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Abstract

Ultra-deep targeted sequencing (UDT-Seq) can identify subclonal somatic mutations in tumor samples. Early assays’
limited breadth and depth restrict their clinical utility. Here, we target 71 kb of mutational hotspots in 42 cancer
genes. We present novel methods enhancing both laboratory workflow and mutation detection. We evaluate UDT-
Seq true sensitivity and specificity (> 94% and > 99%, respectively) for low prevalence mutations in a mixing
experiment and demonstrate its utility using six tumor samples. With an improved performance when run on the
Illumina Miseq, the UDT-Seq assay is well suited for clinical applications to guide therapy and study clonal selection
in heterogeneous samples.

Background
The number of somatic tumor mutations with potential
utility for predicting treatment response is rapidly grow-
ing due to increasing numbers of targeted therapies.
Clinical validation of these potential biomarkers has
been slowed by both issues with tumor samples and the
current paradigm underlying cancer clinical trials.
Tumor DNA samples can be heterogeneous due to inva-
sion into stroma, infiltration by immune cells, and clo-
nal evolution. Efforts to overcome this heterogeneity
have, to date, required highly focused testing of no
more than a few dozen known mutations, significantly
limiting progress. Additionally, cancer drug development
has traditionally focused on a tissue of origin model,
where efficacy studies are focused on cancers arising
from one tissue type. As molecular subtyping has
emerged, molecularly defined trials have been restricted
to common DNA alterations (for example, Imatinib and
KIT gene mutations in gastro-intestinal stromal tumors)
[1] or uncommon alterations in very common tumors
(for example, Erlotinib and EGFR-L858R in non-small
cell lung cancer) [2]. The identification of an increasing
number of somatic tumor mutations common across
cancers arising from different tissues has begun to
encourage molecularly defined clinical trials in which

subjects with cancers from a number of differing sites of
origin are eligible. To accelerate this paradigm shift, an
assay capable of broad mutation testing in heteroge-
neous tumor samples is needed.
Somatic mutations can affect key domains of cancer

genes. These mutations, associated with cancer progres-
sion and resistance to therapy, exist in restricted regions
of the genome, termed mutational hotspots. Addition-
ally, actionable mutations, in which an approved or
investigational agent is available to target a pathway
activated by the mutation, exist in an even more
restricted set of these genomic regions. While most
available clinical assays interrogate one or only a few
commonly mutated loci in cancers, two published clini-
cal assays, SNaPShot [3] and OncoMap [4], respectively
target 38 mutations in 8 genes by single base extension
assays and approximately 400 mutations in 33 genes by
mass spectrometry. Although these assays have been
extensively tested on clinical samples and are available
to clinicians, they have not been thoroughly evaluated
on heterogeneous tumor samples. Technological
advances in DNA sequencing clearly offer an important
solution to the problem of analyzing heterogeneous
samples. Massively parallel sequencing enables the ana-
lysis of independent, clonal, DNA molecules [5,6] and
has been used early on to digitally measure the presence
of low prevalence mutations in complex DNA mixtures
[7,8] or in EGFR exons of heterogeneous tumor DNA
samples [9]. Constant improvements of the massively
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parallel sequencing technology offer the opportunity to
revise the balance between breadth and depth of such
assays and identify a wide variety of potentially action-
able DNA changes in a patient’s tumor. Broad assays
like whole genome and whole exome sequencing have
been used to discover new cancer mutations [10,11], or
study clonal selection in breast cancer [12]. However,
their performance on heterogeneous clinical samples has
not been demonstrated and the significance of the vast
majority of the mutations identified is not clear; there-
fore, such broad sequencing approaches currently have
limited clinical utility for personalized cancer treatment.
In contrast, a more targeted sequencing approach assay-
ing all clinically actionable genes, but no extraneous
regions, allows for the depth of sequencing to be maxi-
mized for a more accurate analysis of heterogeneous
clinical samples.
In addition to clinical use, the efficiency of a targeted

sequencing approach can also be exploited for pre-clini-
cal drug development. The expansion and maintenance
of primary tumors as xenografts in immuno-suppressed
mice is commonly used in cancer research to study
potential targets and evaluate therapies in a physiologi-
cal context. However, the xenografting process is not
neutral and can select subpopulations of cells with cer-
tain growth advantages. Enabling the comparison of the
mutational profile of matched xenograft and primary
tumor samples, targeted sequencing can be used to
query the validity of the xenograft model.
Here, we present an Ultra-deep targeted sequencing

(UDT-Seq) assay, screening 71.1 kb of sequence encom-
passing the mutational hotspots of 42 cancer genes. We
evaluate its performance and utility by applying it to
study the mutational profile of both clinical cancer and
mouse xenograft samples.

Results
Assay design
The UDT-Seq assay is a direct sequencing method of
approximately 200-nucleotide long PCR amplicons gen-
erated in multiplex using microdroplet PCR [13] (Figure
S1a in Additional file 1). Briefly, we use chimeric primer
pairs, containing both locus-specific and adapter
sequences, to generate PCR amplicons that are then
directly sequenced on the Illumina Genome Analyzer II
(GAII) platform for 2 × 125-nucleotide reads. This pro-
cess simplifies the workflow by removing the time con-
suming and error prone step of sample fragmentation
and library preparation, thus providing a streamlined
process for easy implementation in the laboratory. In
addition, as the direct sequencing approach results in
each base pair of an amplicon always being in the same
position in a sequencing read (Figure S1b in Additional
file 1), we are able to accurately measure the position-

dependent sequencing error rate, which is known to
vary significantly in sequencing by synthesis [6]. This
facilitates the sensitive and specific detection of low pre-
valence mutations in the tumor samples. The cancer
mutational hotspots screened by UDT-Seq were selected
from the COSMIC database v44 [14]. An unsupervised
clustering analysis (Materials and methods) led to the
identification of cancer hotspots in 42 cancer genes
(Table S1 in Additional file 2), which contain 53%
(5,271/9,935) of all mutations and 87% (67,440/77,052)
of all COSMIC database valid entries (substitutions or
small indels with reported genomic location). We
designed 518 primer pairs (Table S2 in Additional file 2)
to amplify a total of 71.1 kb encompassing these cancer
mutational hotspots.

Assay performance
In order to estimate the error rate, train the statistical
model and measure the performance of the assay, we
prepared calibration samples by pooling four Coriell
DNA samples (NA12156, NA12878, NA18507, and
NA19240). These Coriell samples have previously been
subjected to exome sequencing and thus the positions
of coding polymorphisms are known [15]. We pooled
these samples four times, permuting the relative concen-
tration of the samples (1%, 5%, 20% and 74%), to obtain
four different calibration samples referred to as CAL-A
to CAL-D (Figure S2 in Additional file 1). The cancer
hotspot amplicon library was supplemented with 158
calibration amplicons, corresponding to 23.2 kb, to
detect and measure the prevalence of the alternative
allele at 196 to 201 known polymorphic positions in the
four CAL samples (Materials and methods). We
sequenced CAL-A, CAL-B and CAL-D calibration sam-
ples once and CAL-C in duplicate, obtaining more than
30 million pairs of reads per sample, resulting in
approximately 24,000-fold coverage depth after mapping
(Tables S3 and S4 in Additional file 2). Consistent with
our previous report [13], the coverage distribution is
uniform (82% of amplicons between 0.5- and 2-fold of
the mean coverage) and reproducible between samples
and across sequencing runs (Figure S3 in Additional file
1 and Table S4 in Additional file 2).
We developed a four-step approach to identify low-

prevalence mutations (Figure S4 in Additional file 1). In
step 1 the sequencing error rate is estimated using
invariant bases in a calibration sample; in step 2, the
candidate mutations are filtered and their level of signif-
icance is determined in both calibration and tested sam-
ples using the error rate; in step 3, the significance
threshold is calculated using the known SNPs from the
calibration sample; finally, in step 4, the significant
mutations are called in the tested sample using this
threshold. Following this procedure we used all the CAL
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samples in turn for the calibration and testing, thus pro-
viding a comprehensive evaluation of the assay perfor-
mance across multiple calibration-tested sample
combinations and sequencing runs.
Out of the 23,250 bases sequenced in the calibration

amplicons, we detected an average of 183 significant
variants, indicating the assay specificity is greater than
99.9% (Table S5 in Additional file 2). Across all calibra-
tion-tested sample combinations, the average sensitivity
was 89.1% (± 3.3%) when significant variants at 1% or
greater prevalence are considered (Figure 1a). As antici-
pated, the sensitivity is better (> 94%) for mutations pre-
sent at 5% or greater than for mutations present at 1%
prevalence (75%) (Figure 1b). The average positive pre-
dictive value (PPV = 1 - (False positive rate)) is 97.6% (±
1.9%) with a noticeable lower PPV (90.5%) when

expected prevalence is less than 5% (Figure 1c). As illu-
strated in Figure 1d, the observed prevalence is highly
correlated (Pearson correlation r = 0.97) with the
expected one; thus, the prevalence of the mutant allele
in the DNA sample can be accurately estimated.
The initial experimental design allowed us to generate

very high sequence coverage per sample (approximately
24,000-fold). A more cost-effective approach would mul-
tiplex samples using DNA barcodes, which results in a
lower effective coverage. In order to estimate the effect
of a reduced coverage depth on the assay performance,
we sampled the reads from the full coverage from one
calibration (CAL-B) and two tested (CAL-C and CAL-
D) samples to simulate multiplexing levels of 2, 4, 8, 16
and 32 samples per lane corresponding to a coverage
depth around 12,000×, 6,000×, 3,000×, 1,500× and 750×,
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Figure 1 Performance evaluation. (a) The positive predictive value (PPV) and sensitivity of UDT-Seq for each of the five calibration datasets.
The error bars represent the standard deviation of the values obtained from different calibration schemes (Table S5 in Additional file 2). (b)
Average sensitivity estimation for the calibration SNPs at different prevalence’s. The error bars represent the standard deviation over all
calibration-tested sample combinations. (c) PPV at increasing prevalence intervals. (d) Expected prevalence of the calibration SNPs (x-axis) are
highly correlated (r = 0.97) with the observed prevalence (y-axis) across all calibration samples. The width of the boxes is proportional to the
root mean square of the number of SNPs in each category. The whiskers extend to the closest data point within 1.5-fold of the inter-quartile
distance. On average, the mutations expected at 1%, 5%, 20% and 74% where observed at 1.5% (± 0.9), 5.4% (± 2.8), 20.3% (± 7.9) and 72.1% (±
10.6), respectively. The minor differences are likely due to measurement errors during the preparation of the calibration samples. (e) Average PPV
and sensitivity calculated using samples CAL-C and CAL-D trained with CAL-B after random sampling the reads to lower coverage. The error bars
represent the standard deviation of the results obtained from the two samples. (f) The prevalence of the calibration SNPs identified in CAL-B
with and without whole genome amplification (WGA) (log scale x- and y-axis, respectively) is plotted against the prevalence estimated from the
WGA sample replicates (red and blue). The minimum specified prevalence of the assay (1%) is indicated by dotted lines.
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respectively (Table S6 in Additional file 2). The sensitiv-
ity remains above 92% at approximately 3,000× coverage
or higher (Figure 1e) but drops to 85% at 1,500× cover-
age depth. In contrast, the PPV remains above 96.9% at
all coverage depth. Furthermore, the estimation of the
prevalence remains accurate (Figure S5 in Additional
file 1). Most of the false negatives were variants
expected at low prevalence for which a reduced cover-
age leads to few reads supporting the alternative allele.
Thus, these data show that the performance of the
UDT-Seq assay is maintained at an average coverage of
approximately 3,000× and greater.

Identification of somatic mutations in cancer samples
We sequenced 71.1 kb of cancer mutational hotspots in
DNA samples from a primary colon adenocarcinoma
with its matching xenograft, a breast primary carcinoma
with its matching xenograft, an ovarian carcinoma xeno-
graft, a sarcoma xenograft (Materials and methods) and
the matching germline DNA derived from all four
patients’ blood. The xenograft samples had been pas-
saged between two and seven times in immunodefficient
mice (Materials and methods). To call the significant
mutations, we trained the method with a calibration
sample sequenced in the same run as the clinical sample
(Table S7 in Additional file 2). As shown above, the per-
formance of UDT-Seq is significantly better for higher
prevalence mutations. For this reason, we restricted our
analysis to the mutations identified at a prevalence of
5% or greater. The somatic mutations were then called
by analyzing the differences between cancer and germ-
line DNA mutations. We considered all variants in a
cancer sample that passed statistical assessment (Materi-
als and methods) as potential somatic mutations. We
then retained the mutations for which the correspond-
ing position in the germline sample was covered (> 10
reads) and is either 1) identified as not variant by the
statistical analysis or 2) shows little evidence of the
alternative allele (< 20% alternative allelic ratio). Across
the six samples analyzed (2 primary and 4 xenografts
samples), we discovered 13 unique somatic mutations.
To understand UDT-Seq assay performance, we first
examined all mutations by visual inspection of the reads
and then independently validated a subset using
sequence-based assays (SNaPshot or Sanger).
In the colon primary sample, UDT-Seq identified ten

somatic mutations (Figure 2, Table 1; Table S8 in Addi-
tional file 2) of which eight are shared with the xeno-
graft sample and two are present only in the tumor.
Seven of these mutations are possibly heterozygous in a
majority of the cells (prevalence between 31% and 47%)
and three have an intermediate prevalence (10% to
23%). This distribution suggests the presence of different
cell populations. Of note, KRAS-G12D has a high

prevalence (35%); this cancer driver mutation is present
in 40% of colorectal cancers and is associated with anti-
EGFR therapy resistance [16]. Interestingly, two com-
mon APC inactivating mutations (APC-R405X and
APC-R283X), both frequent mutations in colorectal can-
cer, are present at different prevalence (25% and 49%,
respectively), suggesting that they occur in different cell
populations. Examination of the primary specific muta-
tions (BRAF-intron and KIT-R49C) shows that neither
of them has evidence of presence in the xenograft (Fig-
ure 2). In the matching colon xenograft sample, we
identified 11 somatic mutations, of which 8 are shared
with the primary (Figure 2, Table 1). Examination of the
three xenograft-specific mutations revealed that two
were well covered in the primary without evidence of
the mutant allele, but one (STK11-R304W) was a false
negative in the primary (filtered due to relatively low
coverage) and validated by an independent assay at 23%
prevalence (Table S9 in Additional file 2). Interestingly,
this mutation has been identified in patients with Peutz-
Jeghers syndrome, an inherited cancer syndrome asso-
ciated with intestinal polyps and cancer risk [17]. Both
STK11-R304W and APC-R283X show significant and
similar prevalence differences in the primary (22 to
23%) and xenograft (49%), suggesting that they may be
present in the same populations of cells, and were
selected for in the xenograft.
In the primary breast cancer sample, we identified a

single somatic mutation (HRAS-G12V) by UDT-Seq
(Table 1; Table S8 in Additional file 2). HRAS-G12V
(prevalence 51%) is a common activating mutation in
bladder cancer [18], and its role in breast cancer has not
been described. HRAS-G12V is homologous to the
KRAS-G12D mutation and similarly may be important
in the development of resistance to tyrosine kinase tar-
geting agents [16]. This mutation was also identified in
the matching xenograft sample at a similar prevalence
(48%), suggesting its importance for breast cancer
growth and proliferation.
Overall our comparison between primary and xeno-

graft samples reveals evidence of tumor heterogeneity
and the presence of sub-clonal cell populations. The
mutations identified are mostly non-synonymous and
some can have direct clinical impact as they are markers
of poor prognosis or predictive of drug resistance. Inter-
estingly, the colon primary sample presented the most
complex and rich mutational profile, which, with the
exception of a few mutations, was faithfully matched in
a xenograft after seven successive passages in mouse.
While other possible somatic changes, such as copy
number alterations, were not assessed, this observation
supports the use of xenograft models to reflect the
genetics of the primary tumor, in agreement with pre-
vious studies [12].

Harismendy et al. Genome Biology 2011, 12:R124
http://genomebiology.com/2012/12/12/R124

Page 4 of 13



To complete our assessment of tumor heterogeneity
via UDT-Seq, we further analyzed the sequences
derived from the ovarian adenocarcinoma and small
intestine sarcoma xenografts and their matched germ-
line DNA. The ovarian xenograft shows a homozygous
somatic mutation at TP53-R248Q, the most common
inactivating mutation in TP53 (Table 1), a gene
mutated in 96% of ovarian cancers [19]. We did not
identify any mutations in the sarcoma xenograft sam-
ple. These additional results confirm that UDT-Seq
can identify known and novel mutations in previously
uncharacterized samples.

Effect of whole genome amplification
Cancer samples, and biopsy in particular, can generate
low amounts of total DNA. Whole genome amplification
(WGA) by multiple strand displacement is a popular

method to increase the amount of material available for
clinical assays [20]. We evaluated the effect of WGA on
the CAL-B calibration sample by comparison with the
non-amplified sample. Both sensitivity and PPV were
unchanged (Figure S7 in Additional file 1). Surprisingly,
in the WGA-amplified samples the observed prevalence
of mutations expected at 5% or less dropped signifi-
cantly (Figure 1f). This is likely due to allele-specific
bias generated during the amplification. We then
applied WGA to the breast cancer xenograft sample and
performed a UDT-Seq assay, observing the HRAS-G12V
mutation at 49%, in agreement with the prevalence
observed without WGA (Table 1). Because the initial
sample did not carry any low prevalence mutations, we
could not verify the potential allelic bias below 5%.
Thus, UDT-Seq analysis of DNA samples subjected to
WGA provides reliable results for highly prevalent
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Figure 2 Mutational profiles of the colon primary and xenograft tumor samples. Histogram showing the prevalence of the 11 colon
primary (dark blue) and 11 xenograft (light blue) mutations. In the primary tumor, ten of the mutations were identified using the UDT-Seq
method and one (STK11-R304W) by visual inspection of the reads after it was observed in the xenograft. All mutations validated by a sequence-
based assay (SNaPshot or Sanger) are indicated by a green dot. Mutations not examined by independent assay are indicated by a grey dot.
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mutations but underestimates the presence of low pre-
valence alleles.

Implementation of UDT-Seq on a MiSeq sequencer
Fast turn-around time of an assay like UDT-Seq is
important for its clinical implementation. The sequen-
cing presented above requires approximately 12 days of
an Illumina GAII run to complete. Recent technology
developments have resulted in the commercialization of
new, smaller instruments that are time- and cost-effec-
tive while still providing a sufficient yield compatible
with UDT-Seq breadth and depth. Using multiplexing
adapters, we sequenced the same four calibration sam-
ples (CAL-A to CAL-D) in one run of Illumina MiSeq
(Materials and methods). This resulted in an average
depth of 1,571× per amplicon. Using an analysis strategy
strictly identical to the one described for the GAII data,
we noticed a significant reduction of the substitution
rate, especially at the end of the reads for ‘A’ and ‘T’
reference bases (Figure S8a-d in Additional file 1).
These improvements are the consequence of a better
chemistry since the initial GAII run as well as faster
cycling time. This resulted in a more than six-fold
reduction in the number of positions determined as sig-
nificantly noisy by filter 7 (Figure S8e in Additional file
1). As a result, the sensitivity of the assay improved
from 85% (Figure 1e) to approximately 90% (Figure S8f
in Additional file 1) when comparing the GAII and
MiSeq data at equivalent coverage depth. The PPV
remains very high, witnessing to the robustness of the
initial statistical analysis strategy.

Conclusions
The prevalence of the mutations detected in complex
DNA mixture has traditionally been limited to approxi-
mately 20% using Sanger sequencing [21,22]. The devel-
opment of specific mutation enrichment or detection
strategies has greatly increased this sensitivity [3,23,24],
but impaired the breadth of the assay. The UDT-Seq
approach presented here offers a streamlined method to
implement in clinical care massively parallel sequencing
of cancer mutational hotspots in heterogeneous samples.
The simultaneous sequencing of a calibration sample
enhances the robustness of the assay and therefore the
reliability of the results. We have shown that this
approach can comprehensively detect low prevalence
mutations by screening 71,081 DNA positions located in
cancer mutational hotspots. The sensitivity of the assay
down to mutations present at 5% prevalence permits
detection of mutations in heterogeneous or poor quality
samples with rare mutated clones, low cellularity, or
contamination with stroma or immune cell infiltration,
all of which are commonly seen in clinical samples.
Importantly, our data suggest that in order to increase
the reliability and identify mutations present at less than
5% prevalence, the accuracy of the next generation
sequencing technology needs to increase, with improve-
ments of both chemistry, instrument and bioinformatics
analysis. Increasing sequence depth coverage only is
unlikely to solve the systematic bias observed that limits
the ability to accurately measure the abundance of
alleles present at less than 5% prevalence. This is exem-
plified by the notable improvement in the substitution

Table 1 Prevalence of all somatic mutations identified by UDT-Seq using a 5% prevalence detection threshold

Cancer Validation Prevalence estimated by UDT-Seq

type Mutation assay Primary Xenograft Xenograft + WGA

Colon FGFR3-R327C Sanger 0.47 0.59

CSF1R-R710H SNaPshot 0.43 0.56

APC-R405X SNaPshot 0.42 0.51

APC-R230C Not assayed 0.4 0.49

KRAS-G12D SNaPshot 0.35 0.51

TP53-intron SNaPshot 0.35 0.47

NF1-P1553H SNaPshot 0.32 0.51

APC-R283X SNaPshot 0.23 0.49

BRAF-intron Not assayed 0.1 < 0.05

KIT-R49C Sanger 0.1 < 0.05

STK11-R304W SNaPshot < 0.05* 0.66

HRAS-R73C SNaPshot < 0.05 0.55

FGFR1-L457V SNaPshot < 0.05 0.44

Breast HRAS-G12V Not assayed 0.51 0.48 0.48

Ovarian TP53-R248Q Not assayed 1

*Inspection showed it to be a false negative (present by visual inspection). Independently validated mutations (or absence thereof) are indicated in bold. WGA,
whole genome amplification.
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rate observed on the MiSeq instrument, where the sam-
ples were sequenced at lower depth.
The UDT-Seq assay will enable high throughput mole-

cular testing for a large number of cancer patients that
have samples that are incompatible with current com-
prehensive diagnostic procedures. By integrating this
tool in institutional master clinical protocols, it can
immediately enable focused clinical confirmatory
sequencing for selection of patients for targeted treat-
ments or clinical trials testing novel targeted therapies
or repurposing of approved drugs. Going forward we
expect that this tool will be deployed in clinical testing,
further facilitating its use for clinical management of
patients. Additionally, UDT-Seq will empower the study
of clonal selection in cancer metastasis, recurrence and
progression. Comparison of initial UDT-Seq profiles
with disease outcomes may identify novel targets that,
with therapeutic intervention, can prolong survival or
reduce mortality. Lastly, similar to other approaches
[25], UDT-Seq can also be used to establish a persona-
lized molecular signature of tumor driver and/or passen-
ger mutations that can be used to monitor for
recurrence or response in circulating DNA in plasma or
urine by more sensitive methods.

Materials and methods
Assay overview
The UDT-Seq is a direct sequencing method of approxi-
mately 200-nucleotide-long PCR amplicons generated in
multiplex using microdroplet PCR [13] (Figure S1a in
Additional file 1). Briefly, we use chimeric primer pairs
containing both locus-specific and partial Illumina adap-
ter sequences to generate PCR amplicons in droplets,
followed by the breaking of the emulsion and a second-
ary universal PCR amplification with primers that incor-
porate the remainder of the Illumina adaptor sequences.
These amplicons are then directly sequenced on the
Illumina platform for 2 × 125-nucleotide reads. This
process removes the time consuming and error prone
steps of sample fragmentation and library preparation,
thus providing a streamlined process for easy implemen-
tation in the laboratory. In addition, as the direct
sequencing approach (Figure S1b in Additional file 1)
results in each base pair of an amplicon always being in
the same position in a sequencing read, we are able to
accurately estimate the position-dependent sequence
read error rate, which is known to be variable in
sequencing by synthesis [6]. This facilitates the sensitive
and specific detection of low prevalence mutations in
the tumor samples. We designed 676 primer pairs to
target 518 cancer mutational hotspots of 42 cancer
genes, as well as 158 calibration amplicons (see below;
Table S2 in Additional file 2).

Cancer hotspot selection
The cancer mutational hotspots were selected from the
COSMIC database v44 [14]. We initially selected all
non-synonymous mutations involving single base substi-
tutions and indels shorter than 140 bp in length. These
criteria identified 9,935 mutations affecting 2,468 genes.
The COSMIC database has some redundancy due to
over-ascertainment of particular genes or cancer types;
96% of the mutations were observed less than 5 times
and 2% were observed more than 100 times. Based on
this clustering analysis, we chose 42 cancer genes (Table
S1 in Additional file 2), which contain 53% (5271/9935)
of all mutations and 87% (67,440/77,052) of all COSMIC
(v44) valid entries (substitutions or small indels with
reported genomic location). Only 141 of the 5,271 muta-
tions were singletons defined as located more than 140
bp from another mutation (maximum length that can
be assayed in one amplicon). We designed 518 primer
pairs to amplify a total of 71 kb encompassing the 5,271
mutations.

Calibration samples and SNP selection
In order to estimate the error rate, train the statistical
model and measure the performance of the assay, we
prepared calibration samples by pooling four Coriell
DNA samples (NA12156, NA12878, NA18507, or
NA19240). These Coriell samples have previously been
subjected to exome sequencing and thus the positions
of coding polymorphisms are known [15]. We pooled
these samples four times, permuting the relative concen-
tration of the samples (1%, 5%, 20% and 74%), to obtain
four different calibration samples referred to as CAL-A
to CAL-D. We selected 40 calibration coding SNPs
based on the fact that they were homozygous for the
alternate allele in one of the four samples and homozy-
gous for the reference allele in the three others. We
repeated this selection four times, permuting the four
samples, resulting in a total of 160 calibration SNPs. We
successfully designed primer pairs to amplify 200-bp
fragments around 159 of these SNPs. Because we per-
form direct sequencing from the amplicon ends (Figure
S1b in Additional file 1), we made sure that the calibra-
tion SNPs were located at various positions throughout
the 200-bp amplicons. This allowed us to estimate the
assay performance for calling variants across the 200-bp
amplicons. Of the 159 primer pairs tested, 158 success-
fully amplified the targeted sequences in the four cali-
bration samples. Other SNPs, not initially selected to
serve as calibration polymorphisms, are located in these
158 amplicons. We disregarded heterozygous SNPs pre-
sent only in one of the four Coriell samples, as they
would lead to a prevalence of 0.5% in one of the calibra-
tion samples. In total this design resulted in 196, 200,
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201 and 201 SNPs with known prevalence in the cali-
bration samples CAL-A, CAL-B, CAL-C and CAL-D,
respectively. The UDT-Seq assay interrogates a total of
23.2 kb encompassing these calibration SNPs.

Primer library design
The custom primer library was designed using the Pri-
mer3 algorithm and the manufacturer’s suggested para-
meters (RainDance Technologies Lexington MA, USA).
The locations of SNPs in dbSNP build 128 were masked
and not used as potential sites for primer selection.
Repeat masking was not performed on the input
sequences to the primer design pipeline. The primer
design pipeline performed exhaustive primer selection
across the targeted intervals. Targeted regions that failed
to produce PCR primers with the standard parameters
through the automated pipeline were designed manually,
altering different standard parameters until a successful
design was achieved (Table S2 in Additional file 2).
After designing the locus-specific portion of the primers,
sequence tails corresponding to a portion of the Illu-
mina adaptor sequence were added to the sequence-spe-
cific portion of the primers prior to synthesis. The
sequence added to the forward primers was
CGCTCTTCCGATCTCTG and the sequence added to
the reverse primer was CGCTCTTCCGATCTGAC. The
tri-nucleotide sequence in bold is inserted between the
target specific and the universal primer to confer adap-
ter-strand specificity so that only the reads originating
from the same end of the amplicon will be sequenced
simultaneously (Figure S1b in Additional file 1). This
ensures that the sequencing error rate can be computed
as a function of the read direction (forward or reverse).

Sample preparation
Calibration samples
The four Coriell Institute DNA samples (NA12156,
NA12878, NA18507, and NA19240) were quantified in
triplicate using Nanodrop and each sample was diluted
at a low concentration (approximately 5 ng/μl), which
was re-measured in triplicate by Nanodrop (Agilent
Technologies Santa Clara CA, USA). Based on these
measurements, the four calibrations samples were pre-
pared by mixing the appropriate volume of the initial
sample (for the 74% and 20% prevalence) or of the
diluted samples (for the 5% and 1% prevalence) for a
total of 7.5 μg of DNA per calibration sample (Figure S2
in Additional file 1).
Cancer specimen description
Human primary tumors and whole blood were collected
under the UC San Diego IRB-approved protocol with
prospective consent. The participants were enrolled in
accordance with the Helsinki Declaration and to local
legislation and gave informed consent. The breast

cancer corresponds to a primary metaplasmic carcinoma
from a 62-year-old patient (T2, N0, M0) untreated at
sampling. The sample was negative for progesterone
receptor, HER2 and focally positive (< 5%) for estrogen
receptor as estimated by immunohistochemistry. The
colon cancer corresponds to an enteric adenocarcinoma
from a 65-year-old patient (T3, N0, M0) untreated at
sampling. The sample was positive for MLH1, PMS2
and CD20, and in a few cells for MSH2, and negative
for MSH6 by immunohistochemistry. The ovarian can-
cer corresponds to a serous adenocarcinoma of enteric
type from a 64-year-old patient (T3b, N0, M0) treated
with three cycles of idarubacin and paclitaxol before
sampling. The sarcoma sample corresponds to a small
intestine pleomorphic sarcoma identified in a 59-year-
old patient (metastasis M1) from recurrent disease fol-
lowing chemotherapy and 3 years after initial diagnosis.
Specimen preparation
The buffy coats were prepared from whole blood and
resuspended in RNAlater (Applied Biosystems, Foster
City, CA, USA). Tumor tissue was minced using an
autoclaved razor blade to create a slurry and mixed with
an equal volume of high concentration matrigel (BD
Biosciences, San Jose, CA, USA). Tumors were
implanted subcutaneously in NSG mice (exact strain
name NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ; The Jackson
Laboratory, Sacramento, CA, USA). Representative por-
tions of each passage were re-implanted, formalin fixed
or snap-frozen in liquid nitrogen for archival use. The
breast, colon, ovarian and sarcoma xenografts were pas-
saged in mice 2, 7, 5 and 2 times, respectively, before
sampling for our study. Snap-frozen tissue samples were
subjected to mechanical pulverization, followed by dis-
ruption of the tissue in lysis buffer and DNA/RNA
extraction using AllPrep DNA extraction kits (Qiagen
GmbH Hilden Germany).

Whole genome amplification
Purified genomic DNA (100 ng) was amplified using
REPLI-g Mini WGA Kit (Qiagen) following the manu-
facturer’s instructions. The amplified DNA was purified
and quantitated by UV spectrometry (Nanodrop).

Microdroplet PCR
Genomic DNA preparation
Genomic DNA samples were fragmented using a nebuli-
zation kit (Invitrogen, K7025-05 Carlsbad, CA, USA) fol-
lowing the manufacturer’s recommended protocol: 2.5
μg of genomic DNA was re-suspended in 750 μl Shear-
ing Buffer (TE, pH 8.0 (Fisher Waltham MA, USA,
50843207) containing 10% glycerol (Fisher, AC15892))
and was nebulized at 6 to 10 pounds per square inch
(psi) for 90 seconds to produce 2- to 4-kb DNA frag-
ments. Fragmentation of the genomic DNA to 2 to 4 kb
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allows for optimal template size for performing PCR in
droplets. Sheared genomic DNA was precipitated by
adding 80 μl 3 M sodium acetate, pH 5.2 (Fisher,
50843081), 4 μl 20 mg/ml Mussel Glycogen (Fisher,
NC9329100) and 700 μl 100% isopropanol (Fisher,
AC14932). Samples were mixed by inversion and stored
overnight at -20°C. The samples were centrifuged at the
maximum speed (21,000 g) for 15 minutes at 4°C. The
supernatant was discarded, 500 μl of cold 80% ethanol
(Fisher, 5739852) wash buffer was added and the DNA
pellet was spun down by centrifugation at the maximum
speed for 5 minutes at 4°C. The pellet was air dried at
room temperature for 20 minutes and re-suspended in
10 μl 10 mM Tris-HCL, pH 8.0 (Sigma St Louis MO,
USA, T2694). Fragmented genomic DNA was analyzed
by gel electrophoresis on a 0.8% agarose gel to confirm
that the genomic DNA was in the correct size range (2
to 4 kb). To prepare the input DNA template mixture
for targeted amplification, 1.5 μg of the purified genomic
DNA fragmentation reaction was added to 4.7 μl 10×
High-Fidelity Buffer (Invitrogen, 11304-029), 1.26 μl of
MgSO4 (Invitrogen, 11304-029), 1.71 μl 10 mM dNTP
(New England Biolabs, Ipswich MA, USA, NO447S/L),
3.6 μl Betaine (Sigma, B2629-50G), 3.6 μl of RDT Dro-
plet Stabilizer (RainDance Technologies, 30-00826), 1.8
μl dimethyl sulfoxide (Sigma, D8418-50 ml) and 0.72 μl
5 units/μl of Platinum High-Fidelity Taq (Invitrogen,
11304-029) and the samples were brought to a final
volume of 25 μl with nuclease free water (Teknova-
Fisher Hollister CA, USA, 50843418).
Droplet merge on the RDT1000
PCR droplets were generated on the RDT1000 (Rain-
Dance Technologies, 20-01000) using the manufacturer’s
recommended protocol: 25 μl of the DNA template
mixture in a tube, the custom primer droplet library in
a separate tube and a disposable microfluidic chip (Rain-
Dance Technologies) were placed onto the RDT1000.
The custom primer droplet library consisted of the pri-
mer pairs described in the ‘Library primer design’ sec-
tion above where each primer droplet contained
matched forward and reverse PCR primer pairs (5.2 μM
per primer). The RDT1000 generates each PCR droplet
by merging a single DNA template droplet with a single
primer droplet [13]. Each PCR droplet contains a final
primer concentration of 1.6 μM per primer. The PCR
droplets are automatically dispensed as an emulsion into
a PCR tube per each test sample and transferred to a
standard thermal cycler for PCR amplification. Each sin-
gle sample generated more than 1,000,000 single plex
PCR droplets.
Microdroplet PCR
Samples were cycled in a Bio-Rad (Hercules CA, USA)
PTC-225 thermal cycler as follows: initial denaturation
at 94°C for 2 minutes; 55 cycles at 94°C for 15

seconds, 58°C for 15 seconds and 68°C for 30 seconds;
final extension at 68°C for 10 minutes, followed by a 4°
C hold. Following PCR amplification, the emulsion of
PCR droplets was broken to release each individual
amplicon from the PCR droplets. For each sample, an
equal volume of RDT 1000 Droplet Destabilizer (Rain-
Dance Technologies, 40-00830) was added to the
emulsion of PCR droplets, the sample was vortexed for
15 seconds and then centrifuged at 12,000 × g for 10
minutes. The oil from underneath the aqueous phase
was carefully removed from the sample. Each sample
was purified over a MinElute column (Qiagen, 28004)
following the manufacturer’s recommended protocol.
The sample was eluted off the column with 11 μl of
the Qiagen Elution Buffer. Purified amplicon DNA was
then analyzed on an Agilent Bioanalyzer to quantify
amplicon yield.
Universal PCR
Four microliters of amplicons (2.5 ng/μl), as determined
by Agilent BioAnalyzer quantification from the initial
droplet PCR, were combined with 2.5 μl 10× High-Fide-
lity Buffer (Invitrogen, 11304-029), 1.0 μl of MgSO4 50
mM (Invitrogen, 11304-029), 1.13 μl of 10 mM dNTP
(New England Biolabs, NO447S/L), 2.5 μl of 4 M
Betaine (Sigma, B2629-50G), 2.5 μl of RDT Droplet Sta-
bilizer (RainDance Technologies, 30-00826), 1.25 μl
dimethyl sulfoxide (Sigma, D8418-50 ml), 5.0 μl of a 0.5
μl 5 units/μl of Platinum High-Fidelity Taq (Invitrogen,
11304-029), 4.62 μl of Nuclease Free Water (Teknova-
Fisher, 50843418) and 1 μM final of each universal pri-
mer, incorporating the remaining sequence to the Illu-
mina adapter for cluster generation and sequencing.
Samples were amplified in a Bio-Rad PTC-225 thermal
cycler as follows: initial denaturation at 94°C for 2 min-
utes; 8 cycles at 94°C for 15 seconds, 56°C for 15 sec-
onds and 68°C for 30 seconds; final extension at 68°C
for 10 minutes, followed by a 4°C hold. Each sample
was purified over a MinElute column (Qiagen, 28004)
following the manufacturer’s recommended protocol.
The sample was eluted from the column with 11 μl of
the Qiagen EB buffer. The purified amplicon DNA was
then analyzed on an Agilent Bioanalyzer to quantify
final amplicon yield.

Experimental design
The global experimental design is described in Figure S9
in Additional file 1. In the first stage of the study, we
used the four CAL samples to estimate the performance
of the assay. The performance was evaluated by succes-
sively using one CAL sample to calibrate the algorithm
and a different one as a test sample, performing all pos-
sible permutations between the four CAL samples as
calibration and test samples (Table S5 in Additional file
2). The second stage of the study applied the algorithm

Harismendy et al. Genome Biology 2011, 12:R124
http://genomebiology.com/2012/12/12/R124

Page 9 of 13



to cancer samples (primary and xenografts) using the
CAL samples sequenced on the same run for calibration.

Primary data analysis
Reads were aligned to the hg19 genome using BWA
(version 0.5.7) [26] in single end mode (samse option).
Using SAMTOOLs [27], the reads containing gapped
alignments ([ID] MD tag) were further filtered out. Our
approach, relying on error rate estimation and statistical
analysis was optimized to identify nucleotide substitu-
tions. The detection of indels from gapped alignment
requires a more sophisticated approach, which will be
developed in future studies. Reads coming from the for-
ward and reverse strands were kept separate for the ana-
lysis, to estimate the sequencing error rate
independently for each read direction. In addition, for
positions contained on two types of reads (either for-
ward and reverse or from overlapping amplicons) an
independent statistical analysis was performed. Each
read was assigned to one amplicon based on its start
coordinate. For each base of each amplicon, we counted
the number of each nucleotide with PHRED quality
greater than 20 to generate a ‘pileup’ table. The files
corresponding to the raw reads are publicly available on
the NCBI Short Read Archive (SRP009487.1) [28].

Coverage calculations
Base-wise coverage depth calculations (Table S4a in
Additional file 2) were performed using collapsed align-
ment (forward and reverse reads merged). Amplicon-
wise coverage depth calculations (Table S4b in Addi-
tional file 2) were performed using reads aligning to
each specific amplicon (based on start site coordinate).
This way, amplicons that overlap are kept separate for
the coverage calculation and do not artificially inflate
the coverage of the overlapping bases.

Mutation detection procedure
The procedure described below combines four prelimin-
ary filters, the statistical assessment and three post-ana-
lysis filters to optimize the use of sequencing
information and the computational efficiency.
Step 1: error rate estimation
Using the 94.3 kb (23.2 calibration + 71.1 kb mutation
hotspots) of DNA sequenced for assay calibration, there
were 2,770 SNP positions in only one of the four CAL
samples recorded in the dbSNP131 database. We first
masked these positions examining only invariant bases
to estimate the position-dependent error rate. The error
rate is defined, at each invariant base, as the fraction of
non-reference bases. Any position with an alternative
frequency greater than 0.05 was filtered out because this
would most likely result from a non-annotated SNP or a
PCR error occurring upstream of sequencing. After

filtering out the positions covered by less than ten
reads, we calculated the error rate as a function of the
strand (forward or reverse), the position on the reads (1
to 122) as well as the type of substitution observed (4 ×
3 = 12 possibilities when considering strands separately),
which are usual predictors of error in sequencing by
synthesis [6]. The retained positions were stratified into
bins corresponding to the substitution type (reference to
mismatch substitution), the read position, and the
strand. An error rate was estimated by grouping all the
observations from a specified bin. Grouping is critical
given that the variation in read depth is variable among
the observations. In order to correct for the noise from
the low number of observations in some cases, the error
rate was smoothed borrowing information from nearby
read positions to decrease the noise in the error rate
estimation. Smoothing was accomplished within each
bin stratified by the reference allele, the alternative allele
and the strand. Given a read position k, if the sum of
read depth is less than the average depth across all bins,
then the estimated error rates from read positions of k
+1, k-1, k+2, k-2, and so on, were used to smooth the
estimation until the sum of read depth exceeded the
average depth across all bins. The contributions were
weighted by the distance to k as well as by the read
depth. The smoothed error rate was computed as E = e
× n × r, where e is the error rate, r is the reciprocal of
the distance to read position being smoothed (for exam-
ple, 1/2, 1/3) and n is the read depth. The smoothed
error rate as a function of read direction, read position
and substitution type is presented in Figure S8 in Addi-
tional file 1.
Step 2a: filtering of candidate mutations
We first applied some general filtering rules to the data-
set to improve the computation time. Filtering out a
position equates to calling it a non-mutated site. The fil-
ters used for analysis can be divided into four sequential
rules.
Filter 1 Positions located within primer sequences are
filtered out.
Filter 2 Any position with a fraction of non-reference
alleles less than 0.2% of the total coverage at this posi-
tion is filtered out. This threshold was used based on
the initial specification of UDT-Seq to identify variants
present at 1% prevalence. An alternative allele with five
times lower support than 1% prevalence is unlikely to
be a true positive.
Filter 3 For positions covered by a single read (forward
or reverse), we reject all positions located more than
100 nucleotides from the read start, to prevent increas-
ing error rate at the end of the reads.
Filter 4 Reads (122 nucleotides) are sequenced from
both ends of the amplicons (approximately 200 bp
long). Therefore, some positions are sequenced from
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both reads (R and F for reverse and forward), which
sometimes have inconsistent calls. At these positions we
reject the F read call (respectively R read call) if 1) Cov
(F) < 0.1 Cov(R) (respectively Cov(R) < 0.1 Cov(F)),
where Cov indicates coverage depth at the examined
position, or if 2) Pos(R) > Pos(F) (respectively Pos(F) >
Pos(R)), where Pos indicates the distance in nucleotides
from the read start.
Step 2b: determination of the statistical significance
Given the estimated error rate E, the read depth N and
the count of alternative allele X, a binomial model was
used to compute the P-value for the event that more
than X alternative alleles were observed when the null
hypothesis is true. When a position is covered by both
forward and reverse reads, we used the Stouffer’s Z-
score method (weighted by the read depths) to combine
P-values of individual tests into a single P-value.
Step 3: determination of significance threshold
We ranked the detected candidate mutated positions
according to P-values. We did not use the nominal P-
values to call the significant mutations. Instead, we
relied on the calibration sample to derive the thresholds.
Since there is an imbalance between the number of true
positives (calibration SNPs) and true negatives (invariant
bases), we used Matthew’s correlation coefficient (MCC)
[29] to determine the best threshold that maximizes
MCC phi coefficient. This non-parametric procedure
used in machine learning is optimal to classify binary
information such as distribution between true negative
and true positive.
Step 4: detection in the tested sample
Similar to the calibration sample, the filters above were
used on the tested samples. In addition, we used the fol-
lowing filters to determine whether a position in the
tested sample is a significant variant.
Filter 5 In order to prevent bias due to coverage discre-
pancies between the calibration and the tested sample,
we rejected all bases of the tested sample with a cover-
age depth lower than the 5th coverage percentile across
all bases of the calibration sample.
Filter 6 Using the error rate generated from the calibra-
tion sample, we calculated the binomial test P-values
and ranked the candidate position in the tested sample
accordingly. We kept all positions above the P-value
determined by the MCC threshold obtained in the cali-
bration sample.
Filter 7 The local sequence-specific context (high GC,
low complexity) can lead to lower base quality or align-
ment success, that is, systematic noise. For each base
sequenced, we used the data from the four patient
blood samples to estimate its systematic noise. The sig-
nificance of the noise was measured with a binomial sta-
tistics using the local error rate (fraction of non-
reference bases) calculated from 20 adjacent positions

(10 upstream, 10 downstream). The P-value was Bonfer-
roni-corrected for multiple testing in a single 200-bp
amplicon (P < 5 × 10-4). Positions declared recurrently
noisy in three or more control blood samples were
removed from the list of candidate variants.
To estimate the stringency of the design and of these

successive filters, we examined 71 kb of DNA using 518
amplicons that cover 4,446 mutated positions in the
COSMIC database, with 5,271 known cancer mutations.
The mutations in each sample were called using the
algorithm trained on a calibration sample from the same
run. Based on the amplicon design and filtering strategy
presented above, we estimate that 70% of the targeted
COSMIC positions can be assessed by our current
method (Figure S10 in Additional file 1).

Somatic mutation identification, filtering and annotation
We considered all variants in a cancer sample that passed
the statistical assessment described above as potential
somatic mutations. We then retained the mutations for
which the corresponding position in the germline sample
was: 1) highly covered (> 10 reads); 2) not called mutant
using the same statistical assessment; 3) did not show
strong evidence of an alternative allele (> 20%) that failed
statistical assessment based on filter 4. Therefore, while
most germline mutations will fall under criterion 2, this
last criterion identifies rare cases of obvious germline
mutations (20% allele frequency), which failed the statis-
tical assessment in the blood sample.
We identified a total of 32 somatic mutations across

the four xenograft samples, of which 63% (43/68)
recurred in more than one sample and corresponded to
mouse-human mismatches. An investigation revealed
that a fraction of the PCR primers amplified both
human and mouse DNA and that these mutations cor-
responded to mismatches in the mouse-human genome
multiple alignment (Figure S6 in Additional file 1). To
filter out false positive mutations in the xenograft sam-
ples coming from mouse DNA contamination, we
obtained the multiple-alignment Mouse-Human track
from the UCSC Genome Browser. We then identified all
mismatch positions between hg19 and mm9 genome
sequences located in the UDT-Seq amplicons. We fil-
tered out the somatic mutations in the xenograft sam-
ples, with coordinates corresponding to these
mismatched positions. After removing these exogenous
mutations, there were 1, 11, and 1 high confidence
somatic mutations in the breast, colon, and ovarian
xenograft samples, respectively. No significant somatic
mutations were detected in the sarcoma xenograft sam-
ple (Table S7 in Additional file 2). To annotate the fina-
lized list of filtered significant somatic mutations for
functional consequences, we used ANNOVAR [30] on
hg19.
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SNaPshot single base extension assay
For each SNP a region ± 300 bp surrounding the site
was downloaded from the UCSC Genome Browser
(hg19). SNPmasker 1.0 [31] (hg19 and dbSNP build 132)
was used to mask variant alleles in each sequence to
avoid introducing allele bias in the PCR primers. PCR
primers (Table S10 in Additional file 2) were designed
using Primer3. SNaPshot probes (Table S10 in Addi-
tional file 2) were designed to anneal adjacent to the
mutation site using OligoAnalyzer [32]. Each probe was
evaluated for secondary structure formation and
designed to have a melting temperature greater than 50°
C for the complementary region between the probe and
its corresponding template.
PCR was performed in a volume of 25 μl containing

21 μl of Platinum PCR SuperMix (Invitrogen), 200 nM
of each primer, and 25 ng template DNA. Samples were
amplified using the following cycling parameters: 94°C
for 2 minutes, followed by 35 cycles of 94°C for 30 sec-
onds, 55°C for 30 seconds and 72°C for 30 seconds.
PCR products were assessed for quality and yield on the
NanoDrop spectrophotometer (Thermo Scientific Wal-
tham MA, USA) and by gel electrophoresis on a 2%
agarose gel. The remaining 15 μl of PCR amplicons
were treated with 5 units of shrimp alkaline phosphatase
(SAP) and 2 units of exonuclease I (ExoI) for 1 hour at
37°C, followed by 15 minutes at 75°C to remove excess
dNTPs and primers, respectively.
Single base extension reactions (SNaPshot Multiplex

Kit, Applied Biosystems) were performed in a volume of
10 μl containing: 5 μl of SNaPshot Mtiplex Ready Mix,
3 μl of SAP/ExoI treated PCR products, 1 μl of 0.2 μM
SNaPshot probe, and 1 μl of deionized water. The reac-
tions were carried out in a thermocyler (25 cycles of 96°
C for 10 seconds, 50°C for 5 seconds, 60°C for 30 sec-
onds). After extension, the products were treated with 1
unit of SAP at 37°C, followed by 15 minutes at 75°C.
Samples were mixed with the GeneScan-120 LIZ size
standard and analyzed on the 3130 Genetic Analyzer
(Applied Biosystems). We used GeneMapper 3.5 soft-
ware to analyze the results.

Sequencing and analysis using Illumina MiSeq
The four calibration sample microdroplet PCR libraries
(CAL-A, CAL-B, CAL-C, CAL-D) were amplified using
an additional six cycles of universal PCR in the same
conditions described above, with the use of a reverse
primer containing DNA index (CAAGCAGAAGACGG-
CATACGAGATXXXXXXGTGACTGGAGTTCAGA
CGTGTGCTCTTCCGATCTGAC, where X indicates
the Illumina index sequence), as recommended by
Illumina.
The amplified libraries were purified, quantified and

pooled in equimolar amounts. The pool was loaded at 4

pM on one MiSeq flowcell. The sequencing was per-
formed sequentially from both ends each for 154 cycles
of chemistry and 151 cycles of imaging, to prevent ima-
ging from the tri-nucleotide PCR-specificity adapters.
An additional six cycles were used to read the index.
The resulting reads were deconvoluted based on their
index. The results were analyzed through the identical
analysis pipeline, trimming the reads to 122 nucleotides
for comparable statistical analysis. The files correspond-
ing to the raw reads are publicly available at the NCBI
Short Read Archive (SRP009487.1) [28].

Additional material

Additional file 1: Figures S1 to S10.

Additional file 2: Tables S1 to S10.
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