth can estimate methylation precisely with as little
as 4× average coverage, but two additional points should
be considered regarding sequencing depth. First, greater
depth generally allows a greater fraction of CpGs to be
covered with read-level measurements. Second, in addition
to depth, a key concern is the length of the reads and
whether the reads are paired-end reads. Longer reads and
paired-end reads are more likely to align with high map-
ping quality, that is, a low probability of having been
aligned to the wrong location. Alignments with higher
mapping quality lead to higher-confidence read-level
measurements.
At the time of writing, a single lane of the Illumina

HiSeq 2000 instrument produces about 35 to 45 billion
nucleotides of bisulfite sequencing data. After discarding
low-quality alignment and bases, this results in around 19
million CpGs with a coverage of 2 or greater. If two lanes
are used per sample, the increased depth results in around
23 million CpGs with a coverage of 2 or greater.
Non-CpG methylation
In humans, extensive non-CpG methylation has only been
observed in embryonic stem cells [3]. We have not used
BSmooth to study non-CpG methylation in humans, but
we hypothesize it would be well suited for this purpose.
Note that the alignment part of BSmooth is not affected
by non-CpG methylation provided the sequencing reads
are generated in nucleotide space and not colorspace.
Note that there are many more Cs in the genome than
CpGs; thus, analyzing these data greatly increased the
memory requirements of our software. Although the cur-
rent implementation does not allow this, it is a software
issue that could potentially be addressed.

Detection limit
BSmooth assumes that the true methylation profile is
smooth. In genomic regions where the true methylation
profile is not smooth, BSmooth will still provide smooth
estimates. Thus, biological events involving single CpGs
might not be detected by our procedure. However, our
procedure should still be useful if a single CpG is asso-
ciated with a biological event, provided that changes in
methylation of this single CpG also lead to changes in
methylation of nearby CpGs. Detecting methylation
changes in a single CpG without changes in nearby
CpGs would need to use single-CpG estimates based on
higher coverage than 4×. Such single-CpG estimates
could potentially be more affected by technical biases.
Note that Fisher’s exact test does not account for biolo-
gical variation.

Modification of the algorithm for analysis of cancer
datasets
Note that between-sample variability is larger in cancer
samples [1]. If one is interested in detecting DMRs in
which the cancer varies but the normal samples are con-
sistent, then we recommend using only the normal sam-
ples to estimate s(j). Cancer/normal comparisons also
exhibit large blocks of hypo-methylation in cancer [1].
These blocks are much longer genomic regions than pre-
viously reported DMRs and are observed in CpG sparse
genomic regions. To account for these features we
adapted the DMR algorithm as described in detail in
Hansen et al. [1] and below.
To identify large hypomethylated blocks in cancer, we

changed the DMR detection algorithm in two ways: first,
we changed the smoothing algorithm described above to
increase the window size to include 500 CpGs of at least
40 kb wide. We also relaxed the cutoff on the signal-to-
noise statistics, since many more CpGs are involved in
blocks. This method - essentially the same method as used
to find small scale DMRs, but using smoothing across a
wider window - identifies large scale changes that are con-
sistently different between cancer and normals. In case
these large scale changes have different boundaries in dif-
ferent samples, this method will detect segments that are
consistently different. However, in Hansen et al. [1] we
show that the observed boundaries appear to be consistent
across samples.
Once these large scale changes were identified we also

modified the algorithm to identify small-scale DMRs
(<10 kb) within the block regions, as described below.
For all of this, we use an estimate of s(j) that is only
based on the three normal samples, as described above.
Given the large hypo-methylated blocks in cancer, it is
necessary to update the model described in the section
on ‘Identification of differentially methylated regions’
as described above. The previous model assumes that
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fi(lj)=a(lj)+b(lj)Xi+εi,j. We now additionally assume that
b(lj) has the form b(lj)=b1(lj)+b2(lj), and thus is com-
posed of two components, b1(lj) and b2(lj), representing
small DMRs and blocks, respectively. Note that b2(lj) is
much more slowly varying than b1(lj). The signal-to-
noise statistics t(lj), described in the section on ‘Identifi-
cation of differentially methylated regions’, should be
large (in absolute value) when either b1 or b2 are differ-
ent from 0. Because b(lj) now consists of two compo-
nents, the signal-to-noise statistic t(lj) also decomposes
into two components t(lj)=t1(lj)+t2(lj), with the first
component associated with b1(lj) and the second, slowly
varying, component associated with b2(lj). In order to
find small DMRs, we need to form an estimate of the
second component, denoted t̃2(lj) , and form corrected

signal-to-noise statistics t(lj) − t̃2(lj) . We estimate t2(lj)
by identifying the slow-varying component of t(lj) in the
following way: first we interpolate t(lj) to define t(l) for
a general genomic location l. This function is evaluated
at a 2 kb grid, and smoothed using a robust local likeli-
hood model with a window size of 50 kb. This slowly
varying function is then evaluated at CpG locations lj to
form the estimate t̃2(lj) . We the identify small DMRs

by using corrected signal-to-noise statistics t(lj) − t̃2(lj)
instead of t(lj), in the section on ‘Identification of differ-
entially methylated regions’.

ROC curves and Fisher’s exact test
We defined gold standard regions as follows. We con-
sider high-coverage CpGs to be CpGs with a coverage
≥30×, and we use the pre-defined capture regions. For
the first definition of positive and negative regions, we
include regions for which at least two out of three can-
cer samples and at least two out of three normal sam-
ples have at least five high-coverage CpGs. This was
done because one of the normal samples had lower cov-
erage than the other two. For each such region we com-
pute the average methylation in the cancer samples and
the normal samples by first averaging methylation across
high-coverage CpGs within a sample and then average
across samples. Positives were defined as regions with
difference between average cancer methylation and aver-
age normal methylation >0.25. Negatives were defined
as regions for which the difference is <0.03. For the sec-
ond definition, we compute the sample-specific average
methylation level across the capture region using only
high-coverage CpGs, and we only include regions with
at least four high-coverage CpGs in each of the six sam-
ples. This was done because the Welch t-test requires at
least three samples in each group, but it also leads to
the exclusion of many regions included in the first defi-
nition, because of the single sample with lower coverage.

For each region with data from all six samples, a Welch
t-test was done on six numbers representing the average
methylation across the region in each sample. Positives
were such regions with an unadjusted P-value <1%.
Negatives were such regions with an unadjusted P-value
>25%.
We implemented a DMR finder based on Fisher’s

exact test, closely following the description in the sup-
plementary material of Lister et al. [3]. We were able to
reproduce 99% of the DMRs reported in that study.
This DMR finder produces DMRs that are at least 2 kb
long, containing at least 10 CpGs that are differentially
methylated according to Fisher’s exact test. In addition,
every 1 kb subregion contains at least four such CpGs.

Software
BSmooth is open source software [31].

Additional material

Additional file 1: Additional figures. A PDF file containing Figures S1
to S5.

Additional file 2: Alignment code.

Additional file 3: Data analysis code.
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DMR: differentially methylated region; FDR: false discovery rate; ROC: receiver
operating characteristic; TSS: transcription start site; WGBS: whole-genome
bisulfite sequencing.
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