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Abstract

higher positive predictive value.

Reconstructed models of metabolic networks are widely used for studying metabolism in various organisms. Many
different reconstructions of the same organism often exist concurrently, forcing researchers to choose one of them
at the exclusion of the others. We describe MetaMerge, an algorithm for semi-automatically reconciling a pair of
existing metabolic network reconstructions into a single metabolic network model. We use MetaMerge to combine
two published metabolic networks for Mycobacterium tuberculosis into a single network, which allows many
reactions that could not be active in the individual models to become active, and predicts essential genes with a

Background
Due to the recent explosion in the number of sequenced
genomes of unicellular organisms, it has become possi-
ble to systematically analyze their biochemical function-
ality. Analysis of reconstructed metabolic networks -
most commonly through constraint-based approaches,
such as flux-balance analysis [1] - has become a tool of
choice for systematically and computationally studying
the biochemical processes relevant to these organisms’
metabolism [2,3]. Despite certain limitations of the ana-
lysis methods (for example, capturing only quasi-steady-
state properties) and the reconstructed models (for
example, lacking information on reaction directionality
under physiological conditions), this approach has eluci-
dated important features of the metabolism of diverse
organisms [4], identified essential genes [5], and pro-
posed potential metabolic drug target candidates [6].
Metabolic network models are typically constructed
based on a genome’s annotated sequence and existing
biochemical knowledge [7]. Genome-scale metabolic
network reconstruction is a labor-intensive process that
relies on extensive searches in the scientific literature
and in databases, such as the Kyoto Encyclopedia of
Genes and Genomes (KEGQG) [8], to determine the set
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of reactions available to a given organism. The recon-
struction process consists of three stages: first, the gen-
ome annotation is used to identify candidate metabolic
reactions; second, reactions are localized in the cell,
assigned directionality whenever possible, and associated
with specific enzymes; and finally, exchange, transport
and growth reactions are added to the model. This pro-
cess has been successfully applied to many organisms,
including bacterial pathogens such as Bacillus subtilis,
Escherichia coli, Haemophilus influenzae, Mycobacter-
ium tuberculosis and Staphylococcus aureus. When
experimental data are available, the reconstructed meta-
bolic model is often further refined, as was done for Aci-
netobacter baylyi [9] and for Saccharomyces cerevisiae
[10].

The complexity of the reconstruction process and the
large number of literature sources on metabolism have
often led to the generation of multiple metabolic models
for the same organism. Indeed, the 59 metabolic net-
works currently available [11] only represent 39 distinct
organisms. Thus, researchers typically must consider
each of the available reconstructions individually.

To date, very few works have addressed the problem
of reconciling different reconstructions for the same
organism. Recent studies have attempted to align meta-
bolic networks of two different organisms [12]. How-
ever, such alignment approaches can only identify a
common part of the two networks considered, and the
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goal of aligning two networks is usually to find common
pathways or understand the evolutionary history of
metabolism. On the other hand, the goal of combining
(reconciling) a pair of networks is to preserve the com-
plete functionality of each of the original networks while
combining the information contained in them. We
believe that the problem of network reconciliation is of
independent interest because its solution enables
researchers to access an integrated metabolic model
without losing the functionality of either of the available
models for a given organism. Importantly, comparing
between two different reconstructions is challenging
since the reviewed bodies of literature may not be the
same, the naming conventions often differ between dif-
ferent models, and the extent of annotation typically
varies from one model to another.

These discrepancies are illustrated in a comparison of
the two main existing metabolic networks published for
M. tuberculosis by Beste et al. [13] and by Jamshidi and
Palsson [14]. (An earlier model by Raman et al. [15]
covers only the mycolic acid pathway, which is included
in one of the genome-scale models [13], and hence will
not be considered here.) First, although both models
were prepared based on extensive literature curation,
they do not cover the same set of publications related to
the metabolism of M. tuberculosis: only 21 articles are
shared between the 100 articles referenced by Beste et
al. [13] and the 141 referenced by Jamshidi and Palsson
[14]. Second, the models are annotated using different
convention systems, rendering comparison difficult, as
metabolites are named according to different nomencla-
tures, the reactions are classified into different pathways,
and the combinations of genes necessary for each reac-
tion are formatted differently.

Here, we present MetaMerge, an algorithm for recon-
ciling two or more metabolic networks. MetaMerge
takes as input two network models and produces a uni-
fied network that conserves the functionality of both of
the original networks, while providing additional func-
tionality whenever the two networks complement one
another. MetaMerge can act without any supervision,
although some minimal supervision results in a more
reliable model. We applied MetaMerge to the two exist-
ing networks for M. tuberculosis, a pathogen whose
metabolism is poorly understood, especially during
infection [13,14]. Although each network individually
covers a large fraction of the available metabolic reac-
tions, we find here that the two networks can be com-
bined in a synergistic fashion. In particular, the
combined model has over 60% fewer ‘blocked’ reactions
(that is, reactions that cannot have any flux through
them at steady state) than the two individual models,
and predicts essential genes with a higher positive pre-
dictive value than the individual models. We further use
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the model to nominate a shortlist of metabolic genes
whose perturbation may mimic the metabolic effect of
several known anti-tubercular drugs.

Results

The MetaMerge algorithm for reconciling metabolic
models

We developed MetaMerge (Figure 1), a semi-automatic
algorithm for merging two metabolic networks. Meta-
Merge was originally intended to assist the routine parts
of a manual network reconciliation process; however,
due to the extreme complexity of the manual reconcilia-
tion process (which took the authors several months to
complete while producing a substantially less satisfying
result in terms of the criteria described below), Meta-
Merge was later expanded to cover all the phases of the
reconciliation process, requiring minimal user input.

MetaMerge consists of six stages: stage 1, model par-
sing and pre-processing; stage 2, initial matching of
reactions and metabolites between the models; stage 3,
(optional) user confirmation of the matching in step 2;
stage 4, iterative extension, matching additional reac-
tions and metabolites; stage 5, checking the metabolite
matching to ensure transitivity and non-transformability
(two important properties described in the Materials
and methods); and stage 6, merging and providing the
resulting network in the desired format. We concisely
describe each stage below and provide full details in the
Materials and methods.

MetaMerge begins by parsing and pre-processing each
model, augmenting each metabolite and reaction with
several features (Figure 1, stage 1). These include the
full names and molecular formulas for the metabolites
and enzyme names and pathway names for the reac-
tions. More richly annotated models may have addi-
tional features, such as standardized identifiers for the
metabolites and enzymes. In less richly annotated mod-
els, MetaMerge can automatically extract these addi-
tional features by querying online databases, such as
KEGG [8]. Our aim is to have standardized identifiers
for as many metabolites and reactions as possible to
facilitate comparison; for example, sodium bicarbonate,
bicarbonate of soda, baking soda and sodium hydrogen
carbonate all have the same Chemical Abstracts Service
(CAS) number, 144-55-8 [16].

During the merging process (Figure 1, stages 2 to 5),
MetaMerge matches entities (metabolites or reactions)
between the two models based on the number of fea-
tures they have in common; the more features they
share, the more likely they are to be chosen as a match.
Distinct types of features (for example, the CAS number
and the molecular formula) are weighted equally, and
hence have the same impact on the matching; however,
user-defined weights reflecting the confidence for each
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Figure 1 Flow chart for the MetaMerge algorithm. Shown is a flow chart of the six stages of the MetaMerge algorithm. Stage 1: the two
models to be merged are parsed and the features for metabolites and reactions are prepared. Stage 2: an initial matching of reactions and
metabolites is created. Stage 3: the user is asked to confirm the newly matched reactions and metabolites (optional step). Stage 4: the newly
matched metabolites are used to extend the current matching of reactions and metabolites. Stages 3 and 4 are repeated until convergence.
Stage 5: the matching of metabolites is checked to ensure transitivity and non-transformability. Stage 6: the merger is performed and the
resulting network is output in the desired format. Circles indicate metabolites (red, model 1; white, model 2; pink, combined); squares indicate
reactions (turquoise, model 1; brown, model 2; dark green, combined). The mini-networks were created using the Cytoscape software [34],




Chindelevitch et al. Genome Biology 2012, 13:r6
http://genomebiology.com/2012/13/1/r6

type of matching feature can be accommodated.
Matches are not necessarily one-to-one. In some cases,
one metabolite in one model is subcategorized into sev-
eral metabolites in another model, resulting in one-to-
many matches. For example, in the two M. tuberculosis
models trehalose dimycolate is denoted as TREHALO-
SEDIMYCOLATE in one model [13], but is subdivided
into tdm1 through tdm4 in the other [14], depending
on the type of mycolates that get attached to the
trehalose.

Since not all matches are one-to-one, MetaMerge
introduces a matching matrix, to which it applies graph-
theoretic algorithms. The matching matrix is a binary
matrix with a row for each entity from one model and a
column for each entity from the other model, where an
entity refers to either a metabolite or a reaction. The
matrix contains a 1 in those entries that correspond to a
match, and a 0 elsewhere. The matrix format ensures
that the merging works symmetrically for the two mod-
els, and that the result would not change if the two
models were to be considered in the opposite order.

The matching matrices (one for the metabolites and
one for the reactions) are initialized in stage 2, based on
the number of features that the entities have in com-
mon. The matrices are possibly cleaned up in stage 3,
when the user can choose to either accept or reject any
given match. Finally, they are expanded in stage 4, based
on the reasoning that reactions that have almost all their
metabolites in common are likely to match one another,
and that the remaining metabolites in those reactions
are likely to match as well. Stages 3 and 4 are then iter-
ated until no further expansion can be proposed, or
until every entity in one of the models has been
matched (the latter case being unlikely due to the
incomplete overlap between any pair of models).

During post-processing (Figure 1, stage 5), MetaMerge
checks two conditions. The first condition ensures that
the metabolites of the two models can be divided into
non-overlapping classes, with no matches occurring
between classes and all possible matches occurring
inside a class. Each class corresponds to a single meta-
bolite in the combined model, and with rare exceptions
(such as the trehalose dimycolate example above) con-
sists of a single metabolite from each original model.
The second condition ensures that no two metabolites
in the same class appear on different sides of the same
reaction. If the metabolites in the models are divided
into cellular compartments, MetaMerge checks a third
condition that ensures that metabolites in a certain
compartment in one of the models are matched only to
metabolites in the corresponding compartment in the
other model. Any violations of these conditions, though
rare, are identified automatically, but must be repaired
manually.
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Preparation of the combined model
In the final stage (Figure 1, stage 6), MetaMerge prepares
the combined model from the matching matrix for meta-
bolites. MetaMerge’s goal is to ensure that the combined
model preserves the full functionality of each individual
model, while allowing for new, synergistic functionality
not present in the individual models. Because constraint-
based formalisms [1], such as flux balance analysis, are
the most common way of analyzing reconstructed meta-
bolic models, MetaMerge uses an approach that ensures
that mass-balance constraints on each metabolite in the
combined model are no more stringent than they were in
the initial models, and possibly less stringent.
Specifically, a single new metabolite in the combined
model is created by MetaMerge to represent each
(matched) class of metabolites from the individual mod-
els, according to the matching matrix. Each reaction is
then written using the new metabolites, and identical
reactions are joined into a single reaction, treating the
enzymes or enzyme combinations necessary to catalyze
them as isozymes. This approach for combining models
ensures that mass-balance constraints on each metabo-
lite in the combined model are no more stringent than
the corresponding constraints in the original model,
because identifying two metabolites is equivalent to add-
ing the corresponding constraints, and any flux vector
satisfying both constraints satisfies their sum.

Generating a combined model for M. tuberculosis

We applied MetaMerge to the two M. tuberculosis mod-
els [13,14] and generated one combined model (Figure 2,
Table 1). We considered three criteria to evaluate the
quality of the combined model: (1) scope, reflected by the
number of reactions, metabolites and enzymes captured
in the model; (2) functionality, reflected by the number
of reactions that can be reached by flux in any (at least
one) steady state condition; and (3) relevance, reflected
by the correspondence between the model’s predictions
of gene essentiality and available experimental data.

The combined model has a substantially broader
scope than the two original models. It contains 1,400
reactions (349 from both models, 545 from model 1
only, 506 from model 2 only), with 1,017 metabolites
(488 from both models, 276 from model 1 only, 253
from model 2 only) and 917 genes (487 from both mod-
els, 256 from model 1 only, 174 from model 2 only).
Overall, 70% of the genes and metabolites are matched
between the two models, but only 45% of the reactions
are matched. This is due to the fact that we only consid-
ered two reactions to be identical if they agree comple-
tely in their metabolites according to the matching
matrix (except for the currency metabolites H and
H,0), as well as in their stoichiometric coefficients.
However, another reason for the relatively low number



Chindelevitch et al. Genome Biology 2012, 13:r6
http://genomebiology.com/2012/13/1/r6

Page 5 of 13

(b) Pentose pathway GB

=

'”\JQ:.I_.“SIJ% o Weal o g/
N =l

Glyoxylate pathway GB

Pentose pathway JP

L P ]

N

Pentose pathway MM

'L L X asne

>y 1
o« U\
Glyoxylate pathway MM
Network ~ Combined i v
G U
Metabolites ® O ®
Reactions | | ]
Enzymes (Rv") o @

Figure 2 The combined metabolic network for M. tuberculosis. (a) The combined model. Shown is the combined model for M. tuberculosis
generated by MetaMerge. The network was laid out with Cytoscape [34] and 12 isolated reactions were removed from the final figure. The color
scheme is identical to that of Figure 1, with the Beste et al. model [13] used as model 1 and the Jamshidi and Palsson model [14] used as model 2. (b)
Example pathways in the original and combined models. Shown are the pentose phosphate and glyoxylate metabolism pathways in the original
models (model 1, labeled GB [13], and model 2, labeled JP [14]) and the combined model. The enzymes catalyzing each reaction are included as a top
layer, and their names are shortened by removing Rv. Circles indicate metabolites (red, model 1; white, model 2; pink, combined); squares indicate
reactions (turquoise, model 1; brown, model 2; dark green, combined); octagons indicate enzymes (light green, model 1; yellow, model 2; magenta,
combined). The subnetworks were laid out with Cytoscape [34] and several currency metabolites were removed for visual clarity.

of reactions that were matched between the two models
appears to be the differential coverage of a number of
important pathways by the two reconstructions.

There are 29 pairs of very similar reactions in the com-
bined model (for a total of 58 reactions, or 4% of the
combined set of reactions), where two reactions are con-
sidered to be very similar if they come from different ori-
ginal models and differ by only one metabolite

Table 1 Statistics for the three models

Number of Model 1 Model 2 Model 3
[13] [14] (combined)
Genes 743 661 917
Reactions 873 973 1,400
Cytosolic reactions 741 837 1,207
Exchange reactions 132 100 193
Reversible reactions 187 254 180
Irreversible 686 683 1,020
reactions
Metabolites 753 825 1,017
Internal metabolites 652 740 880
External 101 85 137
metabolites

(Additional file 1). In these cases, we kept both reactions
in order not to prefer one model over the other. Given
the different literature sources used in preparing the two
reconstructions, it would require special expertise beyond
the scope of our approach to decide which of the two
reactions should be used as the correct one. Furthermore,
keeping both reactions is necessary to ensure that the
functionality of both initial models is preserved in the
combined model, and indeed, the number of blocked
reactions increased while the predictive power decreased
when an arbitrary choice was made from each pair (data
not shown). Finally, we intend the combined model to
serve as complete a knowledge repository as possible,
even at the cost of containing the same reaction in con-
flicting ways. MetaMerge can flag such conflicts, which
can be subsequently resolved by a consensus of experts,
as was recently done for yeast [17].

The combined model reduces the number of non-
functional reactions

One of the main challenges in reconstructed networks is
the presence of ‘blocked’ reactions that can only have
zero flux and are thus ‘non-functional” at steady-state. A
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reaction can be blocked due to the topology of the net-
work, its stoichiometry, or thermodynamic (irreversibil-
ity) constraints (Materials and methods). In general, a
reaction is blocked if the linear program that constrains
it to carry one unit of flux is infeasible.

We reasoned that combining the two models might
provide the particularly important benefit of ‘unblocking’
some of the reactions that were blocked in the indivi-
dual models, since previous constraints may be relaxed
by additional reactions in the combined model and can-
not become more stringent.

Indeed, in the combined model, the total number of
blocked reactions decreases by 55%, from 246 to 109
(Table 2). In particular, 16 of 47 blocked reactions from
model 1 and 118 of 199 from model 2 become
unblocked in the combined model. An example reaction
from model 1 that gets unblocked in the combined
model is the transformation of p-hydroxyphenylpyruvate
into homogentisate, a reaction specific to M. tuberculo-
sis [8]. An example reaction from model 2 that gets
unblocked is the transformation of nicotinamide into
nicotinate, catalyzed by the gene product of pncA
(Rv2043c), which is required for activation of the antitu-
bercular drug pyrazinamide [18]. As discussed above, no
new blocked reactions should appear. On the other
hand, the fact that many blocked reactions become
unblocked indicates the added synergy and points to the
value of model integration.

The combined model has a modestly increased ability to
positively predict gene essentiality

We next examined the ability of our combined model to
assess gene essentiality by comparing its predictions to
those determined experimentally using transposon site
hybridization (TraSH), a negative genetic selection
method [19]. This essential gene list is the most com-
monly referenced set of in vitro essential genes for M.
tuberculosis strain H37Rv. The TraSH data were
obtained by growing H37Rv on Middlebrook medium
7H10 supplemented with glycerol and OADC (oleic
acid, albumin, dextrose and catalase).

We approximated these conditions as closely as possi-
ble by simulating the in vitro growth of M. tuberculosis
on Middlebrook medium 7H10, supplemented with gly-
cerol [19]. To this end, we enabled all the reactions cor-
responding to the import of elements of the

Table 2 Blocked reactions in the three models

Reactions blocked due to Model 1 [13] Model 2 [14] Model 3
Topology 20 88 68
Stoichiometry 3 6 1
Thermodynamics 24 105 40
Any of the above 47 199 109
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Middlebrook medium, as previously done [13,14]:
ammonium, biotin, calcium, chloride, citrate, ferric iron,
L-glutamic acid, phosphate, potassium, sodium, and sul-
fate, with the addition of glycerol. Additionally, we
added the following nutrients for growth from model 1
[13]: carbon dioxide, molybdenum, nitrogen dioxide,
and oxygen. For model 2 [14], the added nutrients were
carbonic acid, copper, magnesium and oxygen. Notably,
despite the importance attributed to fatty acid metabo-
lism in M. tuberculosis, we did not include OADC (par-
ticularly the oleic acid component) in the computational
medium’s composition because oleic acid was not pre-
sent in the original models. This limitation is also pre-
sent in all previous studies [13,14].

We next predicted gene essentiality in the combined
model and its two constituent models. We eliminated
the enzymes one at a time from the model and tested
the impact on the model’s ability to exhibit flux through
the biomass reaction, as an indicator of growth (Materi-
als and methods). For the combined model and for
model 1, we used the in vitro biomass composition as
an indicator of growth. For model 2, we attempted to
use the reduced biomass composition. However, the
model was unable to produce any biomass on the med-
ium described above when analyzed with any of six dif-
ferent linear programming solvers [20], whether
cofactors were included or not. We therefore used only
the biomass composition for model 1 and the combined
model in all of our in silico experiments.

We compared gene essentiality from the TraSH
experiments for model 1 and the combined model (Fig-
ure 3). Because the gene essentiality is determined as
the absence of clones containing transposon insertion in
essential genes, as detected by hybridization signal on a
microarray, different thresholds (ratio of signal from a
transposon insertion to genomic DNA) can be set for
calling whether a gene is putatively essential or not.
Thus, we chose to compare our model to TraSH predic-
tion of essentiality using two different thresholds for
calling a gene ‘in vitro essential’ (Materials and meth-
ods). For each of the models, we considered a gene to
be essential only when setting the flux through the cor-
responding reaction to 0 results in no biomass produc-
tion. This allowed us to avoid imposing an arbitrary
cutoff on the growth rate, but gave results for model 1
that differ somewhat from those previously reported for
this model [13].

Fewer genes were predicted to be essential for the
combined model than for model 1 (89 and 203, respec-
tively), as expected given the expanded scope and func-
tionality of the combined model (Table 3). Furthermore,
the combined model has a slightly higher positive pre-
dictive value than model 1 at both tested thresholds for
in vitro essentiality (Materials and methods), with a
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Figure 3 Essentiality predictions in model | and in the combined model. Shown are receiver operating characteristic curves for the correctly
predicted fraction of gene essentiality (y-axis) based on model 1 and the combined model when the essentiality threshold for the TraSH
experiment [19] is allowed to vary between 0 and 0.2 in increments of 0.002 (x-axis).

positive predictive value of 71% (63 true positives/89)
versus 68% (139 true positives/203) at a threshold of
0.2. The negative predictive value, on the other hand, is
somewhat lower at both thresholds calculated (0.2 and
0.1), with a negative predictive value of 68% (436 true
negatives/637) versus 75% (285 true negatives/381) at a
threshold of 0.2. These results are consistent across dif-
ferent thresholds (Figure 3). The P-value for the null
hypothesis that the method randomly decides the essen-
tiality or non-essentiality of each reaction, given by the
Fisher exact test, was less than 107'° in all cases. The
preference between a higher positive predictive value

and a higher negative predictive value may depend on
the application.

Detecting enzymes whose perturbation mimics the effect
of known drugs

We finally attempted to use the combined model to
identify enzymes whose perturbation would mimic the
metabolic effect of inhibiting known targets of anti-
tubercular drugs. Given a known target enzyme, we
found additional enzymes whose inhibition could have
the same effect as a given drug by identifying all other
reactions in the network whose flux is directly

Table 3 Gene essentiality in models 1 and 3 at two threshold ratios (the highest percentage achieved for each

prediction metric appears in bold)

Model 1 [13]
Predictions in Threshold 0.1
True positive 106
False positive 97
True negative 325
False negative 56
Positive predictive value (%) 52
Negative predictive value (%) 85

Correct predictions (%) 74

Model 3
Threshold 0.2 Threshold 0.1 Threshold 0.2
139 49 63
64 40 26
285 508 436
96 129 201
68 55 71
75 80 68
73 77 69
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proportional to that of the reactions catalyzed by the
drug target enzyme (Materials and methods). Briefly, all
the reactions in a metabolic network can be divided into
reaction subsets (also called ‘enzyme subsets’ [21]), such
that all reactions in each subset always have pairwise
proportional fluxes at steady-state. In particular, if one
of them is blocked and has zero flux, all the other ones
are blocked as well. We reasoned that if inhibition of
the drug target has a desired effect, then inhibition of
another enzyme from the same subset may have a simi-
lar effect on cellular metabolism.

We focused on comparison to the targets for two
first-line antitubercular drugs, ethambutol (ETH) and
isoniazid (INH) [18]. Ethambutol inhibits arabinogalac-
tan synthesis, which is required for cell wall biosynth-
esis, predominantly through inhibition of EmbB
(possibly also through EmbA), and inhibits lipoarabino-
mannin synthesis through inhibition of EmbC [22,23].
Isoniazid also inhibits cell wall synthesis after activation
by the catalase KatG, resulting in an isoniazid-NAD
adduct that inhibits InhA, an enoyl-acyl carrier protein
reductase required for mycolic acid synthesis.

We first applied our approach to the proposed drug
targets of ethambutol, the enzymes Rv3793 (embC),
Rv3794 (embA) and Rv3795 (embB). We found three
reactions catalyzed by these enzymes in the combined
model. By examining the reaction subsets to which
these belong, we found 29 additional enzymes whose
inhibition is predicted to yield similar effects to those of
known ethambutol targets (Additional file 2). Interest-
ingly, two of these enzymes, Rv2051c (Ppml) and
Rv2611c, are also involved in the biosynthesis of lipoara-
binomannan [24], though only one of them, Rv2611c, is
predicted to be essential by TraSH. Thus, the use of the
combined model successfully identified enzymes that
function in the same metabolic pathway as EmbC.
While most of the enzymes that were identified are not
required for synthesis of arabinogalactan or
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lipoarabinomannan, enzymes that have some role in
lipid and cell wall biosynthesis comprise the largest
class. Finally, genes in many important metabolic path-
ways, including siderophore biosynthesis and cofactor
biosynthesis, were also identified in this subset. The fact
that many of the identified enzymes are not predicted to
be essential by TraSH may be indicative of the limited
predictive power of the combined model. It also high-
lights a general limitation of constraint-based metabolic
network models, which is that reactions in an enzyme
subset with an essential reaction are also predicted to be
essential.

Similarly, when we applied this approach to the iso-
niazid target enzyme Rv1484 (inhA), we found 14 reac-
tions disabled by isoniazid, and two enzymes, Rv0503c
(CmaA2) and Rv0643c (MmaA3), that are predicted to
have a similar metabolic effect (Figure 4, Table 4).
CmaA2 and MmaA3 are components of the mycolic
acid biosynthetic pathway of which InhA is a critical
component. While detecting components of mycolic
acid biosynthesis is interesting, CmaAl and MmaA3 are
not essential for the production of mycolic acids, but
rather for specific modifications of the alkyl side chain
of the mycolic acid, and these enzymes are not essential
for M. tuberculosis growth.

Conclusions

Here we presented MetaMerge, a method for semi-auto-
matically combining two metabolic networks into a sin-
gle network. The combined network preserves the full
metabolic capabilities of the individual networks, while
providing the possibility of synergistic interactions that
lead to novel capabilities. With expert input, the result-
ing model can be further refined, for instance, by resol-
ving the discrepancies between pairs of similar reactions
(one from each of the original networks). In that case,
MetaMerge can greatly reduce the time required to
build a consensus model. Additionally, MetaMerge
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Figure 4 Enzymes predicted to have similar metabolic impact to that of isoniazid targets. Shown are the enzymes in the combined
model identified to be in an enzyme subset with the targets of isoniazid, as well as the reactions for which these enzymes are essential. Circles
indicate metabolites; squares indicate reactions; octagons indicate enzymes. The subnetwork was laid out with Cytoscape [34] and several
currency metabolites were removed.
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Table 4 Metabolite features extracted and used by
MetaMerge

Feature name Model 1 [13] (652 Model 2 [14] (740

species) species)
Official name 628 740
Abbreviation 652 740
IUPAC name 365 475
CAS number 227 297
Biocyc ID 340 463
KEGG ID 293 386
Chemical 318 740

formula

could be used to reconcile two networks corresponding
to different, but closely related, organisms, although the
result may or may not correspond to that of the meta-
bolic network of their closest ancestor. MetaMerge may
be best used in combination with a metabolic network
alignment algorithm in order to gain evolutionary
insights from the comparison of the networks for closely
related organisms.

We applied MetaMerge to two existing network mod-
els for M. tuberculosis and used three criteria to assess
the success of the combined model. The combined
model provides better coverage of the space of meta-
bolic reactions, has fewer blocked reactions (and hence
significantly more effectively available reactions), and
produces slightly better predictions of gene essentiality
in terms of the positive predictive value (but slightly
worse in terms of the negative predictive value). How-
ever, both the original and the combined model still do
not capture the full range of gene essentiality informa-
tion. The discrepancies between the model’s prediction
and experimental data can suggest areas where knowl-
edge in the model should be improved, such as poten-
tially missing reactions, missing gene-protein-reaction
associations, or unnecessary restrictions on reaction
directionality.

Finally, we used the combined model to suggest 31
genes whose inhibition is predicted to result in an effect
similar to that of exposure to two known antitubercular
drugs, many of which are within similar functional path-
ways. Notably, a similar, more stringent criterion, pre-
viously used by [14], is based on identifying enzymes
that catalyze ‘hard-coupled reactions” pairs of reactions
uniquely producing and uniquely consuming a given
metabolite. Hard-coupled reactions always belong to the
same reaction subset, but reaction subsets cannot always
be obtained from hard-coupled reactions. Indeed, when
we repeated the same analysis using hard-coupled reac-
tions instead of reaction subsets, we only found 11 of
the 31 enzymes (Table 4).

MetaMerge in its current version results in a com-
bined network that preserves the full metabolic
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capabilities of the individual networks while providing
the possibility of synergistic interactions that lead to
novel capabilities. If expertise is available, the resulting
model can be further refined, for instance, by resolving
the discrepancies between pairs of similar reactions (one
from each of the original networks). In that case, Meta-
Merge can greatly reduce the time required to build a
consensus model.

One of the main features of the MetaMerge algorithm
is its ability to extract features of entities (metabolites,
reactions and genes) present in a metabolic model in an
automatic way by querying appropriate databases. Even
for richly annotated models, this can be an important
way of updating the annotation given that new biologi-
cal information becomes available almost every day. It is
conceivable that automated metabolic network recon-
struction will become a possibility in the future, and a
tool such as MetaMerge will then be crucial to gathering
available information on organisms’ metabolism, unify-
ing information from disparate sources into a single
model, and providing a natural starting point for meta-
bolic network analysis.

Materials and methods
The MetaMerge method
Additional file 3 contains a step-by-step transcript of a
Python session culminating in the creation of a com-
bined M. tuberculosis model from the two original mod-
els and the production of an SBML (Systems Biology
Markup Language) file containing the combined model.
It precisely follows the stages that we outline here. We
also provide the required scripts and input files as Addi-
tional file 4.
Stage 1: model parsing and feature preparation
We parsed the models using the ModelParsing.py script
contained in Additional file 4. The parser detected sev-
eral typos and inconsistencies, detailed in Additional file
5, which we corrected. We further converted the models
[13,14] into version 2 level 4 of SBML [25], the current
standard for metabolic networks. These models are pro-
vided as Additional files 6 and 7, respectively, and they
have also been uploaded to the BioModels database [26].
The following features were used to compare metabo-
lites: abbreviation, official name, CAS number [16],
International Union of Pure and Applied Chemistry
(IUPAC) name [27], BioCyc identifier [28], KEGG iden-
tifier [8], molecular formula (Table 4). We extracted the
CAS numbers and IUPAC names semi-automatically
because no freely accessible website had a URL structure
that could be built explicitly based on the metabolite
name. The BioCyc and KEGG identifiers were used to
retrieve the CAS number and IUPAC name for metabo-
lites for which they had not been found using the semi-
automatic web search. To match official names, we used
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fuzzy string matching with the default cutoff of 0.6,
implemented in Python [29] as the get_close_matches
method in the difflib module. We considered only per-
fect matches for the remaining features.

The following features were used to compare reac-
tions: reaction name, pathway name, gene name, protein
name, enzyme name (Table 5). Unlike for metabolites,
all of the reaction features were available directly from
the complete models. However, to retrieve enzyme
names from their EC numbers [30], we used an auto-
matic search on the ExPASy Proteomics Server [31],
implemented with the urlopen method in the urilib
module in Python [29].

Stage 2: initial matching of reactions and metabolites

We created two score matrices, M and N, using the fea-
tures described immediately above. The features were
each given a score of 1, although the code allows for
user-defined unequal weights to be provided as well.
The various names were considered to be a match if
they contained at least one non-function word in com-
mon (at least two for the case of protein names and
reaction names), and we only considered perfect
matches for the remaining features. M;; (respectively Nj;
is the total score of the matching features for the pair of
metabolites (respectively reactions) i and j. We note that
additional unique annotations, such as SMILES or InChi
strings for metabolites, would make the reconciliation
process less ambiguous, and therefore less error-prone
for MetaMerge. We highly recommend their use in
annotating genome-scale metabolic network
reconstructions.

We also created two binary matching matrices, M”
and N, initialized to contain a 0 in every position. The
entry M”; is 0 if the two metabolites have not been
matched and 1 if they have been matched. If the algo-
rithm is being used interactively (with input from the
user), these matrices become ternary: an entry of 1
means that the match has been accepted by the user,
and -1, rejected, while an entry of 0 means that the
match has never been proposed. The matrices M” and
N? are then used during the iterative stage to keep track
of matching decisions in the previous iterations.

Table 5 Reaction features extracted and used by
MetaMerge

Feature Model 1 [13] (873 Model 2 [14] (937
name reactions) reactions)
Pathway 860 936

name

Reaction 847 936

name

Enzyme name 562 936

Gene name 873 936
Protein name 538 720
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To initialize a matching of reactions and metabolites,
we used the pairs of reactions (i,j) with a total score N
above a cutoff of 3. Subsequently, the highest-scoring
pairing of the metabolites was computed for each of the
reaction pairs in the matching using a greedy algorithm.
This algorithm identifies the metabolites k in reaction i
and [ in reaction j with the largest total score My,
matches these to one another, and then repeats the pro-
cess with the remaining metabolites until all the meta-
bolites in one of the reactions have been matched or all
remaining pairs of metabolites have a total score of 0.

Although it would be possible to use an algorithm for
maximum-weight bipartite matching instead of the
greedy algorithm, examining multiple pairs of reactions
did not reveal any example where the results would
have been different from those of the greedy algorithm.
In fact, very few metabolites in any pair of reactions
have more than one possible match. Since a maximum-
weight bipartite matching algorithm would have
required users to download and install an extra Python
library, we decided that this additional overhead would
not be justified.

Stage 3: optional interactions with the user

The current set of newly matched reactions can be pre-
sented to the user for confirmation. The confirmation
proceeds in two steps. First, the user confirms that the
reactions should be matched to each other. Second, the
user checks the matching between the metabolites in
these two reactions.

We implemented several features in the user interface.
The first set of features comprises inspection options, by
which the user could see not just the score for a given
pair of reactions or metabolites, but also their complete
sets of features side-by-side, as well as any decisions
about the pair that had been made previously. The sec-
ond set of features comprises browsing options, which
allow the user to go forward and backward in the list of
matched reactions. The third set of features comprises
confirmation options, which allow the user to accept or
reject a proposed match of reactions or metabolites, as
well as to enter their own match in either text format or
using the numbers displayed next to each of the
metabolites.

To speed up the confirmation process, the user also
has the option of accepting all the proposed matches
between the metabolites of two reactions. A metabolite
could also be matched to ‘nothing’ if it was present in
one reaction, but not in the other. In addition, when
two internal metabolites are matched, the user is asked
whether the corresponding external metabolites (if both
exist) should be matched.

Although these interactions could, in principle, be
bypassed entirely, we found that they were helpful in
steering the algorithm away from possible mistakes in
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the matching process. For instance, several close
matches with similar scores were sometimes available
for a given reaction, but only one of them was the cor-
rect match, and this could only be detected by using the
browsing feature of the interface. Furthermore, the pos-
sibility of seeing previous decisions on putative metabo-
lite matches helps to maintain overall consistency in the
matching, which prevents violations of transitivity (as
discussed below).

Stage 4: extension of the current matching

During the matching of metabolites in matched reac-
tions, new pairs of matching metabolites are usually
found. If that is the case, the extension algorithm finds
all the pairs of reactions that have not yet been
matched, and whose metabolites could be matched
almost perfectly (that is, all but one metabolite in each
reaction can either be matched to one another or to
nothing, based on previous confirmations). Convergence
occurs when no further extension of the current match-
ing is possible.

Stage 5: transitivity and non-transformability

In the postprocessing phase of the algorithm, the match-
ing of the metabolites is cleaned up. This phase is cur-
rently performed in a semi-automatic way, although it
might be possible to automate it completely. First, tran-
sitivity of the metabolite matching needs to be ensured.
A matching matrix is said to be transitive if it can be
perfectly covered by rectangles. In graph-theoretic
terms, this is equivalent to saying that the bipartite
graph formed by the matching is a disjoint union of
bicliques [32]. The transitivity is easily checked by gree-
dily covering the matching matrix with rectangles and
seeing if any of them overlap. If so, the overlapping
pairs of rectangles are presented to the user to decide
how to remedy the problem.

Second, non-transformability of the metabolite match-
ing needs to be ensured as well. A transitive matching
matrix is said to be non-transformable if there is no rec-
tangle in its covering that contains two metabolites from
the same network that participate on different sides of a
reaction. This will lead to the undesirable behavior of
metabolites canceling out on either side of a reaction in
the combined network.

A third condition that is not strictly necessary, but
which makes the merging process a lot easier and clea-
ner, is compartmentalization. In the context of a model
with only two compartments (the cell and the extracel-
lular space) this simply means that no internal metabo-
lite in one network is matched to an external metabolite
in the other network. In the case of more complex mod-
els, such as the eight-compartment yeast model [10],
this would mean that any pair of matched metabolites
must belong to the same compartment.
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Stage 6: creation of the combined network

In order to create the combined network, we combined
each group of metabolites corresponding to a rectangle
in the matching matrix (equivalently, a biclique in the
matching graph) into a single new metabolite. Option-
ally, we allow for some of the metabolites that were fre-
quently matched to ‘nothing’ to be deleted from the
combined network. In the case of the two M. tuberculo-
sis networks considered in this work, we deleted only
protons (H) and water molecules (H,O). Each reaction
is then rewritten using the new metabolites. This results
in many identical reactions, which are considered to be
isozymes of one another. The combined network con-
tains only one reaction from each group of isozymes. To
determine the reversibility of a reaction in the combined
network, we examine the reactions from the original
networks that are represented by it. If at least one of
them is reversible or if two of them are oppositely direc-
ted, the new reaction is taken to be reversible; other-
wise, it is taken to be irreversible. The network created
by combining models 1 and 2 [13,14] is written out in
SBML format [25] in Additional file 8.

Identification of blocked reactions

For each reaction, we determined whether it is able to
sustain a nonzero flux at steady-state, and if not,
whether this is due to the topology, the stoichiometry or
the thermodynamics of the model. Reaction i is said to
be topologically blocked if it contains a unique internal
metabolite (not present in any other reaction), stoichio-
metrically blocked if the mass balance condition Sv = 0
implies v; = 0, and thermodynamically blocked if the
mass balance condition together with the irreversibility
conditions implies v; = 0. In each case, we choose the
simplest possible cause for the blockage. This analysis
was performed using the MONGOOSE toolbox [33],
described in Additional file 9.

Construction of a gold standard for gene essentiality

To construct our gold standard for gene essentiality, we
used results of the TraSH experiment [19] and followed
the methodology of Beste et al. [13]. We tested different
ratios of the microarray hybridization signal obtained
from labeled insertion sites in a saturated transposon
mutant library compared with a control of labeled geno-
mic DNA. We used both the threshold 0.2 as in the ori-
ginal experiment, as well as the more stringent
threshold 0.1, for deciding the essentiality of a gene
based on the results of the TraSH experiments.

Prediction of essential genes
For each reaction, we assembled the genes required to
catalyze it in conjunctive normal form (OR of ANDs).
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From this information, we compiled a list of all the
reactions disabled by the knockout of each gene. Subse-
quently, we constrained these reactions to have a flux of
0 and determined that the gene is essential if the result-
ing metabolic network was unable to exhibit growth,
and non-essential otherwise. This analysis was per-
formed using MONGOOSE [33].

Determination of reaction subsets

To find all the reaction subsets, we first identify the
blocked reactions, delete them from the stoichiometric
matrix S of the network, and then compute the null-
space matrix K and identify sets of proportional col-
umns. Two reactions, i and j, in a metabolic network
with stoichiometric matrix S are said to be in a reaction
subset if there exists a constant x # 0 such that Sv = 0
implies v; = kv;. As explained in Additional file 8, if all
blocked reactions are deleted from S, then all reaction
subsets can be identified from the nullspace matrix K of
S, regardless of the irreversibility of any of the reactions.
In the combined network for M. tuberculosis, the size of
such subsets varies between 2 and 38 reactions, and in
fact, the largest subset with 38 reactions contains a reac-
tion that is disabled by ethambutol.

Additional material

Additional file 1: Reactions in models 1 and 2 differing by at most
one metabolite. There are 29 pairs of reactions (each pair consisting of
one reaction from model 1 and one reaction from model 2) that differ
by at most one metabolite. These reactions are given in the
representation used in the original models. Each pair is followed by a
line of dashes.

Additional file 2: Enzymes predicted to have similar metabolic
impact to that of known drug targets. There are 29 enzymes listed for
ethambutol and 2 enzymes listed for isoniazid. Each enzyme is given
with its gene ID and name, the set of reactions it is essential for in the
initial models (uppercase metabolite names for [13], lowercase for [14]),
its function, and its category. If a reaction for which an enzyme is
essential is common to both models, only one model is chosen to
represent it.

Additional file 3: A sample Python session yielding a combined M.
tuberculosis model. This file contains the step-by-step transcript of a
Python session culminating in the creation of a combined M. tuberculosis
model from the two original models and the production of an SBML file
containing the combined model.

Additional file 4: The full code of the MetaMerge algorithm
implemented in Python. The code is divided into 14 modules, each of
which contains multiple functions, as follows: ClassDefinitions.py, the code
for defining all the formats used by MetaMerge internally;
FeatureMatching.py, the code for matching species, reactions based on
the available features; FeaturePreparation.py, the code for extracting
metabolite and reaction features from text; GeneProcessing.py, the code
for processing gene information; MatchProcessing.py, the code for
processing the metabolite and reaction matching matrices;
MetaboliteMatching.py, the code for generating and processing closely
matching metabolites; MetaMerge.py, an initializer for the other modules
required by the MetaMerge algorithm; MetaMergeCore.py, the user
interface of MetaMerge for preparing the matching matrices;
ModelParsing.py, the user interface for parsing a metabolic model in Excel
or SBML format; NetworkMerging.py, the code for merging two networks
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based on their matching matrices; OutputProcessing.py, the code for
processing the output of the MetaMerge algorithm; ReactionMatching.py,
the code for generating and processing closely matching reactions;
Unrelated py, the code for analyzing a metabolic network, not directly
related to MetaMerge; Utilities.py, the code of miscellaneous auxiliary
functions used by the MetaMerge algorithm. Additionally, the zipped
directory contains a shelve file called Mappings with KEGG and Biocyc
identifiers for the metabolites in both M. tuberculosis models extracted by
Jeremy Zucker, and the cleaned-up and extended Excel files
Mycobacterium tuberculosis 1.xIs and Mycobacterium tuberculosis 2.xIs for
models 1 [13] and 2 [14], respectively, containing additional annotation
contributed by Marina Druz.

Additional file 5: A list of errors corrected in the original M.
tuberculosis models. This file contains a list of errors detected in the
original M. tuberculosis models [13,14] and corrected in the Excel files
contained in Additional file 4. Most of these are typographical errors, but
some are due to inconsistent notations in different parts of the original
Excel files.

Additional file 6: Model 1 (Beste et al. [13]) in SBML. The model
contains 873 reactions and 753 metabolites. Each reaction is annotated
with lower and upper bounds on its flux, the EC numbers for the
enzymes catalyzing it, the Boolean expression containing the genes it
requires, the name and chemical equation of the reaction, and the
pathway to which it belongs, whenever these are known. Each
metabolite is annotated with its abbreviation, official name, molecular
formula, IUPAC name, CAS number, and BioCyc and KEGG database
identifiers, whenever these are known.

Additional file 7: Model 2 (Jamshidi and Palsson [14]) in SBML. The
model contains 937 reactions and 825 metabolites. Each reaction is
annotated with its confidence score, the proteins needed to catalyze it,
the Boolean expression containing the genes it requires, the name and
chemical equation of the reaction, and the subsystem to which it
belongs, whenever these are known. Each metabolite is annotated with
its abbreviation, official name, molecular formula and charge, IUPAC
name, CAS number, and BioCyc and KEGG database identifiers, whenever
these are known.

Additional file 8: The combined M. tuberculosis model in SBML. The
model contains 1,400 reactions and 1,017 metabolites. Each reaction is
annotated with the corresponding information from the reactions in the
original models that it corresponds to. Each metabolite is similarly
annotated with the corresponding information from the metabolites in
the original models that it corresponds to. In case a reaction or
metabolite in the combined model represents two or more reactions or
metabolites from the same original model, the annotations are separated
by ‘or’, while if those reactions or metabolites that come from different
models are separated by ‘OR.

Additional file 9: The MONGOOSE toolbox. The MONGOOSE
(MetabOlic Network Growth OptimizatiOn Solved Exactly) toolbox [33] is
a software suite we have developed, which gives certifiably correct
results quickly and efficiently and is able to handle the largest metabolic
model currently reconstructed. Its main features are the use of exact
rational arithmetic, which avoids the risk of erroneous results due to
rounding errors, as well as its ability to compress the metabolic network
in order to speed up subsequent computations. This file describes in

detail the algorithms underlying MONGOOSE [33].
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