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Abstract

The ChIP-chip and ChIP-seq techniques enable genome-wide mapping of in vivo protein-DNA interactions and
chromatin states. The cross-platform and between-laboratory variation poses a challenge to the comparison and
integration of results from different ChIP experiments. We describe a novel method, MM-ChIP, which integrates
information from cross-platform and between-laboratory ChIP-chip or ChIP-seq datasets. It improves both the
sensitivity and the specificity of detecting ChIP-enriched regions, and is a useful meta-analysis tool for driving
discoveries from multiple data sources.

Background
Chromatin immunoprecipitation (ChIP) followed by
array hybridization (ChIP-chip) and ChIP followed by
massively parallel sequencing (ChIP-seq) are two power-
ful techniques for profiling in vivo DNA-protein interac-
tions [1,2] and histone marks on a genome-wide scale
[3,4]. The genome-scale data generated by these two
technologies provide information essential to our under-
standing of the transcriptional regulation underlying
various cellular processes.
ChIP-chip/seq experiments are often performed on

different technical platforms in different labs. Even
ChIP-chip/seq data for the same protein under similar
biological conditions can show significant variation
between laboratories and across platforms due to differ-
ences in ChIP experimental protocols and platform
designs [5]. Such variation can lead to platform- or lab-
specific false positives/negatives, making it difficult to
compare and integrate results from different ChIP
experiments, despite the development of computational
methods for analyzing ChIP data from individual
sources separately [6-14].
To address this challenge, we have developed a new

computational method and its companion software,

named MM-ChIP (Model-based Meta-analysis of ChIP
data), which enables the integrative analysis of ChIP-
chip/seq data across platforms and between laboratories.

Results
Integrative analysis of ChIP-chip data
Currently, the most popular platforms for performing
ChIP-chip experiments are high-density oligonucleotide
tiling microarrays from Affymetrix, NimbleGen, and
Agilent. These platforms differ greatly in probe lengths,
tiling resolutions, and sample-labeling protocols, which
results in platform-specific systematic bias (for example,
probe-specific behavior and dye bias) and differences in
noise features, detection sensitivity and dynamic range
[5]. These differences make it difficult to effectively
combine different datasets for detecting regions of
enrichment.
To effectively take into account inter-platform differ-

ences and allow for the normalization of data from
different sources, we designed a two-step process
(Figure 1a). In the first step, raw probe-level data pooled
from replicates are fitted to a platform-specific baseline
probe model for each data source to remove the effect
of probe sequence and genome copy number on probe
intensity, a correction that has been shown to be impor-
tant for increasing the signal-to-noise ratio [13,14]. A
sliding window-based statistical score that summarizes
the corrected probe intensity value within the window is
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then used to quantify ChIP signal enrichment at differ-
ent genomic loci (Materials and methods).
In the second step, the window-based scores are con-

verted to a Z-score for each individual data source. The
Z-scores corresponding to the same genomic loci across
different data sources are summed to give a composite
score and divided by the square root of the number of
datasets, a calculation known as Stouffer’s method [15].
Under the null hypothesis of no enrichment, this com-
posite score is distributed as a standard normal distribu-
tion. The use of the Z-score for normalization and the
choice of Stouffer’s method were motivated by the
observation that the distribution of window-based scores
is approximately normal, with a heavy right tail irrespec-
tive of technical platform (Figure 2).
To assess the performance of MM-ChIP on ChIP-chip

data, we used three ChIP-chip datasets that were gener-
ated by three labs from the same ENCODE (ENCyclope-
dia Of DNA Elements) spike-in sample using different
array platforms [5,16]. The spike-in samples contained
100 cloned genomic DNA sequences (average length
497 bp) mixed with human genomic DNA, and the
genomic DNA without the spike-in served as the con-
trol. We first evaluated the performance of MM-ChIP
on integrating replicate data from the same dataset (that

is, from the same lab and platform). Because we knew
which genomic regions were actually enriched in the
spike-in sample, we were able to plot receiver operating
characteristic (ROC) curves for the evaluation. We
found that by integrating information from multiple
replicates, MM-ChIP improved both the sensitivity and
specificity of detecting known enriched regions com-
pared with using individual replicates. Its performance
matched that of pooling the raw data from replicates for
enriched region detection (Figure 3a). With this confir-
matory result, we extended our evaluation to the inte-
grative analysis of cross-platform and between-
laboratory datasets. We found that, similar to the results
of integrating replicates from a single data source, inte-
grating data from three platforms and labs using MM-
ChIP improved both the sensitivity and specificity of
detecting ChIP-enriched regions over using individual
datasets (Figure 3b).
We further compared MM-ChIP with two alternative

methods, majority voting and region intersection, on the
same spike-in dataset. In the majority voting method, a
region is considered to have significant enrichment in
the integrative analysis if it is enriched in more than
half of the individually analyzed datasets. In the region
intersection method, which is commonly used to
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Figure 1 The workflow of MM-ChIP. Workflow illustrated for (a) ChIP-chip (b) and ChIP-seq data. MA2C, Model-based Analysis of 2-Color
Arrays; MACS, Model-based Analysis of ChIP-Seq data; MAT, Model-based Analysis of Tiling-array.
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combine results from different ChIP experiments, a
region is considered to have significant enrichment if it
is enriched in all individually analyzed datasets. We
found that MM-ChIP outperforms both methods (Figure
3b). Notably, the majority voting method performed
similarly to the best individual analysis and better than
the region intersection method (Figure 3b), indicating
that the common practice of region intersection is not
an optimal solution for integrative analysis.
After testing the performance of MM-ChIP on the

spike-in datasets, we assessed its performance using two
ChIP-chip datasets for the human estrogen receptor
(ER). These two datasets were generated under the same
biological conditions, but on two different array plat-
forms: the Affymetrix Human Tiling 1.0R Array [17]
and the Affymetrix Human Tiling 2.0R Array [18].
Because we did not know the enriched regions in these
datasets a priori, we used enrichment of the ER binding
motif to evaluate the quality of the inferred enriched
regions. By mapping the occurrence of the ER binding
motif within a 500-bp window surrounding the identi-
fied ChIP-chip peak summit, we found that the peaks
identified by integrative analysis using MM-ChIP show

consistently higher motif enrichment and thus improved
peak-calling quality compared with those identified
using individual datasets (Figure 4) with either MM-
ChIP or the well-established tool TileMap. We chose
TileMap for comparison because it has been shown to
be among the best peak-calling tools for ChIP-chip data
[19].

Integrative analysis of ChIP-seq data
ChIP-seq [20-23] has become an important alternative
technique to ChIP-chip with the emergence of next-
generation sequencing platforms, such as the Illumina
Genome Analyzer, Helicos HeliScope, and Applied Bio-
systems SOLiD. The Illumina Genome Analyzer is cur-
rently the most dominant platform, on which the vast
majority of publicly available ChIP-seq datasets were
generated. When sufficient sequencing depth is
achieved, ChIP-seq has many advantages over ChIP-
chip, including a much higher resolution, larger dynamic
range, more complete genome coverage and presumably
better signal-to-noise ratio.
Because ChIP-seq data have their own unique charac-

teristics, we designed a different strategy for integrative

Figure 2 Normal Q-Q plots of MAT/MA2C score distribution of three ChIP-chip datasets. ChIP-chip datasets generated on (a) Affymetrix,
(b) NimbleGen and (c) Agilent platforms are shown. MA2C, Model-based Analysis of 2-Color Arrays; MAT, Model-based Analysis of Tiling-array.
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peak detection compared with that for ChIP-chip (Fig-
ure 1b). ChIP-seq tags represent the ends of fragments
in a ChIP-DNA library. The tag density around a true
binding site generally shows a bimodal enrichment pat-
tern, with Watson strand tags enriched upstream of
binding and Crick strand tags enriched downstream
[9,12]. To take into account this pattern and inter-study
differences in ChIP-DNA library fragment size (Figure 5),
MM-ChIP first models the characteristic fragment size
of the sequenced ChIP-DNA library for each individual
data source. The ChIP-seq tags are then shifted toward

the 3’ direction by a distance of half of the estimated
fragment size to better represent the precise protein-
DNA interaction sites.
Next, the model-shifted tags from different data

sources are pooled for the ChIP and control samples
independently. A sliding window is then used to score
the significance of signal enrichment in the ChIP sam-
ples by comparing tags within the same window
between the ChIP and control samples based on a
dynamic Poisson model [12]. The use of this model was
shown to reduce false positive detection because it can
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Figure 3 An evaluation of the performance of MM-ChIP on ChIP-chip data is shown. (a) ROC curves of the analyses performed using
either individual replicates or all replicates from a single ChIP-chip dataset generated using an Affymetrix array are plotted. (b) ROC curves of
analyses from individual datasets and all three datasets are plotted. The integrative analyses on all three datasets were performed using MM-ChIP
(red), majority voting (pink) or the region intersection method (yellow).

Chen et al. Genome Biology 2011, 12:R11
http://genomebiology.com/content/12/2/R11

Page 4 of 10



effectively capture local tag enrichment in the genome
due to factors that are unrelated to the protein-DNA
interaction of interest, such as local chromatin structure,
copy number variation, and sequencing bias [12].
Because MM-ChIP only utilizes the 5’ end positional
information of each pooled tag for integrative analysis, it
allows for the analysis of datasets that consist of tags
with different read lengths, as long as the tags have
been mapped to the same reference genome.
To assess the performance of MM-ChIP on ChIP-seq

data, we used two recently released CCCTC-binding fac-
tor (CTCF) datasets from the ENCODE project [16].
Unlike with the spike-in ChIP-chip data, we did not
know the true in vivo CTCF binding sites a priori.

Therefore, we used enrichment of the canonical binding
motif of CTCF to evaluate the performance of MM-
ChIP for ChIP-seq peak detection. By mapping the
occurrence of the CTCF binding motif within 50 bp of
the identified ChIP-seq peak summit, we found that the
peaks identified by integrative analysis using MM-ChIP
showed consistently higher motif enrichment than those
identified by using individual datasets, and MM-
ChIP outperformed the region intersection method
(Figure 6a). We also compared the performance of MM-
ChIP with a workflow in which the first step of tag-shift
was excluded, but the same procedures were performed
in the second step. We found that exclusion of the tag-
shift step in MM-ChIP significantly decreased its
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performance (Figure S1 in Additional file 1), which
underscores the importance of modeling the fragment
size of sequenced ChIP-DNA libraries.
In the two CTCF datasets described above, the fragment
lengths did not differ considerably. However, in practice,
different experimental protocols could yield distinct
library sizes of 100 to 400 bp. We further compared the
performance of MM-ChIP with an alternative method
for the integrative analysis of datasets with varied inter-
library size differences. The alternative method first
merges the reads from different studies and then per-
forms model building and peak detection using the
MACS algorithm [12]. We chose this method for com-
parison because it is commonly used in practice. We
found that the performance of MM-ChIP remains
unchanged with varied inter-library size differences
(Δd), whereas the performance of the alternative method
deteriorates when Δd increases (Figure 6b). These
results indicate that it is important to model the library
size for individual studies separately before tag merging.

Discussion
With the rapid increase in publicly available ChIP data-
sets, the development of computational methods for the
integrative analysis of different ChIP datasets has
become an emerging challenge. Two methods that are
related to the current study have been developed
recently. JAMIE (joint analysis of multiple ChIP-chip
experiments) [24] is based on a hierarchical mixture
model to capture correlations between datasets and
allows for the joint analysis of multiple ChIP-chip

datasets that are related to the same transcription factor.
However, its current implementation only allows for the
analysis of the datasets generated on the same array
platform and does not support the integrative analysis
of ChIP-seq datasets. In addition, JAMIE relies on a
number of model assumptions about data and peak
shapes that do not necessarily hold true for many ChIP-
chip datasets. In contrast, MM-ChIP makes few assump-
tions about the statistical characteristics of ChIP-chip
data and thus could be more robust.
Another method, hierarchical hidden Markov model

(HHMM), is based on a hierarchical hidden Markov
model and was developed specifically for the joint ana-
lysis of one ChIP-chip and one ChIP-seq dataset, using
a Bayesian inference procedure [25]. However, HHMM
does not effectively support the joint analysis of ChIP-
chip datasets from different array platforms or ChIP-
seq datasets with large inter-library heterogeneity.
Moreover, its model complexity increases dramatically
with the number of the datasets, whereas MM-ChIP is
a deterministic approach with a computational com-
plexity/time that scales linearly with the number of
datasets. More importantly, the HHMM method uses
the raw hybridization signal or tag count at each geno-
mic location without effectively taking into account
platform-specific biases, such as probe behavior and
inter-study ChIP-DNA library heterogeneity, which
could introduce significant systematic errors in the
integrative analysis.
The current implementation of MM-ChIP weighs data

from different sources equally in the integrative analysis.
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Given the heterogeneity in quality of different datasets, a
more appropriate approach would be to weigh different
data sources differently, according to some statistical
measure of data quality. Stouffer’s method provides a
natural framework for treating data sources differently
by using the weighted mean of the Z-scores. For exam-
ple, if two datasets have comparable data qualities for
individual replicates but different numbers of replicates,

the weight can be proportional to the number of repli-
cates in each dataset. However, how to generally incor-
porate information about the quality of individual data
sources into an integrative analysis, especially for count
data from ChIP-seq experiments, remains an important
question.
An implicit assumption for using Stouffer’s method in

integrative analysis is that the Z-scores are independent
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Figure 6 An evaluation of the performance of MM-ChIP on ChIP-seq data. (a) The fraction of CTCF binding sites containing a canonical
CTCF binding motif is plotted as a function of the number of top-ranked binding sites for both the individual and combined datasets. The
results of integrative analysis using the region intersection method are also shown. Binding sites were ranked in ascending order by P-value.
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among different datasets at non-enriched regions. This
assumption does not necessarily hold because when
datasets are generated from the same array platform and
the probe effect is not completely removed by the
Model-based Analysis of Tiling-array (MAT)/Model-
based Analysis of 2-Color Arrays (MA2C) algorithm,
any residual probe effect could cause an artificially
enriched signal in the same genomic location across dif-
ferent datasets [26]. The aggregation of this signal could
then lead to a false positive in the integrative analysis.
When input control sample data are available, we expect
that the residual probe effect has only a minor impact
on the results of the analysis because it has a similar
effect in non-enriched regions of the ChIP and input
control samples, and its effects are cancelled out in the
MAT/MA2C score. However, when there is no input
sample, the residual probe effect could negatively affect
the integrative analysis; thus, it is important to appropri-
ately model and remove residual probe effects, as illu-
strated in a previous study [26].
Because of the lack of public ChIP-seq datasets for the

same protein of interest under similar biological condi-
tions from technical platforms other than Ilumina, our
performance assessment of MM-ChIP was limited to
Illumina datasets. Therefore, some caution needs to be
taken when the method is applied to cross-platform
datasets that are not generated on the Illumina platform.
For ChIP-seq datasets across different sequencing plat-
forms, different statistical models may be needed to
account for inter-platform variations besides variation in
inter-library size. Nonetheless, MM-ChIP is generally
applicable to most publicly available ChIP-seq datasets
because most of these datasets were generated on the
Illumina platform.
MM-ChIP currently does not provide functionality for

integrating data between array and sequencing platforms,
but this will be an important direction to explore in the
future. In addition to ChIP-chip/seq data, there are other
types of genome-wide data, including microarray expres-
sion/RNA-seq data, which provide rich information for
elucidating transcriptional regulatory networks. Most
available integrative analysis methods, including MM-
ChIP, are designed for a single data type. A challenge in
the future will be developing methods for the integration
of different data types from diverse sources.

Conclusions
We have shown that integrating datasets from multiple
sources using MM-ChIP improves both the sensitivity and
the specificity of detecting ChIP-enriched regions. With
the ever-increasing deposition of ChIP-chip/seq data into
the public domain, MM-ChIP promises to become a
powerful tool for biologists to make new discoveries that
could not be achieved using a single data source (for

example, finding weak but functional transcription factor
binding sites and associated cis-regulatory modules from
multiple sources of ChIP-chip/seq data).

Materials and methods
Dataset
Three ENCODE spike-in ChIP-chip datasets were used
to assess the performance of MM-ChIP. The datasets
were generated by Kevin Struhl’s lab, Peggy Farnham’s
lab and Scott McCuine using Affymetrix, NimbleGen
and Agilent tiling array platforms, respectively [5,16]
[GEO:GSE10114]. To control for the effect of unba-
lanced replicate number in different studies, we chose
similar numbers of replicates from each dataset (three
replicates from the Affymetrix data, three replicates
from the NimbleGen data and two replicates from the
Agilent data) for integrative analysis and performance
comparison. The two ER datasets from MCF7 cell lines
were generated by two different groups using the Affy-
metrix Human Tiling 2.0R Array and the Affymetrix
Human Tiling 1.0R Array [27,28]. For the dataset gener-
ated with the Tiling 2.0R array, two replicates each of
ChIP and input data were used in our analysis. For the
dataset generated with the Tiling 1.0R array, three repli-
cates each of ChIP and input data were used in the ana-
lysis. The two CTCF ChIP-seq datasets from GM12878
cell lines were generated at the Broad Institute and at
the University of Texas at Austin through the ENCODE
project [16]. All ChIP-seq data from ENCODE and
modENCODE (model organism ENCyclopedia Of DNA
Elements) [29] projects were generated on the Illumina
platform. To control for the effect of tag count differ-
ence, the same number of mapped tags (10,352,572)
with unique genomic locations was selected from the
ChIP and input samples from the two datasets.

Integrative analysis of ChIP-chip data
Probe behavior model estimate and probe standardization
for individual tiling array platforms
For the one-color Affymetrix platform, the MAT algo-
rithm [13] was first used to fit the raw probe intensity
to a baseline model to estimate the effect of probe
sequence and genome copy number on intensity. The
probe intensity value was then standardized to a t-value
based on the fitted baseline model. Lastly, MAT com-
puted a statistical score (MAT score) for individual slid-
ing windows surrounding each tiled probe, and the
difference in this score between the ChIP and input
sample was used to quantify the relative ChIP signal
enrichment [13]. If there was no input sample, the
MAT score from the ChIP sample was used. For two-
color platforms, including NimbleGen and Agilent, the
MA2C algorithm [14] was first used to standardize the
individual probe intensity value to a t-value by taking

Chen et al. Genome Biology 2011, 12:R11
http://genomebiology.com/content/12/2/R11

Page 8 of 10



into account the effect of probe GC content on raw
intensity (that is, modeling the GC-specific background
hybridization intensities). Similar to MAT, MA2C then
computed a statistical score (MA2C score) for a sliding
window surrounding each tiled probe, and this score was
used to quantify the relative ChIP signal enrichment [14].
Score normalization and integrative peak detection across
different tiling arrays
To account for the difference in tiling resolution of dif-
ferent arrays, a linear interpolation was first performed to
fill in the MAT/MA2C score (or MAT score difference
between ChIP and input control sample) in matched
genomic regions for all arrays. The interpolation was per-
formed between two tiled probes only if they were spa-
tially close to each other within a pre-defined distance
based on the tiling resolution of the platform. For the
spike-in datasets, the resolution was standardized to 7
bp, and the maximum distance between two tiled probes
within which the interpolations were performed was 10
bp, 50 bp and 100 bp for Affymetrix, NimbleGen and
Agilent, respectively. For the ER datasets, the resolution
was standardized to be 35 bp, and the maximum distance
between which the interpolations were performed was 50
bp. Because both the MAT and MA2C scores are
approximately normally distributed, Z-scores were calcu-
lated based on the null distribution of MAT/MA2C
scores to normalize the scores from different platforms.
The estimation of the null distribution of MAT/MA2C
scores was described in [13,14]. The sum of Z-score
divided by the square root of the number of datasets, a
calculation known as Stouffer’s method [15], was used to
quantify the ChIP signal enrichment. Under the null
hypothesis of no enrichment, this score was distributed
as a standard normal distribution, and a P-value was cal-
culated accordingly [15]. The empirical false discovery
rate (eFDR) of a peak list from ChIP-chip data is evalu-
ated by MM-ChIP in a similar way to the MAT and
MA2C algorithms: for a given Z-score cutoff value Z0 (Z0

> 0) that corresponds to the user-specified P-value, MM-
ChIP finds all peaks with Z-scores greater than Z0 and all
peaks with Z-scores less than -Z0. Then, the FDR is esti-
mated as Number of negative Z-score peaks/Number of
positive Z-score peaks. This FDR calculation is a slightly
conservative estimate of the positive FDR proposed by
Storey [30] (see Supplementary text in Additional file 1
for the detailed proof).

Integrative analysis of ChIP-seq data
Model building and tag shifting for individual ChIP-seq
datasets
The Model-based Analysis of ChIP-Seq data (MACS)
algorithm [12] was first used to model the characteristic
fragment size d of the ChIP-DNA library from each data
source (Figure 4). MACS was then used to shift each

ChIP-seq tag toward the 3’ direction by a distance of half
of the estimated fragment size (d/2) to better represent
the precise protein-DNA interaction sites for that dataset.
Integrative peak detection using model-shifted tags from
different ChIP-seq datasets
The model-shifted tags from each dataset were pooled
together, and a sliding window-based approach similar to
the one used in the MACS method [12] was used to detect
candidate ChIP-enriched regions (peaks). The significance
of a candidate peak was assessed based on a Poisson
model with a dynamic lambda across the genome, which
captures local biases in tag distribution [12]. The eFDR of
a peak list from ChIP-seq data is evaluated by MM-ChIP
in a similar way to the MACS algorithm. For each P-value
cut-off, MM-ChIP uses the same parameters to find the
number of peaks in a ChIP sample compared with input
control sample and vice versa. The eFDR is defined as
Number of input control peaks/Number of ChIP peaks.

Motif enrichment analysis
The CTCF position-specific weight matrix was mapped
onto the human genome using CisGenome [19] with a
third-order Markov background model.

Performance evaluation of integrative analysis of ChIP-
seq with varied inter-library size differences
The performance of MM-ChIP and an alternative
method that first merges the reads from different studies
and then performs model building and peak detection
using the MACS algorithm were evaluated on synthetic
CTCF ChIP-seq datasets with varied inter-library size
differences (Δd). To generate a series of synthetic data-
sets with varied Δd values, the University of Texas at
Austin ChIP-seq tags (library size d = 100) were first
equally divided into two groups by random tag selection.
One group of tags was used as common library data
(d = 100) for all datasets. The tags in the remaining
group were shifted toward the 5’ direction by various
distances to constitute the variant library data. An inte-
grative analysis was performed on each pair of common
library and variant library data (Δd = 0, 100, 200) to
evaluate the performance of both algorithms.

Software availability
The companion software for MM-ChIP was written in
Python and can be downloaded from the following link
[31].

Additional material

Additional file 1: Supplementary Figure S1 and supporting text.
Additional file 1 contains Supplementary Figure S1 and supporting text
that describes false discovery rate calculation for integrative analysis
based on Stouffer’s method.
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