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Abstract

Background: Heterotaxy-spectrum cardiovascular disorders are challenging for traditional genetic analyses because
of clinical and genetic heterogeneity, variable expressivity, and non-penetrance. In this study, high-resolution SNP
genotyping and exon-targeted array comparative genomic hybridization platforms were coupled to whole-exome
sequencing to identify a novel disease candidate gene.

Results: SNP genotyping identified absence-of-heterozygosity regions in the heterotaxy proband on chromosomes
1, 4, 7, 13, 15, 18, consistent with parental consanguinity. Subsequently, whole-exome sequencing of the proband
identified 26,065 coding variants, including 18 non-synonymous homozygous changes not present in dbSNP132 or
1000 Genomes. Of these 18, only 4 - one each in CXCL2, SHROOM3, CTSO, RXFP1 - were mapped to the absence-of-
heterozygosity regions, each of which was flanked by more than 50 homozygous SNPs, confirming recessive
segregation of mutant alleles. Sanger sequencing confirmed the SHROOM3 homozygous missense mutation and it
was predicted as pathogenic by four bioinformatic tools. SHROOM3 has been identified as a central regulator of
morphogenetic cell shape changes necessary for organogenesis and can physically bind ROCK2, a rho kinase
protein required for left-right patterning. Screening 96 sporadic heterotaxy patients identified four additional
patients with rare variants in SHROOM3.

Conclusions: Using whole exome sequencing, we identify a recessive missense mutation in SHROOM3 associated
with heterotaxy syndrome and identify rare variants in subsequent screening of a heterotaxy cohort, suggesting
SHROOM3 as a novel target for the control of left-right patterning. This study reveals the value of SNP genotyping
coupled with high-throughput sequencing for identification of high yield candidates for rare disorders with genetic
and phenotypic heterogeneity.

Background
Congenital heart disease (CHD) is the most common
major birth defect, affecting an estimated 1 in 130 live
births [1]. However, the underlying genetic causes are
not identified in the vast majority of cases [2,3]. Of
these, approximately 25% are syndromic while approxi-
mately 75% are isolated. Heterotaxy is a severe form of
CHD, a multiple congenital anomaly syndrome resulting
from abnormalities of the proper specification of left-
right (LR) asymmetry during embryonic development,
and can lead to malformation of any organ that is asym-
metric along the LR axis. Heterotaxy is classically asso-
ciated with heart malformations, anomalies of the

visceral organs such as gut malrotation, abnormalities of
spleen position or number, and situs anomalies of the
liver and/or stomach. In addition, inappropriate reten-
tion of symmetric embryonic structures (for example,
persistent left superior vena cava), or loss of normal
asymmetry (for example, right atrial isomerism) are
clues to an underlying disorder of laterality [4,5].
Heterotaxy is the most highly heritable cardiovascular

malformation [6]. However, the majority of heterotaxy
cases are considered idiopathic and their genetic basis
remains unknown. To date, point mutations in more
than 15 genes have been identified in humans with het-
erotaxy or heterotaxy-spectrum CHD. Although their
prevalence is not known with certainty, they most likely
account for approximately 15% of heterotaxy spectrum
disorders [4,7-9]. Human X-linked heterotaxy is caused
by loss of function mutations in ZIC3, and accounts for
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less than 5% of sporadic heterotaxy cases [9]. Thus,
despite the strong genetic contribution to heterotaxy,
the majority of cases remain unexplained and this indi-
cates the need for utilization of novel genomic
approaches to identify genetic causes of these heritable
disorders.
LR patterning is a very important feature of early

embryonic development. The blueprint for the left and
right axes is established prior to organogenesis and is
followed by transmission of positional information to
the developing organs. Animal models have been critical
for identifying key signaling pathways necessary for the
initiation and maintenance of LR development. Asym-
metric expression of Nodal, a transforming growth fac-
tor beta ligand, was identified as an early molecular
marker of LR patterning that is conserved across species
[10-12]. Genes in the Nodal signaling pathway account
for the majority of genes currently known to cause
human heterotaxy. However, the phenotypic variability
of heterotaxy and frequent sporadic inheritance pattern
have been challenging for studies using traditional
genetic approaches. Although functional analyses of rare
variants in the Nodal pathway have been performed that
confirm their deleterious nature, in many cases these
variants are inherited from unaffected parents, suggest-
ing that they function as susceptibility alleles in the con-
text of the whole pathway [7,8].
More recent studies have focused on pathways

upstream of Nodal signaling, including ion channels and
electrochemical gradients [13-15], ciliogenesis and intra-
flagellar transport [16], planar cell polarity (Dvl2/3,
Nkd1) [17,18] and convergence extension (Vangl1/2,
Rock2) [19,20], and non-transforming growth factor beta
pathway members that interact with the Nodal signaling
pathway (for example, Ttrap, Geminin, Cited2) [21-23].
Relevant to the current study, we recently identified a
rare copy number variant containing ROCK2 in a patient
with heterotaxy and showed that its knockdown in Xeno-
pus causes laterality defects [24]. Similar laterality defects
were identified separately with knockdown of Rock2b in
zebrafish [20]. The emergence of additional pathways
regulating LR development has led to new candidates for
further evaluation. Given the mutational spectrum of het-
erotaxy, we hypothesize that whole-exome approaches
will be useful for the identification of novel candidates
and essential for understanding the contribution of sus-
ceptibility alleles to disease penetrance.
Very recently, whole-exome analysis has been used

successfully to identify the causative genes for many
rare disorders in affected families with small pedigrees
and even in singlet inherited cases or unrelated sporadic
cases [25-29]. Nevertheless, one of the challenges of
whole-exome sequencing is the interpretation of the
large number of variants identified. Homozygosity

mapping is one approach that is useful for delineating
regions of interest. A combined approach of homozyg-
osity mapping coupled with partial or whole-exome ana-
lysis has been used successfully in identification of
disease-causing genes in recessive conditions focusing
on variants within specific homozygous regions of the
genome [30-32]. Here we use SNP genotyping coupled
to a whole-exome sequencing strategy to identify a
novel candidate for heterotaxy in a patient with a com-
plex heterotaxy syndrome phenotype. We further evalu-
ate SHROOM3 in an additional 96 patients from our
heterotaxy cohort and identify four rare variants, two of
which are predicted to be pathogenic.

Results
Phenotypic evaluation
Previously we presented a classification scheme for het-
erotaxy in which patients were assigned to categories,
including syndromic heterotaxy, classic heterotaxy, or
heterotaxy spectrum CHD [9]. Using these classifica-
tions, patient LAT1180 was given a diagnosis of a novel
complex heterotaxy syndrome based on CHD, visceral,
and other associated anomalies. Clinical features include
dextrocardia, L-transposition of the great arteries,
abdominal situs inversus, bilateral keratoconus, and sen-
sorineural hearing loss (Table 1). The parents of this
female proband are first cousins, suggesting the possibi-
lity of an autosomal recessive condition.

Chromosome microarray analysis
LAT1180 was assessed for submicroscopic chromosomal
abnormalities using an Illumina genome-wide SNP array
as well as exon-targeted array comparative genomic
hybridization (aCGH). Copy number variation (CNV)
analysis did not identify potential disease-causing chro-
mosomal deletions/duplications. However, several
absence-of-heterozygosity regions (homozygous runs)
were identified via SNP genotyping analysis (Table 2 and
Figure 1), consistent with the known consanguinity in
the pedigree. These regions have an overwhelming prob-
ability to carry disease mutations in inbred families [33].

Table 1 Clinical findings in LAT1180

Clinical findings in LAT1180

Dextrocardia

L-Transposition of the great arteries

Pulmonic stenosis

Abdominal situs inversus

Bilateral keratoconus

Sensorineural hearing loss

Multiple nevi

Malignant melanoma
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Exome analysis
Following SNP microarray and aCGH, the exome (36.5
Mb of total genomic sequence) of LAT1180 was
sequenced to a mean coverage of 56-fold. A total of
5.71 Gb of sequence data was generated, with 53.9% of

bases mapping to the consensus coding sequence exome
(accession number [NCBI: SRP007801]) [34]. On aver-
age, 93.3% of the exome was covered at 10× coverage
(Table 3 and Figure 2), and 70,812 variants were identi-
fied, including 26,065 coding changes (Table 4). Overall,

Table 2 Major absence-of-heterozygosity regions identified in LAT1180 using SNP array

Chromosome Start (bp) Stop (bp) Length (bp) Cytobands Number of markers Genes in region

1 186823646 192715568 5891922 q31.1-q31.3 1,533 13

4 69717060 89279933 33212166 q13.2-q24 > 8,000 > 200

4 146672223 182010642 35838420 q31.21-q34.3 8,626 > 100

7 40952323 47059534 6107211 p14.1-p12.3 2,324 47

13 40907456 47064783 6157327 q14.11-q14.2 2,461 35

15 46957310 51984619 5027309 q21.1-q21.3 1,792 41

18 22763465 33898685 11135220 q11.2-q12.2 4,107 45

Figure 1 Screenshot from KaryoStudio software showing ideogram of chromosome 4 and absence-of-heterozygosity regions in
LAT1180. One of these regions, highlighted by arrows, contains SHROOM3. A partial gene list from the region is shown. DGV, Database of
Genomic Variants.
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our filtering strategy (Materials and methods) identified
18 homozygous missense changes with a total of 4 cod-
ing changes occurring within the previously identified
absence-of-heterozygosity regions (Table 2 and Figure
1). These included one variant each in CXCL2 (p.T39A;
chr4:74,964,625), SHROOM3 (p.G60V; chr4:77,476,772),
CTSO (p.Q122E; chr4:156,863,489), and RXFP1 (p.
T235I; chr4:159,538,306).
Previously, we developed an approach for prioritiza-

tion of candidate genes for heterotaxy spectrum cardio-
vascular malformations and laterality disorders based on
developmental expression and gene function [24]. In

addition, we have developed a network biology analysis
appropriate for evaluation of candidates relative to
potential interactions with known genetic pathways for
heterotaxy, LR patterning, and ciliopathies in animal
models and humans (manuscript in preparation). Using
these approaches, three of the genes, CXCL2, CTSO,
and RXFP1, are considered unlikely candidates. CXCL2
is an inducible chemokine important for chemotaxis,
immune response, and inflammatory response. Targeted
deletion of Cxcl2 in mice does not cause congenital
anomalies but does result in poor wound healing and
increased susceptibility to infection [35]. CTSO, a
cysteine proteinase, is a proteolytic enzyme that is a
member of the papain superfamily involved in cellular

Table 3 Exome statistics for LAT1180

Total amount of raw data generated (Gb) 5.71

Sequencing read length (bp) 50

Total reads generated (million pairs) 57.091

Reads aligning to human reference genome hg19 (million pairs) 47.640

Usable data for alignment (Gb) 4.76

Reads aligned to human reference genome hg19 83.4%

Bases aligning to human exome (targets) 53.9%

Total bases aligning to exome (Gb) 2.57

Mean depth of coverage of targets 56

Maximum depth of coverage of targets 2434

Minimum depth of coverage of targets 0

Average depth of coverage 58

Bases covered at depth of ≥ 1× 98.1%

Bases covered at depth of ≥ 5× 96.3%

Bases covered at depth of ≥ 10× 93.3%
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Figure 2 Comparsion of depth of coverage (x-axis) and percentage of target bases covered (y-axis) from exome analysis of LAT1180.

Table 4 Exome sequencing and filtering strategy in
LAT1180¶

Total variants identified 70,812

Total coding variants identified 26,065

Total dbSNP132 variants 63,728

Total changes not present in dbSNP132 database 7,084

Coding changes 4,351

Homozygous missense changes 62

Homozygous missense changes not present in 1000
Genomes data

36

Homozygous missense changes on chromosomes 1, 4, 7,
13, 15, 18

18

Homozygous missense changes within absence-of-
heterozygosity

4

¶An autosomal recessive inheritance model was assumed.
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protein degradation and turnover. It is expressed ubiqui-
tously postnatally and in the brain prenatally. RFXP1
(also known as LRG7) is a G-protein coupled receptor
to which the ligand relaxin binds. It is expressed ubiqui-
tously with the exception of the spleen. Mouse Genome
Informatics shows that homozygous deletion of Rfxp1
leads to males with reduced fertility and females unable
to nurse due to impaired nipple development. In con-
trast, SHROOM3 is considered a very strong candidate
based on its known expression and function, including
its known role in gut looping and its ability to bind
ROCK2.
Further analysis of the SHROOM3 gene confirmed a

homozygous missense mutation (Table 4 and Figure 3)
in a homozygous run on chromosome 4. These data
support the recessive segregation of the variant with the
phenotype. This mutation was confirmed by Sanger
sequencing (Figure 4c) and was predicted to create a
cryptic splice acceptor site, which may cause loss of
exon 2 of the gene.

Pathogenicity prediction
The homozygous mutation p.G60V in SHROOM3 was
predicted to be pathogenic using the bioinformatic pro-
grams Polyphen-2 [36], PANTHER [37], Mutation
Taster [38] and SIFT [39]. Glycine at position 60 of
SHROOM3 as well as its respective triplet codon (GGG)
in the gene are evolutionarily conserved across species,
suggesting an important role of this residue in protein
function (Figure 4a, b). Mutation Taster [38] predicted
loss of the PDZ domain (25 to 110 amino acids) and
probable loss of remaining regions of SHROOM3 pro-
tein due to the cryptic splicing effect of the c.179G > T
mutation in the gene (Figure 5). Variants in CTSO,
RFXP1, and CXCL2 were predicted to be benign by
more than two of the above bioinformatic programs.

Mutation screening
SHROOM3 was analyzed in 96 sporadic heterotaxy
patients with unknown genetic etiology for their disease
using PCR amplification followed by Sanger sequencing.
Four nonsynonymous nucleotide changes were identified
(Table 5 and Figure 6) that were not present in the
HapMap or 1000 Genomes databases, indicating they
are rare variants. Each variant was analyzed using Poly-
Phen, SIFT, and PANTHER. Both homozygous variants
p.D537N and p.E1775K were predicted to be benign by
all programs, whereas the heterozygous variants p.
P173H and p.G1864D were identified as damaging by all
programs.

Discussion
In the present study, we investigated a proband,
LAT1180, from a consanguineous pedigree with a novel

form of heterotaxy syndrome using microarray-based
CNV analysis and whole-exome sequencing. Our initial
genetic analysis using two microarray-based platforms
(Illumina SNP genotyping and exon-targeted Agilent
aCGH) failed to identify any potential structural muta-
tion. However, we observed homozygous regions
(absence-of-heterozygosity) from SNP genotyping data,
suggesting that homozygous point mutations or small
insertion/deletion events within these regions could be
disease associated. Subsequently, whole-exome analysis
resulted in the identification of a novel homozygous
missense mutation in the SHROOM3 gene on chromo-
some 4. Additional sequencing in a cohort of 96 hetero-
taxy patients identified two additional patients with
homozygous variants and two patients with heterozy-
gous variants. Although in vivo loss of function analyses
have demonstrated the importance of SHROOM3 for
proper cardiac and gut patterning, specific testing of the
variants identified herein will be useful to further estab-
lish pathogenicity and the most common mode of
inheritance. This study demonstrates the usefulness of
high-throughput sequencing and SNP genotyping to
identify important candidates in disorders characterized
by genetic and phenotypic heterogeneity.
SHROOM3 encodes a cytoskeletal protein of 1,996

residues that is composed of 3 main domains with dis-
tinct functions (Figure 5). SHROOM3, an actin binding
protein, is responsible for early cell shape during mor-
phogenesis through a myosin II-dependent pathway. It
is essential for neural tube closure in mouse, Xenopus,
and chick [40-42]. Early studies in model species showed
that Shroom3 plays an important role in the morpho-
genesis of epithelial sheets, such as gut epithelium, lens
placode invagination, and also cardiac development
[43,44]. Recent data indicate an important role for
Shroom3 in proper gut rotation [45]. Interestingly, gut
malrotation is a common feature of heterotaxy and is
consistent with a laterality disorder. In Xenopus,
Shroom3 is expressed in the myocardium and is neces-
sary for cellular morphogenesis in the early heart as well
as normal cardiac tube formation with disruption of car-
diac looping (Thomas Drysdale, personal communica-
tion, manuscript in revision). Downstream effector
proteins of Shroom3 include Mena, myosin II, Rap1
GTPase and Rho Kinases [40-42,44,46].
Shroom3 may play an important role in LR develop-

ment acting downstream of Pitx2. Pitx2 is an important
transcription factor in the generation of LR patterning
in Xenopus, zebrafish, and mice [47-49]. Recently it was
shown that Pitx2 can directly activate expression of
Shroom3 and ultimately chiral gut looping in Xenopus
[43]. Gut looping morphogenesis in Xenopus is most
likely driven by cell shape changes in gut epithelium
[50]. The identification of Shroom3 as a downstream
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effector fills an important gap in understanding how
positional information is transferred into morphogenetic
movements during organogenesis. The presence of a
Pitx2 binding-sites upstream of mouse Shroom3 com-
bined with the similar gut looping phenotypes of mouse
Pitx2 and Shroom3 mutants supports the interactive
mechanism for these two proteins [41,43,51].
Studies from snails, frogs and mice suggest cell-shape/

arrangement regulation and cytoskeleton-driven polarity
is initiated early during development, establishing LR
asymmetry [19,52-55]. Recent data from our lab and

others demonstrated that rho kinase (ROCK2), a down-
stream effector protein of SHROOM3, is required for
LR and anteroposterior patterning in humans, Xenopus
and zebrafish [20,24]. In animal models, either overex-
pression or loss of function may cause similar pheno-
types. These results led us to suggest that this pathway
(Figure 7), which is a central regulator of morphogenetic
cell shape changes, may be a novel target for the control
of LR patterning. Sequencing of these newly identified
genes downstream of the canonical Nodal signal trans-
duction pathway will be necessary to determine their

Figure 3 Alignment of exome high-throughput sequencing data showing SHROOM3 gene mutation c.179G > T bordered by red
vertical lines. The SHROOM3 sequence (RefSeq ID: NG_028077.1) is shown by a single row containing both exonic (green) and intronic (black)
areas. The lower left corner of the figure shows the sequencing depth of coverage of exonic sequences (protein-coding) as a green bar. The
blue area shows the forward strand sequencing depth while red shows reverse strand sequencing depth. Yellow represents the non-genic and
non-targeted sequences of the genome. The mutation call rate is 99% (89 reads with T versus 1 read with C at c.179 of the SHROOM3 gene).
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importance for causing heterotaxy in a larger number of
patients. We predict whole-exome sequencing will
become an important modality for the identification of
novel disease-causing heterotaxy genes, candidate genes,
and disease-associated rare variants important for dis-
ease susceptibility.

Conclusions
SHROOM3 is a novel candidate for heterotaxy-spectrum
cardiovascular malformations. This study highlights the
importance of microarray-based SNP/CNV genotyping

followed by exome sequencing for identification of novel
candidates. This approach can be useful for rare disor-
ders that have been challenging to analyze with tradi-
tional genetic approaches due to small numbers,
significant clinical and genetic heterogeneity, and/or
multifactorial inheritance.

Materials and methods
Subjects
DNA of proband LAT1180 was extracted from whole
peripheral blood leukocytes following a standard

(a)                                          ↓   

TCTCCCTCCAAGCAGGTCGAAGAAGGGGGCAAAGCAGACACCCTGAGCTCC 
TCTCCCTCCAAGCAGGTCGAAGAAGGGGGCAAAGCAGACACCCTGAGCTCC 
TCTCCCTCCAAGCAGGTCGAAGAAGGGGGCAAAGCAGACACCCTGAGCTCC 
TCTCCCTCCAAGCAGGTCGAAGAAGGGGGCAAAGCAGACACCCTGAGCTCC 
TCTCCCTCCAAGCAGGTTGAAGAAGGGGGCAAAGCAGACACCCTGAGCTCC 
TCTCCCTCCGAGCAGGTTGAAGAAGGGGGCAAAGCAGACACCCTGAGCTCC 

 
 

(b)                                               ↓ 
-------WGFTLKGGLEH---GEPLIISKVEEGGKADTLSSKLQAGDEVV   77 
HSLSPISHAFTRESGARHIPSALPLAPEGGCCGGEVPALSGTHQTRPELA   149 
-------WGFTLKGGLER---GEPLIISKIEEGGKADSVSSGLQAGDEVI   76 
-------WGFTLKGGLEH---GEPLIISKIEEGGKADSVSSGLQTGDEVI   76 
-------WGFTLKGGLEN---GEPLIISKIEEGGKADSLPSKLQAGDEVV   74 

 
 
(c) 

 

    c.179G>T 

    p.G60V 

    c.179G>T 

210 220 230 240 250 260

Homo sapiens
Pan troglodytes
Gorilla gorilla
Pongo pygmaeus
Macaca mulatta
Callithrix jacchus

Homo sapiens
Canis lupus
Mus musculus
Rattus norvegicus
Gallus gallus 

Figure 4 Cross-species analysis and SHROOM3 mutation. (a) Partial nucleotide sequence of SHROOM3 from different species showing
conserved codon for glycine at amino acid position 60 and mutated nucleotide G shown by an arrow. (b) Partial amino acid sequence of
SHROOM3 proteins from different species highlighting conservation of glycine. (c) Partial SHROOM3 chromatogram from LAT1180 DNA showing
homozygous mutation G > T by an arrow.
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protocol. Screening of SHROOM3 was performed using
DNA samples from 96 additional sporadic heterotaxy
patients. The heterotaxy cohort has been reported pre-
viously [7,9]. DNA samples with previous positive
genetic testing results were not used in the current
study. This study was approved by the Institutional
Review Boards at the Baylor College of Medicine and
Cincinnati Children’s Hospital Medical Center
(CCHMC). Written informed consent for participation
in this study as well as publication of clinical data of the
proband was obtained. All the methods applied in this
study conformed to the Declaration of Helsinki (1964)
of the World Medical Association concerning human
material/data and experimentation [56] and ethical
approval was granted by the ethics committee of the
Baylor College of Medicine and CCHMC.

SNP genotyping
Genome-wide SNP genotyping was performed using an
Illumina HumanOmni-Quad Infinium HD BeadChip.

The chip contains 1,140,419 SNP markers with an aver-
age call frequency of > 99% and is unbiased to coding
and noncoding regions of the genome. CNV analysis was
performed using KaryoStudio Software (Illumina Inc.).

Array comparative genomic hybridization
The custom exon-targeted aCGH array was designed by
Baylor Medical Genetics Laboratories [57] and manufac-
tured by Agilent Technology (Santa Clara, CA, USA).
The array contains 180,000 oligos covering 24,319 exons
(4.2/exon). Data (105 k) were normalized using the Agi-
lent Feature Extraction software. CNVs were detected
by intensities of differentially labeled test DNA samples
and LAT1180 DNA samples hybridized to Agilent array
containing probes (probe-based). Results were inter-
preted by an experienced cytogeneticist at the Baylor
College of Medicine. The Database of Genomic Variants
[58] and in-house cytogenetic databases from the Baylor
College of Medicine and CCHMC were used as control
datasets for CNV analysis.

                                                
           25 -110 a.a                        928 -  

PDZ  ASD1  ASD2  

    p.G60V 

Modulating 
apical 

constriction 

Actin 
targeting 

Apical constriction 
activity and ROCK1/2 

binding 

1030 a.a 1669-1957 a.a

Figure 5 Representative structure of SHROOM3 showing three main functional protein domains: PDZ, ASD1, and ASD2. a.a, amino acid;
ASD, Apx/Shrm domain; Dlg1, Drosophila disc large tumor suppressor; PDZ, post-synaptic density protein (PSD95); zo-1, zonula occludens-1
protein.

Table 5 Rare variants in SHROOM3

Patient ID Amino acid Predicted pathogenicity Allele hg19 coordinates

LAT0820 p.E1775K - - - Homozygous chr4: 77,680,822

LAT0844 p.P173H + + + Heterozygous chr4:77,652,019

LAT0982 p.G1864D + + + Heterozygous chr4:77,692,019

LAT0990 p.D537N - - - Homozygous chr4: 77,660,935

LAT1180 p.G60V + + + Homozygous chr4:77,476,772

Predicted pathogenicity results are presented for PolyPhen, SIFT, and PANTHER analysis. +, probably damaging or damaging (deleterious); -, benign.
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Exome sequencing
Genomic DNA (3 μg) from proband LAT1180 was frag-
mented and enriched for human exonic sequences with
the NimbleGen SeqCap EZ Human Exome v2.0 Library

(2.1 million DNA probes). A total of approximately
30,000 consensus coding sequence genes (approximately
300,000 exons, total size 36.5 Mb) are targeted by this
capture, which contains probes covering a total of 44.1

c.518C>A

LAT0844: p.P173H 

LAT0820 : p.E1775K

c.5323G>A

200 210 220 230 240

150 160 170 180 190

LAT0990:   p.D537N

c.5592G>A

LAT0982: p.G1864D

c.1609G>A

330 340 350 360 370

520 530 540 550 560

Figure 6 Non-synonymous rare variants identified in SHROOM3 mutation screening in heterotaxy patients. Partial SHROOM3
chromatogram showing homozygous rare variants in samples from LAT0820 and LAT0990 and heterozygous variants in LAT0844 and LAT0982.
Arrows indicate position of nucleotide changes.
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Mb. The resulting exome library of the proband was
sequenced with 50 bp paired-end reads using Illumina
GAII (v2 Chemistry). Data are archived at the NCBI
Sequence Read Archive (SRA) under an NCBI accession
number [NCBI: SRP007801] [34]. All sequence reads
were mapped to the reference human genome (UCSC
hg 19) using the Illumina Pipeline software version 1.5
featuring a gapped aligner (ELAND v2). Variant identifi-
cation was performed using locally developed software
‘SeqMate’ (submitted for publication). The tool com-
bines the aligned reads with the reference sequence and
computes a distribution of call quality at each aligned
base position, which serves as the basis for variant call-
ing. Variants are reported based on a configurable for-
mula using the following additional parameters: depth of
coverage, proportion of each base at a given position
and number of different reads showing a sequence varia-
tion. The minimum number of high quality bases to
establish coverage at any position was arbitrarily set at
10. Any sequence position with a non-reference base

observed more than 75% of the time was called a homo-
zygous variant. Any sequence position with a non-refer-
ence base observed between 25% and 75% of the time
was called a heterozygous variant. Amino acid changes
were identified by comparison to the UCSC RefSeq
database track. A local realignment tool was used to
minimize the errors in SNP calling due to indels. A ser-
ies of filtering strategies (dbSNP132, 1000 Genomes pro-
ject (May 2010)) were applied to reduce the number of
variants and to identify the potential pathogenic muta-
tions causing the disease phenotype.

Mutation screening and validation
Primers were designed to cover exonic regions contain-
ing potential variants of SHROOM3 and UGT2A1 genes
in LAT1180. For screening additional heterotaxy
patients, primers were designed to include all exons and
splice junctions of SHROOM3 (primer sequences are
available upon request). A homozygous nonsense variant
(p.Y192X) was confirmed in the UGT2A1 gene within

                                         Leftys    Nodal 

       

Activin receptors type I/II 

      (Cytoplasm) 

  SMAD2/3/4                           

                                                                              

     (Nucleus)   FOXH1/Mixer (TFs)                      Pitx2              Shroom3 

                                                                                                                 <----Cytoskeleton driven 

                                                                                               Rock1/2                                  

                                                                              

                                                                                          Cell shape/contractility                    

                                                                                               LR organ patterning 

Figure 7 Proposed model for Shroom3 involvement in LR patterning. Flow diagram illustrating key interactions in early embryonic LR
development. Nodal is expressed asymmetrically at the left of the node (mouse), gastrocoel roof plate (Xenopus) or Kuppfer’s vesicle (zebrafish),
followed by asymmetric Nodal expression in the left lateral plate mesoderm. Pitx proteins bind the Shroom3 promoter to activate expression.
Studies from animal models also suggest a role of cytoskeleton-driven polarity in LR asymmetry establishment. LR, left-right; TF, transcription
factors.
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the same homozygous region on chromosome 4 but was
later excluded because of its presence in the 1000 Gen-
omes project data. PCR products were sequenced using
BigDye Terminator and an ABI 3730XL DNA Analyzer.
Sequence analysis was performed via Bioedit Sequence
Alignment Editor, version 6.0.7 [59]. All positive find-
ings were confirmed in a separate experiment using the
original genomic DNA sample as template for new
amplification and bi-directional sequencing reactions.

Abbreviations
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