
Studying the collaborative effects of multiple regulators is 
a key to understanding the basic principles of gene 
regulation. He et al. [1] proposed a shifted cumulative 
model to dissect combinatorial gene regulation. �ey 
discovered significant correlations between the combined 
expression profiles of regulators and the time series of 
expression of their target gene. �e work highlighted the 
importance of identifying integrative effects of multiple 
transcription factors and showed that this identification 
was possible. We did a series of experiments to study 
possible combinatorial regulatory mechanisms following 
their strategy, but we found that the correlation among 
three genes can increase significantly after time-shifted 
combination no matter whether there are regulatory 
relationships. Our observations led to the conclusion that 
such increases are not sufficient to infer cumulative 
regulation relations.

We followed the strategy in He et al. [1] to generate 
combined profiles of two regulators in our experiments. 
Specifically, let τi (0 ≤ τi ≤ τmax < n, where τmax is the maxi-
mum shift and n is the number of time points of the time 
series) be the time shift between regulator i and the target 
gene, and let Ri(t) be the expression level of regulator i at 
time point t. For regulator i, a constrained conversion 
efficiency Ci (-1 ≤ Ci ≤ 1) was chosen. �en we calculated 
the combinatorial profile expression at time point t as:

                                                                            m

A(t) = ΣCi × Ri(t – τi)
                                                                          i = 1

where m is the number of regulators (m = 2 in our study 
as we only considered the combination of two 
regulators). We used the Pearson correlation coefficient 
(PCC) as the measurement of the correlation between a 
transcription factor (TF) or the combined profile and 
their target gene. We adjust τi to get the combined 
profile that has the largest correlation with the target 
gene. �e analysis of He et al. [1] indicates that a notable 
increase in the corre lation of a target gene with the 
combined profile after time-shifting could indicate the 
existence of collaborative regulation.

We first experimented with the yeast cell-cycle dataset 
of Cho et al. [2] that was analyzed by He et al. [1]. We 
generated five datasets from these data. �e first contains 
817 two-regulator motifs (two regulators and a common 
target) in the regulatory network [3] (the original set). 
(He et al. [1] also removed genes not included in the 
Saccharomyces genome database [4] and motifs that had 
only one target, so their dataset has only 544 motifs.) �e 
other four datasets are randomized datasets used as con-
trols. Random sets 1 and 2 are shuffled from the original 
set by randomly assigning regulator-target relations 
among all genes. Random sets 3 and 4 are generated by 
keeping the structure of regulator-target motifs in the 
original data but shuffling the genes at random. �e PCC 
improvement is calculated as the PCC of the combined 
TF profile with the target gene minus the average of 
PCCs between each profile of the two TFs and target 
gene. �e box-plots in Figure 1 show the distribution of 
the observed PCC improvement after time-shifting for 
these five datasets. We can see that most improvement 
values are between 0.2 and 0.4, and there is no significant 
difference between the improvements in the original set 
and those in the random sets. We applied the Wilcoxon 
rank-sum test to compare the mean improvement for the 
original set and that for the random sets and did not find 
a significant difference. We also did the same experiment 
using the data of Spellman et al. [5] and obtained similar 
results (data not shown).

�e cell-cycle data are periodic. We used a mouse liver 
development dataset [6] to ask whether the above obser-
vation is due to the periodic nature of the data, as the 
liver development data are non-periodic. We selected 
169 two-regulator motifs from the regulation network 
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generated by gene sets used in Liu et al. [7]. We removed 
some motifs that did not have time series data; this 
dataset then had 116 motifs. We calculated PCC 
improvements after the time-shifted combination of TFs. 
As negative controls, we randomly shuffled the regulation 
relationship among these motifs, as for the cell-cycle 
data. Figure 2 shows the box-plots of the PCC improve
ment of the different groups. It can be seen that, whether 
or not a gene is the common target of two regulators, 
there is a noticeable increase in the PCC under the 
shifted cumulative model. The Wilcoxon rank-sum test 
supported this observation.

We also used the local clustering coefficient (LC) [8] as 
the measurement of correlation as in He et al. [1] and 
used the same threshold (LC > 13 as the threshold for 
significant correlation [8]). The same constraint on the 
time shift was used as in the original paper [1]. In these 
experiments, we removed regulator pairs that had only a 
single target, and also removed genes that were not 
included in the Saccharomyces Genome Database. This 

gave us 515 two-regulator motifs from the data of Cho et 
al. [2]. (The difference in the number of motifs from the 
544 in [1] may be due to an update of the database.) The 
time shift between two regulators is fixed among their 
multiple targets. We calculated the LC and counted the 
number of significant correlations in the original and 
shuffled data. For the original data, the proportion of 
significant motifs is 36.12%, close to that observed by He 
et al. [1]. We generated 50 random datasets by shuffling 
the genes while keeping the structure of the regulation 
motifs. Figure 3 shows a histogram of the proportion of 
significant motifs detected for the 50 random datasets. 
We can see that the proportion observed in the original 
data is not significantly higher than that in the random 
data. We also did the same experiments using the data of 
Spellman et al. [5] and of Li et al. [6] and observed similar 
results (data not shown).

One can understand the reason for the above obser
vation using the framework of vector decomposition. 
Any time series of n points can be treated as a vector in 

Figure 1. PCC improvements of time-shifted combined profiles with targets in Cho et al.’s [2] cell cycle data and randomized data.
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this n-dimensional space so that it can be expressed as a 
weighted sum of any n linearly independent vectors. 
When considering two regulators and their target gene, 
the time-shifting procedure is equivalent to searching 
through all combinations of two vectors to best represent 
the target vector. It can be expected that such searching 
will improve the correlation between the combined 
profile and the target even if the genes are unrelated. This 
can also be viewed as an overfitting problem as there are 
too many parameters in the model. If we can further 
restrict the number of parameters or their search space 
by properly introducing extra knowledge or hypotheses, 
the overfitting problem may be eased or solved.

In conclusion, our experiments illustrate that the 
observed significant correlation after time-shifting 
may not be able to be used to infer shifted cumulative 
regulation. Although we believe that there can be 
dynamic cumulative regulations in cells, we still need 
further data and other methods of data analysis to 
identify such regulations.

Figure 2. PCC improvements of time-shifted combined profiles with their targets in Li et al.’s [6] mouse liver development data and 
randomized data.
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Figure 3. Histogram of the proportion of ‘significant motifs’ 
detected in the random data, and the proportion in the original 
data (indicated by the vertical line at 0.3612).
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Feng He, Jan Buer, An-Ping Zeng and Rudi Balling 
respond: 
The observations reported by Ye et al. above describe the 
well-known problem of overfitting in computational 
biology. The experiments carried out by them seem to 
indicate that the shifted cumulative model reported by us 
[1] of using combinatorial expression profiles based on 
the integration of conversion efficiencies and of time 
delays may not be able to be used to infer shifted 
cumulative gene regulation.

However, there are essential differences between the 
experiments carried out by Ye et al. and those reported 
by us. The key difference is that we introduced more con
straints in our original paper [1] than they did in their 
approach. We used a total of eight constraints (Figure 4) 
in order to limit the potential solution space for the two-
regulator convergence modes (for three-regulator models, 
even more constraints were used).

In Figure 4b, equations (i) and (ii) require that the time 
when a given regulator starts to function is independent 
of its different individual target genes in the 
corresponding convergence mode. Note that the starting 
time for different individual regulators in a given 
convergence mode might be distinct from each other. 
This is also applied to the constraints concerning the 
conversion efficiency and the latest starting time of 
different regulators. Equations (iii) and (iv) ensure that 
the conversion efficiency used for a given regulator is the 
same for different target genes in the corresponding 
convergence mode. In addition to restricting our analysis 
to convergence modes with more than one target gene 
(equation (viii)), we have also included the requirement 
that the target genes are not activated (or suppressed) 
earlier than the time when the regulators start to function 
(equation (v)). Furthermore, the time when a given 
regulator starts to function is constrained to be within 

Figure 4. The constraints used in [1] to find biologically meaningful solutions and the ratios of success percentages between the original 
network and random networks. (a) The transcriptional regulatory structure of a convergence mode with two regulators (R1 and R2) and n target 
genes (G1, G2…, Gn). (b) The equations of introducing constraints used in [1]. The symbol tri indicates the time when the corresponding regulator i 
starts to function. Ci represents the conversion efficiency of the regulator i. Ci,j and tri,j indicate the values used for the regulator i and the target gene 
j. ‘min’ in equation (v) means the minimal value. (c) The ratio of the success percentage at each corresponding threshold in a relatively high score 
range (≥13) between the original network and random networks. This panel was generated using the same data as used for Figure 2b of [1].
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one cell cycle (we used ten time points in the data of Cho 
et al. [2], which cover approximately one cycle) by 
equations (vi) and (vii). We explained all the constraints 
used in our work in the sections ‘ Quantification of 
shifted cumulative regulation of gene expression: princi
ple of the approach’ and ‘Conversion efficiency and time 
delay among regulators’ of our original paper [1]. All 
eight equations were used as constraints to optimize 
correlation between the combinatorial expression profile 
of the two regulators and the profiles of all their target 
genes at the same time (defined in paragraph 2 of the 
section ‘ Time delay from regulators to target genes’ of 
[1]). The same constraints were also used for randomized 
networks (see the sections ‘Significant difference between 
results for the original and randomly generated expres
sion data and between results for the original network 
and randomly generated networks’ and ‘Multiple hypo
thesis testing’ in [1]).

Ye et al. state, ‘In these experiments, we removed 
regulator pairs that have only a single target …’, which 
indicates that they have used the constraint indicated by 
equation (viii). They also write, ‘The time shift between 
two regulators is fixed among their multiple targets’. This 
does not necessarily mean that the time when a given 
regulator starts to function is fixed among the multiple 
targets. Even if they fixed the time when the given 
regulator starts to function (indicated by our equation (i) 
and (ii)), all the other five important constraints 
(equations (iii), (iv), (v), (vi) and (vii)) out of the eight 
equations were apparently not used in their approach. It 
is also not clear whether they have used the same 
definition of optimal correlation as we did.

After using the eight constraints and the definition of 
optimal correlation, the success percentage at each 
corresponding threshold in a relatively high score range 
is significantly higher in the original network than that in 
random networks (for details see the section ‘Significant 
difference between results for the original and randomly 
generated expression data and between results for the 
original network and randomly generated networks’ in 
[1]). The average ratio of the success percentages between 
the original network and random networks in the range 
of significant correlation thresholds (≥13) is 1.865.

In addition, it seems to us from Figures 1 and 2 that Ye 
et al. have mixed the low scores and high scores together, 
which dilutes the contribution of high scores to the 

average values. This leads to a loss of information about 
the proportion of high scores and should not be done. In 
contrast to Ye et al., we used only the scores in a 
relatively high range because those high scores might 
indicate biological relevance and cannot be easily 
obtained by chance. We therefore successfully reduced 
the overfitting problem, as shown in Figure 2b,d of the 
original paper [1].

The overfitting problem is one of the key issues in 
computational/systems biology and is often not appro
priately addressed. In almost all modeling approaches 
attempts are made to strike a balance between the 
appropriate number of variables and constraints. We 
tried to integrate as many constraints as possible to main
tain the biological relevance of the model. It seems to us 
that the inability of Ye et al. to derive significant differ
ences between the experimental and random networks is 
due to the fact they have used far fewer constraints, 
leading to overfitting.

Published: 27 April 2011
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