
From quantitative trait locus mapping and linkage 
analysis to genome-wide association studies (GWASs), 
genetic markers have been used to locate causal genes 
underlying Mendelian and complex traits with impressive 
success: the molecular basis for nearly 3,000 Mendelian 
disorders is known [1] and over 4,500 single nucleotide 
polymorphisms (SNPs) have been associated with a 
variety of human traits and complex diseases [2]. �ese 
studies rely on linkage with the disease-causing variant 
and, by their very nature, indirect genetic marker studies 
have limitations. �e causal variant or gene remains 
unknown for the majority of the 4,500 SNPs associated 
with complex disease and for over 3,500 Mendelian 
disorders. New sequencing-based studies have emerged 
and are poised to change genetic mapping fundamentally 
by enabling the direct identification of causal sequence 
variants in a single experiment. We will no longer have to 
rely on linkage with the disease-causing variant; instead, 
by obtaining full sequence data for all genes we can now 
directly test for association with disease. As we have 
learned in the past few years, however, there is a great 
deal of human genetic variation [3] and finding the causal 
variant among thousands of candidates can be difficult.

Here we review the computational and statistical 
approaches that have emerged for managing these data in 
this rapidly exploding field. First, we briefly review the 

process for identifying variants in next-generation 
sequencing (NGS) studies and then discuss strategies for 
identifying the causal variant in Mendelian disorders 
among the total number of variants identified. We also 
discuss strategies for identifying the causal gene(s) in 
complex diseases among all genes in the genome, before 
outlining some challenges facing current exome 
sequencing studies.

Variant discovery in exome sequencing projects
NGS methods have been developed that harness 
massively parallel DNA sequencing [4] and enable large-
scale sequencing projects that have applications ranging 
from cataloging genetic diversity on a population level [3] 
to identifying a disease-causing variant in a single 
individual, which might lead to directed therapy [5]. 
Most large-scale medical sequencing projects so far have 
focused on the protein-coding region of the genome (the 
‘exome’). �is has been driven in part by cost (whole 
genome sequencing is still relatively expensive for large 
sample sizes), biology (most known examples of disease-
causing variants alter the protein sequence), and practical 
considerations (there is currently little consensus on 
interpreting non-coding genetic variation).

Various methods have been developed to select a 
subset of the genome for sequencing, but only solid-
phase hybridization [6] and liquid-phase hybridization 
[7] have been commercially applied for selecting the 
entire human exome as the target for sequencing.  
After target enrichment, sequencing is performed using 
various NGS technologies, including reversible 
terminator reactions, sequencing by ligation, 
pyrosequencing and real-time sequencing [8]. �ese 
generate millions of short sequence copies, or reads, tiled 
across the portions of the reference genome that were 
targeted. Although numerous algorithms have been 
developed to align NGS reads to the reference genome 
(Bowtie, Short Oligonucleotide Analysis Package (SOAP) 
and Blat-like Fast Accurate Search Tool (BFAST), among 
others [9]), most sequencing projects use Mapping and 
Assembly with Qualities (MAQ) [10] or the Burroughs-
Wheeler Aligner (BWA) [11] because of computational 
efficiency and multi-platform compatibility. �e resulting 
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aligned sequence is then inspected for positions that vary 
from the human reference sequence and are identified as 
SNPs.

As with alignment tools, many algorithms have been 
developed to identify a high-quality set of variants in 
NGS projects. Most current SNP discovery tools rely on 
the calculation of genotype likelihoods at each position 
[10], defined as the probability of observing the  
given sequencing data (base calls and base quality  
scores) at that position given a set of underlying 
genotypes. Bayesian posterior probabilities can then be 
calculated for each potential genotype [12]. Two popular 
tools for SNP discovery in NGS data that are easily 
incorporated into data-processing pipelines are 
SAMtools [13] and the Genome Analysis Toolkit 
UnifiedGenotyper [14,15]. Other tools have been 
developed to exploit aspects of specific types of NGS 
technologies (optimizing base quality estimates from 
pyrosequences, for example) [16-18] or low-coverage 
sequencing data [18,19].

By applying the appropriate tool one can identify a set 
of positions in the sequencing data that are different from 
the reference sequence along with an indication of 
genotype quality. Typically 15,000 to 20,000 variants are 
discovered per exome, with the variation in this number 
occurring from different exome target definitions [20-23] 
(a target set with fewer genes or exons would be expected 
to have fewer total variants) and ancestry (individuals of 
African ancestry have more variants per exome than 
individuals of European ancestry [3], for example). By 
contrast, about 3 million SNPs per genome are discovered 
using whole-genome sequencing [24] because of the 
larger sequencing target (whole genome sequencing 
targets about 3 Gb, whereas the typical exome target is 
about 33 Mb). To facilitate the processing and sharing of 
these large datasets, the Variant Call Format (VCF) text 
file format [3] is emerging as the accepted format for 
reporting sequence variation from NGS projects, and the 
SAM/BAM file format is routinely being used for storing 
and sharing raw NGS data [13].

Challenges for variant discovery in exome sequencing 
projects
Because even a single base-pair change can be associated 
with disease, SNP discovery algorithms must robustly 
distinguish true variation from sequencing errors. This 
challenge is magnified in exome sequencing projects, in 
which discovering rare variants is often the goal. NGS 
has an inherently higher per-base error rate than Sanger 
sequencing [25] but is generally thought to compensate 
for these errors with much higher coverage (most NGS 
experiments for disease-association generate an average 
of greater than 20- to 30-fold coverage). Despite this 
degree of coverage, however, the higher error rate of NGS 

can introduce false-positive associations if cases and 
controls have differential coverage depths [26]. In large-
scale sequencing projects aimed at discovering rare 
variants associated with complex disease, differential 
coverage between cases and controls should be one of the 
quality control metrics (of potentially many); however, a 
standardized quality control approach to NGS data has 
not yet emerged.

Applying exome sequencing to Mendelian 
disorders
Exome sequencing has been successfully used to find the 
causal variant in several Mendelian disorders, such as 
Miller syndrome [27] (a rare autosomal recessive disorder 
characterized by craniofacial abnormalities), Kabuki 
syndrome [28] (an autosomal dominant form of mental 
retardation with facial abnormalities), and many others 
[29]. It is emerging as an attractive method for disease-
gene mapping in Mendelian traits when linkage studies 
have been inconclusive or impossible [23] (often owing to 
low numbers of affected individuals) or when looking for 
causal de novo mutations [20,28]. Successful studies have 
typically analyzed fewer than ten individuals and often 
only affected individuals have been sequenced. These 
small studies are underpowered for detecting association 
using currently available association tests and use a 
different analytic approach for novel gene discovery 
compared with methods developed for the analysis of 
complex diseases.

Identifying causal variants: filtering
Various heuristic filtering methods have been used to 
narrow the search for the causal variant from about 
20,000 to often a single variant, or to a single gene (with 
several independent variants; Figure 1). In general these 
heuristic filters rely on four main assumptions: (1) the 
causal variant will alter the protein coding sequence; 
(2) it will be extremely rare (often assumed to be shared 
only by cases in one family); (3) every carrier of a putative 
disease-causing variant will have the phenotype 
(complete penetrance); and (4) every individual with the 
disorder will carry the putative disease-causing variant 
(that is, complete detectance, or 100% probability of 
observing a genotype given the phenotype). Functional 
annotation can divide variants into synonymous variants 
(those that do not change the amino acid sequence), 
missense variants (those that introduce an amino acid 
change), and loss-of-function variants (those that 
prematurely truncate proteins and those disrupting 
protein splicing). Approximately 50 to 75% of variants 
can be removed from consideration by focusing only on 
nonsynonymous (protein-altering) changes [30,31]. Some 
studies further divide variants into different classes on 
the basis of the predicted effects of the protein alterations 
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(most commonly using PolyPhen [32], SIFT [33], GERP 
[34] or PhyloP [35]). Under the assumption that variants 
responsible for Mendelian disorders will not be present 
in publicly available databases of human genetic 
variation, investigators have removed variants for further 
consideration if they are found in HapMap [36], 1000 
Genomes Project [3], dbSNP [37], and privately available 
variants from other exome sequencing projects (typically 
shared controls or cases for other phenotypes sequenced 
locally). Restricting the search to nonsynonymous 
variants not present in available databases currently 
reduces the list of putative causal variants to 
approximately 200 to 500 [23,27,38].

Finding causal variants under a recessive model
To further narrow the search, investigators have imposed 
a recessive model of disease when the pedigree suggests 
this mode of inheritance, requiring a putative causal 

variant to be present in a homozygous state for all 
individuals (while absent in public databases), or for 
individuals to be compound heterozygotes in the putative 
gene (carrying two separate variants in the same gene), 
which can reduce the list to a single variant or gene 
[20,22,23]. This has been successfully performed in at 
least 11 studies of recessive disorders with various 
numbers of individuals down to as few as one, in which a 
single individual with Perrault syndrome (ovarian 
dysgenesis with sensorineural deafness) was found to 
have two separate non-synonymous variants in 
HSD17B4, a gene that is involved in peroxisomal fatty 
acid β-oxidation.

These simple filtering techniques may not be sufficient, 
however, and additional approaches might be needed to 
further narrow the search. An example of this was the use 
of an identity by descent analysis in a sequencing study to 
discover the cause of hyperphosphatemia mental 
retardation syndrome [39]. After common variants were 
excluded from the list of shared variants among three 
affected individuals, 14 candidate genes were left; of 
these, however, only two were found in regions of the 
exome that were inferred to be identical by descent. PIGV 
(encoding phosphatidylinositol glycan class V), a gene 
that is involved in the synthesis of glycosyl-
phosphatidylinositol, was identified as the causal gene 
after the final two candidate genes were sequenced in 
additional families. Our guess is that after the ‘low-
hanging fruit’ are found, additional novel methods 
incorporating techniques from population and statistical 
genetics will be needed to identify causal genes in 
sequencing projects in which the answer is not 
immediately apparent.

Finding causal variants under a dominant model
In contrast to the autosomal recessive model of disease, 
there have been fewer published examples of novel gene 
association with autosomal dominant disorders (only 
four have yet been published [29]), perhaps highlighting 
the relative difficulty in finding such causal genes with 
exome sequencing. The general approach in the 
dominant model also relies on filtering a list of 
nonsynonymous variants to exclude those previously 
identified in either public databases or shared control 
exomes, and it requires affected individuals to be 
heterozygous for the same variant [31] or to be 
heterozygous for different variants in the same gene [28]. 
As a proof of principle for exome sequencing in gene 
discovery for Mendelian disorders, the exomes of four 
individuals with Freeman-Sheldon syndrome (a rare 
autosomal dominant disorder previously known to arise 
from mutations in myosin heavy chain 3, MYH3) were 
sequenced in one of the first publications detailing exome 
sequencing of multiple individuals [22]. MYH3 was 

Figure 1. Typical heuristic filtering applied to exome sequencing 
projects aimed at novel gene discovery for Mendelian disorders, 
along with key assumptions at each step. Each individual carries 
approximately 3 million SNPs. Sequential filters shown here can 
be applied to reduce the number of potential disease-associated 
variants.
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identified as the only gene containing non-synonymous 
variants in all four individuals while being absent from 
dbSNP and other control exomes.

Challenges for exome sequencing for Mendelian disorders
All exome sequencing studies for gene discovery in 
Mendelian disorders have relied on the assumption of 
complete penetrance. Under this assumption, they 
exclude variants from consideration if present in public 
catalogs of human genetic variation or unpublished 
datasets. As these databases expand, however, disease-
causing variants might appear in one or more publicly 
available datasets. The limitation of requiring absence 
from these datasets is also apparent when one allows for 
a genetic model of incomplete penetrance (that is, if the 
phenotype is present in only some fraction of carriers). In 
the future such a filtering strategy might need to specify a 
minor allele frequency threshold in such datasets as 
opposed to requiring complete absence. The converse of 
penetrance (the probability of observing a phenotype 
given a genotype) is detectance (the probability of 
observing a genotype given a phenotype), and almost all 
exome sequencing studies for Mendelian disorders have 
relied on a model of complete detectance. The causal 
gene for Kabuki syndrome, however, was found only after 
allowing for incomplete detectance [28], and might not 
have been identified as MLL2 (mixed lineage leukemia 2) 
if the discovery panel had not been so enriched for 
carriers (90% of the discovery panel carried a loss-of-
function variant in MLL2 compared with 60% of the 
replication panel). In the future, better tests will be 
needed that incorporate incomplete penetrance and 
detectance. However, it is clear that integration of gene 
length will be critical, as longer genes will dominate the 
results given the greater numbers of variants due to their 
size.

Applying exome sequencing to complex disease
GWASs have been performed for many complex traits 
and have identified associations with thousands of 
common variants (minor allele frequency typically over 
5%), each conferring a modest increase in risk among 
carriers (with odds ratios rarely above 1.3 [40]). These 
‘risk alleles’ are typically not causal and are associated 
with the phenotype of interest because of linkage with 
the causal variant. Exome sequencing studies 
fundamentally differ from GWASs because, in theory, 
they enable unbiased variant discovery and allow for 
direct association between phenotype and causal variant. 
The driving hypothesis behind complex disease exome-
sequencing studies, motivated by the results of early 
sequencing studies [41-44], is that multiple rare variants 
in protein-coding genes contribute to the trait of interest. 
Focusing on rare genetic variation is also supported by 

studies predicting that numerous functional and 
deleterious variants segregate in the population at 
frequencies (0.5 to 5%) too low to be detected by GWASs 
[45-47]. These rare variants pose an analytical challenge, 
however, because they are present in so few individuals 
that there is low power to detect an association. Although 
we are still awaiting the results of the first exome 
sequencing studies for complex diseases, we review 
(below and in Figure 2 and Additional file 1) the available 
tests for rare variant association, some of which are likely 
to be applied in ongoing projects (such as the Exome 
Sequencing Project from the National Heart Lung and 
Blood Institute [48]).

Single variant tests
The simplest approach to analyzing variants from exome 
sequencing data is to examine each one individually for 
association with the given phenotype. For example, 
dichotomous traits (myocardial infarction, diabetes, 
schizophrenia, and so on) can be analyzed using the χ2 
test for contingency tables, Fisher’s exact test, Cochran-
Armitage test for trend, or logistic regression [49]. These 
methods test for an enrichment of the ‘risk’ allele in cases 
or controls (if seen more frequently in controls, it would 
be deemed a ‘protective’ allele). An example would be 
finding a variant present in 3% of cases but only 1% of 
controls. Whether this overrepresentation is statistically 
significant depends on the total number of individuals in 
the study and the required level of statistical stringency. 
Quantitative traits (such as blood lipid levels, body mass 
index or height) can be analyzed by linear regression [49]. 
By definition, rare variants have low population 
frequency, and the statistical power to detect association 
with a phenotype is low for modestly sized studies. For 
example, assuming 10% disease prevalence, in a study 
with 1,000 cases and 1,000 controls, there is 2% power to 
detect an association for a rare variant (minor allele 
frequency of 0.5%), with a threefold effect at the genome-
wide significance level of 5 × 10-8.

Multiple variant tests
Groups of variants can be analyzed together in an 
attempt to improve power. In whole genome sequencing, 
a sliding window can be used to group variants, whereas 
in exome sequencing the natural unit of grouping is one 
gene. Alternative splicing can complicate this analysis, 
however, as a single variant might belong to multiple 
transcripts of the same gene with different functional 
effects (a variant might be classified as synonymous for 
one transcript and missense for another, for example). To 
extend the single variant tests above, single-SNP P-values 
from multiple variants can be combined by Fisher’s [50] 
or Stouffer’s [51] methods. Variants can also be combined 
in multiple logistic or linear regression models. However, 
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Figure 2. An illustration of rare variant association tests. Cases and controls from a hypothetical complex disease exome sequencing project 
are depicted. The horizontal bars indicate aligned exome sequences for individuals; stars indicate the presence of a non-reference allele. Variants 1 
and 4 represent low-frequency variants with predominance in cases, Variant 2 represents a singleton, Variant 3 represents a common variant, and 
Variant 5 represents a low-frequency variant exclusive to controls. For simplicity, these variants are displayed with similar frequency, although very 
rare variants represent the majority of variation in real sequencing studies. As illustrated, the speci�c genetic architecture underlying the complex 
phenotype of interest is expected to have a large role in which test is most powerful for detecting an association. Collapsing methods may be best 
if a burden of rare variants drives the phenotype, whereas aggregation methods may be more powerful if the full allelic spectrum is contributory. 
Finally, for genes harboring both risk and protective alleles, bidirectional tests may be most appropriate. See Additional �le 1 for examples of 
methods of each type. MAF, minor allele frequency.
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because these simple approaches still essentially test each 
variant separately and then combine evidence from 
multiple variants, the results must be adjusted for many 
degrees of freedom, which will limit the power of these 
approaches.

Given the large amount of human genetic variation, it 
would not be surprising to find neutral variants in a 
causal gene. Therefore, selecting a subset of variants for 
regression can improve the power to detect an 
association. For example, synonymous variants are 
typically discarded because they are less likely to be 
causal. Shrinkage and regularization regression methods 
such as LASSO [52], ridge regression [53], and stepwise 
regression have been proposed for association studies. In 
these methods, the regression model is fitted while 
accounting for the cost of adding each additional variable 
to the model. Other approaches, such as logic regression 
[54] and the method proposed by Han and Pan [55], use 
data-driven combinations of variants to select variables 
for regression.

Collapsing methods
Another approach to increasing power is to collapse 
multiple rare variants together for analysis. The 
framework of these tests involves collapsing all variants 
across a unit (each gene being a unit, for example) 
together so that even if variants are individually rare, they 
might be jointly present in sufficient frequency to be used 
in a univariate test. When used for dichotomous traits, 
collapsing methods test whether the overall burden of 
rare variants is higher in cases than controls. For 
example, CAST [56] examines the differences in the 
number of individuals with one or more rare variants 
between cases and controls, and the CMC test [57] is 
based on comparison of non-synonymous rare variants 
between cases and controls. These tests rely on 
designating a set of variants as ‘rare’ for inclusion, and it 
is not surprising that altering this definition can greatly 
influence the association results. Unfortunately there is 
little guidance in this area and allele frequency thresholds 
of 1% or 5% are commonly (and arbitrarily) chosen. An 
alternative approach has been developed that uses the 
data to select the best variants. The variable-threshold 
test [58] finds the frequency threshold that best 
discriminates cases from controls. Similarly, RareCover 
[59] aims to find the optimal set of variants to collapse 
together. Although there have been no published 
complex-disease exome sequencing studies, these tests 
have been applied to candidate gene sequencing results 
[58,60].

Aggregation methods
An alternative to the collapsing methods involves 
aggregation, which aims to summarize the information 

from many variants while appropriately weighing the 
contribution of each variant. Although collapsing 
methods discard variants that are considered unlikely to 
be causal, aggregation methods aim to include the full 
frequency spectrum of alleles (rare and common) into 
the association test. The weighted-sum statistic [61] 
weighs variants according to allele frequency (rare 
variants are given stronger weighting) because of an 
assumption that functional variants of large effect are 
kept at a low population frequency by purifying selection. 
Weighing variants by apparent effect size is also effective 
and is implemented in KBAC [62] and the test described 
by Ionita-Laza et al. [63]. These tests have been applied to 
candidate gene sequencing results [58].

Extensions to these methods
Accounting for covariates
The association of genotype with phenotype can be 
confounded by various factors such as ancestry, age and 
sex. Methods that can directly account for such 
covariates can be advantageous in discerning the causal 
effect of genetic variants. When a test does not directly 
accommodate covariates, regressing the genotype and 
phenotype on the covariate and using the residuals for 
the association analysis can remove the effect of the 
covariate on the phenotype.

Accounting for risk and protective alleles together
The effects of genetic variants can be neutral, protective 
or detrimental for a given disease trait. Many existing 
methods test for a frequency differential of variants 
between cases and controls and a mixture of positive and 
negative effects will adversely affect these tests. For 
example, PCSK9 (encoding proprotein convertase 
subtilisin/kexin type 9), a gene associated with cholesterol 
levels and coronary artery disease, contains both risk-
lowering loss-of-function variants and gain-of-function 
variants that increase risk [64]. Testing for a difference in 
the aggregate of these alleles in either cases or controls 
would not be expected to yield significant results as cases 
will be enriched for risk variants and controls will be 
enriched for protective variants, effectively canceling 
each other out in the sum total. Methods that account for 
a mixture of directions of effects can be more powerful in 
such scenarios, and several tests explicitly account for 
bidirectionality of effects (Additional file 1). The 
prevalence of genes with variants having bidirectional 
effects is currently unknown but loss-of-function variants 
are expected to be more abundant in the general 
population and this bidirectional effect may be less 
apparent for sequencing studies not focusing on 
phenotypic extremes. Regardless, it is likely that multiple 
genes in a common pathway would have alleles with 
bidirectional effects, and if a collapsing method is used to 
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group variants across a pathway, these tests can be 
increasingly used.

Incorporating functional annotations
Several studies have shown that using functional 
information improves the power to detect association 
[58,65-67]. For protein-coding variants this can include 
the predicted effect on protein function, using programs 
such as SIFT [33,68], PolyPhen [32,69], Panther [70,71], 
MutationAssessor [72], SNAP [73] and PupaSuite [74]. 
For non-coding variants, evolutionary conservation and 
functional effects can be assessed using programs such as 
PhyloP [75], PhastCons [76], SCONE [77] and SiPhy [78].

Statistical power
The statistical power of the methods to test for 
association with rare variants has not been systematically 
analyzed. Although articles that describe novel associa-
tion tests usually provide power comparisons to previous 
methods, these calculations are prone to being performed 
under specific assumptions about the genetic architecture 
of the trait that often favors the test being implemented 
and might not be representative for human traits in 
general [79,80]. Extending the results from theoretical 
studies [81] and early sequencing studies of candidate 
genes [41,42,82] would suggest that approximately 10,000 
exomes are needed to achieve genome-wide significance 
for complex traits (in which a Bonferroni-corrected P-
value for 20,000 genes would require P < 2.5 × 10-6). Even 
the most powerful of the methods available for analyzing 
sequencing data will not lower these requirements 
substantially. It would not be surprising, then, that the 
first exome sequencing association studies will be under-
powered and exome sequencing will need to be replicated 
with additional sequencing or genotyping (or both) [83].

Which test(s) should be used?
The decision regarding the use of specific tests will 
depend on many factors, including study design (if the 
trait is quantitative or dichotomous), the assumption of 
the underlying genetics (whether only rare variants or 
both rare and common variants are expected to 
contribute to disease, whether protective and risk 
variants are expected), and pragmatic considerations 
(which test is available for use). Most importantly, 
different tests are powered to detect associations for 
different aspects of genetic architectures (number of 
affected loci, associated population frequencies, or 
associated effect sizes and directions) [79,84,85]. 
Currently, no software suite contains more than a small 
number of tests and input formats vary between available 
software packages, which complicates applying multiple 
tests to the same study. In the future we expect multiple 
tests to be implemented in available software suites.

Challenges for exome sequencing applied to complex 
disease
Numerous tests have been developed for analyzing 
sequencing data (Additional file 1). Running a large 
battery of these tests comes at the cost, however, of 
having to penalize multiple hypothesis testing, as well as 
potential confusion over inconsistent results (a gene can 
be highly ranked in one test and not significant in 
another, for instance). Regardless of the test, unless rare 
variants have a surprisingly large phenotypic effect on 
complex diseases, achieving sufficient statistical power 
will require large studies. DNA sequencing costs will 
continue to decrease, however, and adequately sized 
studies might soon be performed (simulations suggest 
that 5,000 cases and 5,000 controls would provide 
adequate power to detect association for rare variants 
with modest effect [81]). Combining results from 
different studies on the same phenotype is an attractive 
intermediate option (as has been seen with increasingly 
larger GWAS meta-analyses). This will probably prove 
more challenging than GWAS meta-analysis, however, as 
differences in results from multiple sequencing centers 
(perhaps with different sequencing technologies or 
different exome target definitions, for example) can 
introduce significant technical artifacts. Once putative 
variants have been discovered, the replication strategy for 
exome studies will depend on the genetic architecture 
discovered in the analysis. Disease-associated low-
frequency polymorphisms can be verified with follow-up 
genotyping. If the phenotype is caused by a collection of 
singleton variants, however, further sequencing in 
additional individuals will be needed and might prove 
expensive (especially if multiple genes are being 
considered or if genes are large or have many exons).

Prospects for the future
The growing number of exome sequencing studies 
demonstrates the power of this approach in mapping 
genes involved in Mendelian phenotypes. The success of 
this approach is uncertain, however, as publication bias 
makes it unclear how many studies fail to identify a 
causal locus by exome sequencing. Non-allelic 
heterogeneity, regulatory variation and structural 
variation underlying phenotypes all pose challenges for 
sequencing-based discovery of Mendelian genes. It is 
possible that new statistical and computational methods 
will increase the already impressive success rate of exome 
sequencing studies for Mendelian disorders.

Although we are still awaiting the completion of the 
first exome sequencing studies focusing on complex 
phenotypes, the early studies will probably be under-
powered because current sequencing costs prohibit the 
adequately sized samples discussed above (10,000 
samples). Owing to this lack of power, the first studies 
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may not result in the discovery of numerous novel loci 
involved in traits of medical relevance. We believe that 
the enthusiasm for sequencing studies should not be 
diminished, however, because this technology has already 
shown great promise in the field of Mendelian disorders 
and sequencing costs will continue to decline, leading to 
adequately powered studies for complex traits. Tech-
nology already allows for the complete characterization 
of genetic diversity. The success of complex trait genetic 
research will now be determined by our ability to 
interpret the data and assemble sufficiently large well-
phenotyped clinical populations.
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Additional file 1: A table of available statistical methods for 
analyzing variants discovered in sequencing studies.
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