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Abstract

Background: Long-range regulatory elements, such as enhancers, exert substantial control over tissue-specific
gene expression patterns. Genome-wide discovery of functional enhancers in different cell types is important for
our understanding of genome function as well as human disease etiology.

Results: In this study, we developed an in silico approach to model the previously reported phenomenon of
transcriptional pausing, accompanied by divergent transcription, at active promoters. We then used this model for
large-scale prediction of non-promoter-associated bidirectional expression of short transcripts. Our predictions were
significantly enriched for DNase hypersensitive sites, histone H3 lysine 27 acetylation (H3K27ac), and other chromatin
marks associated with active rather than poised or repressed enhancers. We also detected modest bidirectional
expression at binding sites of the CCCTC-factor (CTCF) genome-wide, particularly those that overlap H3K27ac.

Conclusions: Our findings indicate that the signature of bidirectional expression of short transcripts, learned from
promoter-proximal transcriptional pausing, can be used to predict active long-range regulatory elements genome-
wide, likely due in part to specific association of RNA polymerase with enhancer regions.

Background
Cellular identity and function are defined in large part
by regulatory networks that determine gene expression
profiles. Control of gene expression is complex, multi-
faceted, and coordinated [1,2]. Over the past decade,
with the advent of high-throughput genomic technolo-
gies, many systems-level biological approaches have
been developed to help resolve these complexities,
although substantive questions remain [3,4]. Recent
large-scale human genetic studies have revealed that
most complex disease-associated variants map to within
non-coding genomic regions [5-7], providing additional
impetus to expand current catalogs of gene regulatory
elements and better understand cellular control of gene
expression.

The first step in gene expression is the recruitment to
gene promoters of a multi-protein transcription initia-
tion complex [8], which includes RNA polymerase
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(RNAP). Once RNAP is stably bound to the template
DNA, it becomes transcriptionally engaged, and com-
mences elongation. It was noted over two decades ago
that RNAP could pause/stall at promoters, waiting for a
specific signal to continue productive transcription [9].
However, this type of regulation of transcriptional elon-
gation was thought to be an atypical phenomenon.
Three recent genome-scale approaches, employing high-
throughput sequencing technologies, have revealed that
promoter-proximal RNAP pausing is widespread, and
likely a common mode of gene regulation [10-12].

One of these methods, global nuclear run-on followed
by high-throughput sequencing (GRO-seq), provides a
density map of transcriptionally engaged RNAP across the
genome by purifying, sequencing, and mapping nascent
RNAs [10]. When applied to human lung fibroblasts
(IMR90), GRO-seq revealed that promoter-proximal paus-
ing is almost always accompanied by short, divergent
(anti-sense) transcription [10]; hereafter this signature is
referred to as bidirectional expression of short transcripts
(BEST). Two independent methods confirmed this signa-
ture in both murine embryonic stem cells [13] and HeLa
cells [14], suggesting that BEST is a general feature of
RNAP pausing in mammalian tissues.
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The functional consequences of promoter-proximal
RNAP pausing are likely diverse [15-17]. One recent study
found that paused RNAP facilitates the induction and
maintenance of an open chromatin conformation near a
gene promoter [18]. We reasoned that RNAP pausing, and
thus BEST, may occur at specific non-promoter regions
where open chromatin is present. Indeed, studies in yeast
have shown that pausing also occurs at certain non-
promoter sites within gene bodies [12,19,20].

In this study, we first sought to assess whether BEST is a
common feature in human cells. We analyzed published
IMR90 GRO-seq data [10] to define actively transcribed
genes and used the GRO-seq data at the promoters of
these genes for supervised training of a Naive Bayes classi-
fier (NBC). Using the NBC, we predicted nearly ten thou-
sand high-confidence, non-promoter-associated BEST
events genome-wide. Intriguingly, BEST significantly
co-occurred with open chromatin loci (DNase hypersensi-
tivity sites (DHSs) [21]), and was even more strongly asso-
ciated with DHSs that overlap regions enriched for histone
H3 lysine 27 acetylation (H3K27ac), the most reliable
chromatin marker to date of active enhancers [22,23].
BEST was modest at regions bound by the CCCTC-bind-
ing factor (CTCF), which serve as either direct transcrip-
tional modulators or insulators depending on chromatin
context [24,25]. Further analysis of epigenomic data
revealed that several active chromatin marks, including
histone H3 lysine 18 acetylation (H3K18ac) and histone
H4 lysine 5 acetylation (H4K5ac), but not H3 lysine 4 tri-
methylation (H3K4me3), were significantly enriched at
non-promoter-associated BEST loci relative to background
expectation. Overall, our findings indicate that BEST can
demarcate active non-promoter regulatory elements, likely
due in part to the specific association of RNAP with distal
regulatory elements.

Results

To confirm BEST at active promoters, we first sought to
define from IMR90 GRO-seq data a set of transcriptionally
active genes (Materials and methods). We calculated the
average reads per kilobase normalized for mapability for
every known human gene longer than 3 kb, and performed
a receiver operating characteristic (ROC) analysis using
1,522 expressed genes and 2,046 non-expressed genes
from an IMR90 microarray expression dataset [26]. The
most accurate cutoff for transcriptional activity was deter-
mined to be 5 reads/kb/mapability (Additional file 1),
yielding 14,145 active RefSeq transcripts, of which 5,213
uniquely mapped to a gene symbol. We computed the
average GRO-seq signal along the length of all 5,213 tran-
scripts, and confirmed the previously reported enrichment
of sense and antisense reads near the transcription start
site (TSS) [10] (Figure 1), which is characteristic of mam-
malian transcriptional pausing. We also observed a similar,
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but substantially dampened, pausing signal at the gene end
(Figure 1). As shown by Core et al. [10], although the pro-
moter-proximal pausing index [27,28] was inversely corre-
lated with gene transcription (Additional file 2), pausing
was still detectable at the promoters of very highly
expressed genes.

A probabilistic model predicts nearly 10,000 non-
promoter-associated BEST loci genome-wide in human
cells

We next sought to use GRO-seq data aligning to the
promoter regions of each of the active genes to train a
probabilistic model (NBC) for genome-wide prediction
of BEST events (Materials and methods). Specifically,
for each of three categories of interest (non-transcribed,
BEST, transcriptional elongation), we computed the
probability distributions for six distinct features (Figure
2). Then for every non-promoter-associated 2-kb win-
dow across the entire genome, which we defined as any
window at least 7 kb away from a known RefSeq tran-
scription start site or IMR90 H3K4me3 peak (Materials
and methods), we used these distributions to calculate
the probability that it belongs to each of the three cate-
gories, and assigned a category based on highest prob-
ability (Materials and methods). Using a logarithm of
odds (LOD) score threshold of 2.5, we predicted 9,662
high-confidence non-promoter-associated BEST loci
(Figure 3a). The widespread occurrence of non-promo-
ter-associated BEST throughout the genome, particularly
within intergenic and inactive intragenic regions, indi-
cates that RNAP specifically associates with non-promo-
ter loci.

Non-promoter-associated BEST loci correlate with open
chromatin regions enriched for H3K27ac

Approximately 70% (n = 6,770/9,662) of the genome-
wide BEST predictions overlap IMR90 open chromatin
loci (DHSs; Figure 3a), which represents an approxi-
mately nine-fold enrichment over background expecta-
tion (Materials and methods). Furthermore, almost 85%
(n = 5,678/6,770) of these also overlap regions signifi-
cantly enriched for H3K27ac in IMR90 cells (the most
reliable chromatin marker to-date of active enhancers
[22]), which represents a striking approximately 30-fold
enrichment relative to background (Figure 3a). Manual
inspection of several loci confirmed the tendency for
non-promoter-associated BEST loci to overlap DHS
regions that are enriched for H3K27ac but not for
H3K4me3 (Figure 3b-d).

To further characterize BEST at DHS regions, we
compared the profiles of GRO-seq sense/anti-sense read
density at non-promoter-associated DHS and non-DHS
control sites within transcribed intragenic (Figure 4a),
non-transcribed intragenic (Figure 4b), and intergenic
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Figure 1 IMR90 GRO-seq read distribution along the length of actively transcribed genes. As reported previously [10], a significant spike
in both sense (orange) and anti-sense (blue) reads is observed near the transcription start site (position 0 - TSS). A smaller spike is evident at the
annotated gene end (position 1 - Gene end). As expected, very little GRO-seq signal is observed in non-genic regions (positions less than -0.5
and greater than 1.5), and RNA polymerase-mediated transcription continues past the annotated gene end (positions between 1 and 1.5).

loci (Figure 4c) (Materials and methods). For all three
categories, we observed a significant accumulation of
sense reads within DHSs and anti-sense reads immedi-
ately upstream (Figure 4a-c) - precisely the signature of
BEST. The signal for BEST was even more pronounced
at DHSs that overlap H3K27ac peaks (Figure 4a-c). In
intragenic loci, the accumulation of GRO-seq anti-sense
reads at DHSs appears more pronounced than GRO-seq
sense reads (Figure 4a-b); however, this is most likely
because we are normalizing read density in a particular
window by the average read density in the entire region,
and the average read density is always higher in the
sense orientation.

Non-promoter-associated BEST regions are preferentially
associated with active enhancers

To analyze the chromatin landscape at the predicted
non-promoter-associated BEST loci more comprehen-
sively, we assessed the representation of ten different
histone modifications for which IMR90 data from
chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) and corresponding
control (input) data were available for two samples
from the Epigenome Atlas (Materials and methods).
The most strongly enriched modification was H3K27ac
(Figure 5), which is a robust discriminator between
active and poised enhancers [22,23]. The second-most
enriched mark was H3K18ac, which is also thought to
be associated with functional enhancers [29]. The two
least-enriched modifications were H3K4me3, which is
associated primarily with promoters, and histone H3
lysine 4 monomethylation (H3K4mel), which is
thought to be present at both active and inactive/
poised enhancers [29]. Finally, two modifications asso-
ciated with repressed states [30], histone H3 lysine 27
trimethylation (H3K27me3) and histone H3 lysine 9
trimethylation (H3K9me3), were depleted at regions of
BEST.

We repeated the above-described analysis for non-pro-
moter-associated DHSs that overlap H3K27ac peaks
(DHS*/H3K27ac") and for those that do not (DHS"/
H3K27ac”) (Figure 5). Expectedly, DHS"/H3K27ac"
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Figure 2 Probability distributions for four of the six features used to train the BEST predictor. Probability distributions are shown for each
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regions were most enriched for H3K27ac and other
active chromatin marks, and were depleted for repres-
sive marks (Figure 5). DHS*/H3K27ac™ regions were
depleted for most active and repressive marks, and were
enriched only for marks often associated with poised
states, H3K4mel and H3K4me2 (Figure 5). Most impor-
tantly, regions of BEST exhibited a chromatin landscape
significantly more similar to that of candidate active
enhancers (DHS"/H3K27ac") than poised enhancers
(DHS*/H3K27ac).

To confirm this finding in another cell type, we turned
to mouse embryonic stem cells (mESCs), which is the
only other cell type in which both the nascent transcrip-
tome (GRO-seq) [31] and enhancer-related chromatin
marks (ChIP-seq) [22,32-35] have been extensively

characterized. We re-trained the NBC using mESC
GRO-seq data aligning to active promoters, and applied
the NBC genome-wide to predict non-promoter-asso-
ciated BEST loci. Using a genome-wide dataset of candi-
date mESC enhancers [35], we found that robustly
active enhancers are approximately 8.5-fold enriched (P
< 0.0001) for BEST relative to poised enhancers (Addi-
tional file 3). Furthermore, approximately 71% (n = 5/7)
of the candidate enhancers that were validated by an in
vitro reporter gene assay [32] were predicted as BEST
loci (Materials and methods). Collectively, these results
indicate that BEST regions, as predicted by our classi-
fier, are preferentially associated with active enhancer
elements located within both transcribed and non-tran-
scribed genomic regions.
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Figure 3 Overlap among non-promoter-associated BEST predictions, DNase hypersensitive sites, and H3K27ac peaks in IMR90 cells. (a)
The frequency of overlap (y-axis) is shown between BEST predictions (brown) and DHSs (x-axis; All DHS+), and DHSs that overlap H3K27ac peaks
(x-axis; DHS+/H3K27ac+), relative to background expectation (black). Background regions are non-promoter-associated 2-kb windows randomly
selected from the genome. P-values were calculated using the two-tailed chi-squared test; *Chi-squared test P-value < 0.00001. (b-d) Overlap
between BEST predictions with LOD score > 2.5, DHSs, and H3K27ac peaks, in IMR9I0 cells is shown at three separate loci: (b) vacuole membrane
protein 1 (VMPT) - non-promoter-associated BEST loci (black dashed boxes) are enriched for DHSs and H3K27ac, and depleted of H3K4me3; (c)
primary transcript of microRNA let-7a-1 (Pri-let-7a-1) - a BEST locus (black dashed box) upstream of the promoter (green dashed box) lacks both
H3K4me3 and H3K79me?2 signal, indicating that it is highly unlikely to be an alternative promoter; and (d) La-related protein 1 (LARPT) - a BEST
locus (black dashed box) positioned between the annotated promoter (red dashed box) and the likely active promoter (green black box) lacks

both H3K4me3 and H3K79me2 peaks, indicating that it is highly unlikely to be an alternative promoter.

BEST is robust at CTCF binding sites that overlap
H3K27ac peaks

Distal regulatory elements are not limited to enhancers;
another important class is target sites for CTCF, which
have many known functions, including insulator activity.
To assess BEST at IMR90 CTCF binding sites [36], we
followed the same method as for DHSs to assess GRO-
seq sense and anti-sense read density profiles (Materials
and methods). Relative to non-CTCF control regions,
we detected a robust signal for BEST at CTCF binding
sites that overlap H3K27ac peaks (CTCF'/H3K27ac"),
only a very modest signal at sites that overlap DHS
peaks alone (CTCF*/DHS"), and no signal at sites that
overlap neither (Figure 6a,b). The results are consistent
with the previous finding that CTCF can sometimes
recruit RNAP to CTCF binding sites [37]. However, the

pronounced signal at CTCF"/H3K27ac" sites, together
with the dampened signal at CTCF*/DHS" sites, sug-
gests that this recruitment may be most prevalent at
CTCF binding sites that function as, or are proximal to,
active enhancers.

Discussion

In this study, we analyzed the IMR90 nascent transcrip-
tome [10], and developed a probabilistic model of pro-
moter-proximal transcriptional pausing in order to
identify non-promoter-associated BEST. Further compu-
tational analysis, using genome-wide IMR90 chromatin
profiles (Epigenome Atlas), revealed that non-promoter
BEST is significantly associated with regions enriched
for chromatin marks (such as DHSs, H3K27ac and
H3K18ac) that demarcate active enhancers.
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Figure 4 BEST signature at IMR90 DNase hypersensitive sites and H3K27ac peak regions in IMR90 cells. (a-c) Signal for BEST
(accumulation of GRO-seq sense reads accompanied by anti-sense reads immediately upstream) is shown at IMR90 DHSs located within actively
transcribed intragenic regions (a), non-transcribed intragenic regions (b), and intergenic regions (c). Relative sense/plus read density (y-axis) is the
sense/plus read density at a particular proportional position divided by the average sense/plus read density in the entire DHS + flanking region.
Proportional positions between 0 and 1 on the x-axis correspond to the DHS peak. Positions < 0 and > 1 correspond to flanking regions. IMR90
DHSs and H3K37ac peaks potentially associated with promoters or gene ends were discarded from the analysis. Non-DHS control regions (black)
were randomly generated and follow the same size distribution as DHSs.
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RNAP pausing is well-appreciated at promoter regions
[16,17], and very recently has been discovered at speci-
fic loci within actively transcribed genes in yeast
[12,19,20]. RNAP pausing has also been observed at
cohesin binding sites within a single actively transcribed
human gene in human umbilical vein endothelial cells
(HUVECs) [38]. However, to the best of our knowledge,
our work is the first systematic, genome-scale investiga-
tion of non-promoter RNAP pausing in human cells. A
recent study identified systematic biases in next-genera-
tion sequence data, such that an accumulation of GRO-
seq sense reads may not necessarily reflect bona fide
pausing, due to various nucleotide preferences during
c¢DNA amplification and sequencing [39]. Our analysis
circumvents this issue by defining pausing as an accu-
mulation of both sense and anti-sense GRO-seq reads,
reflecting the widespread divergent transcription asso-
ciated with promoter-proximal RNAP pausing in mam-
malian cells [17].

Recent in silico strategies to identify RNAP pausing from
nascent RNA sequencing data have used a local, determi-
nistic approach - a minimum level of enrichment of sense
read density in a particular window relative to neighboring
windows [12,40]. In contrast, our approach utilizes a prob-
abilistic model trained on a reliable genome-wide dataset.
The model can be trained on, and applied to, any GRO-
seq dataset in order to make inferences about the most
likely active enhancer elements. Applying the model to
IMR90 GRO-seq data, we detected thousands of non-pro-
moter BEST events. Some of these are located within
actively transcribed regions; therefore, the BEST could be
due to bound transcription factors that hinder RNAP pro-
cessivity and induce pausing [41]. However, many of the
BEST events are located in intergenic regions. BEST at
these loci may be due to specific recruitment of RNAP to
active enhancers, as reported previously [42,43]. In fact, a
seminal RNA-seq-based study reported that many neuro-
nal enhancers recruit RNAP, which then transcribes
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associated with promoters or gene ends were discarded from the analysis. Non-CTCF control regions (black) were randomly generated and

Proportion along length of region

bi-directionally a novel class of transcripts termed enhan-
cer RNAs (eRNAs) [43]. A more recent GRO-seq-based
study reported significant and dynamic changes to the cel-
lular eRNA profile upon application of an exogenous trig-
ger [40]. It is quite possible that predictions of BEST
events using our approach coincide with regions that pro-
duce eRNAs as defined by these two studies.

Two major unanswered questions are whether RNAP-
mediated BEST occurs at all active enhancers, and
whether it contributes to the maintenance of open chro-
matin, or is just a consequence of the presence of other
factors at those sites. A critical related question is
whether the short bi-directional transcripts produced by
BEST at these sites have functional relevance, or are
simply transcriptional noise tolerated by evolution
because of relatively minor metabolic cost. Either way,
the ability to detect BEST by analysis of GRO-seq data
contributes another important approach for the dissec-
tion of genomic regulation in higher eukaryotes.

Conclusions

Long-range regulatory elements are important modula-
tors of gene expression, but they remain poorly anno-
tated. Recent approaches for genome-wide identification
of regulatory elements have focused on analyzing the
chromatin state. This study contributes an alternative,
complementary strategy. We developed a probabilistic
model to capture the transcriptomic signature, BEST, of
promoter-proximal polymerase pausing. We used this
model to predict non-promoter-associated BEST
regions, which were significantly enriched for chromatin
marks (such as H3K27ac) that are associated with active
long-range regulatory elements.

Materials and methods

Identifying actively transcribed genes

All human RefSeq transcripts (n = 35,983) were down-
loaded in hgl8 coordinates from the UCSC Table Brow-
ser, build 36 [44]. Only validated mRNA transcripts
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(NM_’ prefix) were retained (n = 30,326). For each tran-
script longer than 3 kb (n = 27,863), we defined the
body of the transcript as 1 kb downstream of the tran-
scription start site to the annotated gene end. The level
of transcription for each transcript body in IMR90 cells
was determined by computing the average GRO-seq
sense reads/kb/mapability using the previously published
IMR90 GRO-seq data [10] and the ‘Duke Uniq 35" map-
ability data downloaded from the UCSC Table Browser,
build 36. A reads/kb/mapability cutoff for transcriptional
activity was chosen according to the maximal accuracy
measure - the reads/kb/mapability that achieves the
optimal combination of sensitivity (true positive rate)
and specificity (true negative rate) using high-confidence
true positive genes (expressed genes; n = 1,522) and
true negative genes (non-expressed genes; n = 2,046)
from a published IMR90 microarray dataset [26]. Accu-
racy was measured by calculating the following: (Num-
ber of expressed genes identified + Number of non-
expressed genes identified)/All genes. At the most accu-
rate cutoff of 5 reads/kb/mapability, 14,145 transcripts
were called active, of which 5,213 uniquely mapped to a
gene symbol.

Naive Bayes classifier for prediction of BEST events
GRO-seq data aligning to (i) active promoters (n =
5,213), (ii) active transcript bodies (n = 5,213), and (iii)
randomly selected intergenic regions (with a similar
length distribution as active RefSeq transcripts, but
non-overlapping with any known RefSeq transcript; n
= 5,213) were used to train a NBC to identify BEST,
transcriptional elongation, and non-transcribed regions,
respectively. First, 2-kb windows were centered at all
active start sites of transcription, mid-points of active
transcripts, and mid-points of the randomly selected
intergenic regions. Then, for all 2-kb test windows in
each class, the values for the following six features
were calculated: (i) sense strand reads/kb/mapability
(hereafter ‘read density’), (ii) antisense strand read den-
sity, (iii) ratio of the sense strand read density to that
in a 2-kb window immediately 3’ of the test window,
(iv) ratio of the antisense strand read density to that in
a 2-kb window immediately 3’ of the test window, (v)
ratio of the sense strand read density to that in a 2-kb
window immediately 5’ of the test window, and (vi)
ratio of the antisense strand read density to that in a
2-kb window immediately 5" of the test window. The
values of these features were used to compute a prob-
ability distribution for each feature for each class.
These distributions were utilized by the NBC, accord-
ing to the following equation, to differentiate BEST
events from productive transcriptional elongation and
transcriptional noise:
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6
Class = argmax Pr (c;) 1_[ Pr (fj lci)

ci€{B,E,N} i=1

where the three classes B, E, and N represent BEST,
transcriptional elongation, and non-transcribed, respec-
tively. The prior probabilities, Pr(c;), were set to be equal
for all classes. The six described features are represented
by f; to fs. The NBC was applied genome-wide, on both
strands, avoiding regions associated with promoters or
gene ends (within 7 kb of known transcription start sites,
annotated gene ends, and IMR90 H3K4me3 peaks). On
the plus strand, plus strand GRO-seq reads are interpreted
as ‘sense’ and minus strand GRO-seq reads are interpreted
as ‘antisense’; on the minus strand, plus strand GRO-seq
reads are interpreted as ‘antisense’ and minus-strand
GRO-seq reads are interpreted as ‘sense’. On each strand,
for each non-overlapping 2-kb test window in the search
space, a LOD score was computed comparing the prob-
ability of BEST with that of the other two classes:

6

Pr(B) [1Pr (f;IB)

LOD(B) = In .

max r(cz)jl:{ r (fi lei )

Test windows with LOD scores > 2.5 on one or both
strands were set as high-confidence BEST loci.

Identification of DHS, H3K27ac, and CTCF peaks

IMR90 DNase-seq read data for four biological replicates
were downloaded from the Epigenome Atlas, release 3
[45]. MACS [46] version 1.4 was run on each dataset,
using the parameter values described previously [47], to
identify genomic regions of enrichment for DNase-seq
reads. Regions called as enriched in all four replicates were
defined as ‘DHS peaks’. IMR90 H3K27ac ChIP-seq read
data for two biological replicates, and corresponding con-
trol (input) data, were downloaded from the Epigenome
Atlas, release 3. MACS version 1.4 was run on each data-
set, using the default parameter values, to identify genomic
regions enriched for H3K27ac. Regions called as enriched
in both replicates were defined as ‘H3K27ac peaks’. Finally,
IMR90 ChIP-chip-derived CTCF peaks were downloaded
from the Ren laboratory website [48] and converted to
hg18 coordinates using the command line liftOver pro-
gram with the -minMatch parameter set to 0.9.

GRO-seq sense and anti-sense read profiling analysis at
DHS and CTCF peaks

DHS/CTCF peaks were categorized as located within
actively transcribed intragenic regions, inactive intragenic
regions, or intergenic regions, with respect to the RefSeq
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dataset used in this study (see the ‘Identifying actively tran-
scribed genes’ section of the Materials and methods). To
avoid promoter-associated peaks, DHS/CTCF peaks + 5 kb
flanking regions that were within 2 kb of known transcrip-
tion start sites, annotated gene ends, or IMR90 H3K4me3
peaks were discarded. For each of the remaining DHS/
CTCF peaks within each category, GRO-seq sense and
anti-sense reads/kb/mapability were computed in 150-bp
windows from the start of the DHS/CTCF peak to the end
of 5-kb flanking regions on either side. Then, for each
DHS/CTCEF peak and flanking region, nucleotide distance
was converted to proportional distance. For example, for a
DHS/CTCEF peak that is 300 bp in length, the first 150 bp
immediately upstream of the peak corresponds to ‘-0.5 to
0’, the first 150 bp within the peak corresponds to ‘0 to
0.5, the second 150 bp within the peak corresponds to ‘0.5
to 1, the first 150 bp immediately downstream of the peak
corresponds to ‘1 to 1.5, and so on.

Representational analysis of chromatin marks at
predicted BEST loci

IMR90 ChIP-seq read data for ten different histone modi-
fications, each with at least two biological replicates, and
corresponding control (input) data, were downloaded
from the Epigenome Atlas, release 3. For each histone
modification dataset, the read density (reads/bp) was com-
puted at predicted, high-confidence BEST loci, and then
divided by the read density at randomly generated back-
ground (control) regions (2 kb in length and drawn from
the same genomic locations as BEST loci), to yield an
enrichment value. The enrichment value was then divided
by the enrichment value for input, to yield a normalized
enrichment value.

Analysis of mouse embryonic stem cell enhancers

To perform genome-wide prediction of BEST loci in an
additional cell type, the NBC was trained and applied on
publicly available mESC GRO-seq data in exactly the same
manner as was done using GRO-seq data from IMR90
cells. Genome-wide candidate mESC enhancers (poised,
weak, and strong) were downloaded from Zentner et al.
[35] and in vitro validated mESC enhancers were down-
loaded from Schnetz et al. [32]. In both cases, only those
not within 7 kb of known transcription start sites, anno-
tated gene ends, and mESC H3K4me3 peaks were retained
for further analysis.

Additional material

Additional file 1: Receiver operating characteristic (ROC) curve
depicting the sensitivity and specificity at various IMR90 GRO-seq
read density cutoffs for gene activity. This figure shows that a cutoff
of 5 reads/kb/mapability achieves the best combination of sensitivity and
specificity, according to the maximal accuracy metric.
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Additional file 2: Inverse correlation between promoter-proximal
pausing index and level of gene transcription in IMR90 cells. This
figure shows that promoter-proximal pausing of RNA polymerase is high
for lowly expressed genes and low for highly expressed genes.

Additional file 3: Representation of BEST at three different
enhancer subtypes in mouse embryonic stem cells. This figure shows
that signal for BEST (bidirectional expression of short transcripts) is
approximately two-fold and approximately eight-fold enriched at strong
enhancers relative to weak enhancers and poised enhancers, respectively.

Abbreviations

BEST: bidirectional expression of short transcripts; ChIP-seq: chromatin
immunoprecipitation followed by high-throughput sequencing; CTCF:
CCCTC binding factor; DHS: DNase hypersensitive site; eRNA: enhancer RNA;
GRO-seq;: global nuclear run-on assay followed by high-throughput
sequencing; H3K18ac: histone H3 lysine 18 acetylation; H3K27ac: histone H3
lysine 27 acetylation; H3K4me1: histone H3 lysine 4 mono-methylation;
H3K4me3: histone H3 lysine 4 tri-methylation; IMR90: human lung fibroblasts;
LOD: logarithm of odds; mESC: mouse embryonic stem cell; NBC: Naive
Bayes classifier; RNAP: RNA polymerase.
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