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Abstract

Background: Translation is a central process of life, and its regulation is crucial for cell growth. In this article,
focusing on two model organisms, Escherichia coli and Saccharomyces cerevisiae, we study how three major local
features of a gene’s coding sequence (its adaptation to the tRNA pool, its amino acid charge, and its mRNA folding
energy) affect its translation elongation.

Results: We find that each of these three different features has a non-negligible distinct correlation with the speed
of translation elongation. In addition, each of these features might contribute independently to slowing down
ribosomal speed at the beginning of genes, which was suggested in previous studies to improve ribosomal
allocation and the cost of translation, and to decrease ribosomal jamming. Remarkably, a model of ribosomal
translation based on these three basic features highly correlated with the genomic profile of ribosomal density.
The robustness to transcription errors in terms of the values of these features is higher at the beginnings of genes,
suggesting that this region is important for translation.

Conclusions: The reported results support the conjecture that translation elongation speed is affected by the three
coding sequence determinants mentioned above, and not only by adaptation to the tRNA pool; thus, evolution
shapes all these determinants along the coding sequences and across genes to improve the organism’s translation
efficiency.

Background
Gene translation is a central biological process in all liv-
ing organisms by which an mRNA sequence is decoded
by the ribosome to synthesize a specific protein. During
the elongation stage of this process, each codon is itera-
tively translated by the ribosome to an amino acid.
Translation elongation is known to be conserved in all
living organisms (Bacteria, Archaea, and eukaryotes [1]);
thus, understanding this process and the determinants
related to it have important ramifications for human
health [2-4], biotechnology [5-10], and evolution
[4,8,11].
Indeed, gene translation has been the topic of an

increasing number of studies in recent years (see, for
example, [5,7,8,12-20]). Specifically, it was recently dis-
covered that the efficiency of translation can be

controlled by the codon order in the coding sequence
[8,17]. This is partially achieved by a ‘ramp’ at the begin-
ning of the coding sequences composed of less efficient
codons. This ramp slows down ribosomal speed, and
thus improves their allocation and minimizes the number
of collisions between them. In addition, it was shown that
there is global selection for weak mRNA folding at the
beginning of the coding sequence to improve the binding
of ribosomes [7,8,14,16,17,21,22]. Furthermore, recent,
small-scale studies also suggested that positively charged
amino acids slow down ribosomes as the electrostatic
potential inside the exit tunnel is negative [23,24]. Finally,
based on large scale measurements of ribosome densities
[13,15] it has been demonstrated that the density (and
thus the speed [8]) of ribosomes varies within a gene and
across genes.
We have previously shown that the speed and alloca-

tion of ribosomes in genes is affected by the distribution
of the adaptation of codons along them to the tRNA
pool of the organism [8]. The goal of this paper is to
study how the different features of coding sequences
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interact to affect the speed of ribosomal movement and
allocation. Our results may suggest that selection forces
act to slow down the speed of ribosomes at the begin-
ning of genes. This is likely to improve allocation of
ribosomes and prevent traffic jams and collisions
between ribosomes [8]. This is achieved not only via
selection for slower codons in these regions but also by
increasing mRNA folding strength and the frequency of
amino acids with a positive charge in these regions.
Furthermore, we show that there is selection to

increase the robustness to transcriptional errors at the
beginnings of ORFs, which might change these three
features, pointing to the specific importance of this
region in translation regulation.

Results
Computing the genomic profiles of codon bias, charge
and folding energy
We defined three genomic profiles of coding sequence
determinants: (1) a profile of codon bias co-adaptation
to the tRNA pool; (2) the amino acid charge pattern;
and (3) the profile of local mRNA folding energy.
The profile of co-adaptation of the codon bias to the

tRNA pool is based on the tRNA adaptation index (tAI)
measure [25] and represents the co-adaptation between
the coding sequences and the tRNA pool of the organ-
ism. The tAI is superior to other measures of codon
bias as it yields higher correlations with protein abun-
dance than the alternative measures and is a more direct
measure of adaptation to the tRNA pool. It is based on
the coding sequences and the genomic copy numbers of
tRNA molecules (which were shown to be highly corre-
lated with their cellular tRNA levels; more details are
provided in Materials and methods and Note S1 in
Additional file 1).
The tAI of a codon is higher if it is recognized by

more abundant tRNA molecules; thus, on average, the
recognition time of the codon by the right tRNA is
shorter [8]. The i-th entry in the genomic codon bias
profile is computed as the mean tAI of the i-th codons
across genes (of substantial length [8]; Materials and
methods).
The charge profile represents the position-specific

average charge of the amino acid chains across genes.
The i-th entry in the charge profile is the mean charge
of the i-th amino acid across genes where 1 represents a
positive charge (amino acids Arg, His and Lys), -1 a
negative charge (amino acids Asp and Glu), and 0 no
charge (all other amino acids) (Materials and methods).
The exit channel follows the peptidyl transferase center,
where the catalytic reaction of the ribosome takes place;
the polyleptide thus must traverse two negatively
charged regions to exit [24,26]. Thus, charged amino
acids that are encoded in the codons preceding

(upstream) the translated codon should have electrosta-
tical interactions with the ribosome.
The folding energy profile was computed as follows.

First, we computed for each gene a profile of local fold-
ing energies (Materials and methods); the folding energy
corresponding to the i-th codon is the folding energy of
a 40-nucleotide window that begins with this codon.
Folding energies corresponding to nucleotides before
the start codon (that is, at the 5’ UTRs) were defined in
a similar way. In the next stage, we computed the mean
folding energy for each entry (position) in a similar way
to the tAI and charge profiles described above (Materi-
als and methods). Stronger folding corresponds to lower
(more negative) folding energy. It was shown before
[14,27] that the correlation between the folding energy
and protein abundance is very weak in endogenous
genes. However, in this study we focus on the effect of
folding energy on the density of ribosomes and their
allocation.
In addition, due to a novel approach for measuring

ribosomal density at single nucleotide resolution, which
was performed for numerous Saccharomyces cerevisiae
genes [15], it is possible to plot, in a similar manner, a
genomic ribosomal density profile. The i-th entry in this
profile is the mean ribosomal density of the i-th codon
across genes (of substantial length).
The three genomic profiles of S. cerevisiae and Escher-

ichia coli, and the genomic profile of ribosomal density
in S. cerevisiae are shown in Figure 1. As we mentioned
earlier, it was reported in previous studies that the co-
adaptation profile of codons to the tRNA pool correlates
with the ribosomal density profile, and that this profile
has a ‘ramp’ of slower translation speed at the beginning
of coding sequences [8]. Figure 1 demonstrates that the
actual ramp has three dimensions.
However, there are two additional dimensions:
First, the genomic profile of folding energy contains a

region of stronger folding (after an initial weak folding
region that promotes ribosomal binding; see Figure S1
in Additional file 2 for the median profile). Similar
results were obtained when analyzing measurements of
mRNA folding [28]: at the beginning of the coding
sequence there are usually nucleotides that are not
involved in base-pairing (that is, weak mRNA folding; P
= 8.9 × 10-69) as opposed to downstream nucleotides
where the frequency of nucleotides involved in base-
pairing increases (that is, strong folding; P = 5 × 10-74;
Materials and methods; Figure S2 in Additional file 2).
Second, genes tend to have more positively charged
amino acids at their 5’ end, which should also contri-
bute to the deceleration of ribosomes. The length of the
slower region in each of the three dimensions of the
ramp is between 30 and 50 codons, similar to the length
of the ribosome’s exit channel [17] (the lengths of the
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ramps and the corresponding P-values are given in Fig-
ure 1; see Materials and methods for explanations about
how these lengths were computed). As can be seen in
Figure S3 in Additional file 2 the genomic charge profile
is a superposition of the genomic profiles of the indivi-
dual amino acid frequencies (that is, it is not a result of
one specific amino acid).
All three genomic profiles were less coherent at the

end of the sequences (lower rows of Figure 1a, b; the
ribosomal profile is relatively flat; the tAI profile has an
increased efficiency at the end of S. cerevisiae genes, but
no trend emerges in the case of E. coli; the charge pro-
file contributes to reduced speed at the end, and the

folding profile contributes to elevated speed due to
weak folding). Thus, it seems that the selection forces
acting on the 3’ UTR ends of the coding sequence are
mainly related to amino acid bias and less to translation
(as was suggested for part of the features in [8,14]; see
also Note S2 in Additional file 1).
Taken together, these results suggest that the speed of

ribosome movement and the efficiency of translation
elongation result from a superposition of various fea-
tures of the coding sequence. Thus, the regulation of
translation elongation (for example, the ‘ramp’ at the
beginning of genes) has more degrees of freedom than
previously reported.

Figure 1 Mean genomic profiles of three features of the coding sequences. The mean genomic profiles of ribosome density, tAI, folding
energy, and amino acid charge in S. cerevisiae and E. coli when aligning all the genes to their beginning (upper panels; Materials and methods)
or end (lower panels; Materials and methods). In the case of the beginning profile, each panel also includes the region of the ramp (Materials
and methods), a P-value corresponding to a comparison of the ramp to the rest of the profile (black; Materials and methods), and a P-value
corresponding to a control for amino acid content (brown; Materials and methods).
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In the next sections we further examine this idea,
demonstrating that these ramps are more striking for
highly expressed genes, that they are more robust to
transcription errors, and that each of the ramps makes a
distinct contribution to the ribosomal density.

The three dimensions of the ‘ramp’ are accentuated for
highly expressed genes and for genes with higher
ribosomal density
If the ‘ramp’s three dimensions are selected for in such a
manner as to improve the allocation of ribosomes and
prevent ribosome collisions, we expect a more promi-
nent ramp for genes with higher mRNA levels and ribo-
somal densities, as such genes potentially consume more
ribosomes (as was suggested in [8]). The ramp has addi-
tional potential advantages (Note S3 in Additional file
1). Thus, we expect to see it also in genes with lower
ribosomal density [8].
The ramp’s length is the slower region at the begin-

ning of the genomic profile and it is measured relatively
to the entire profile (Materials and methods); thus, the
ramp region of highly expressed genes can in actuality
be more efficient than that of lowly expressed genes,
despite the fact that absolute translation rates for lowly
expressed genes are lower.
Figure 2a-c depicts the mean genomic profiles of

charge, folding energy and translation efficiency for
genes with the highest ribosomal density (the top 10%)
versus genes with the lowest ribosomal density (lowest
10%). Indeed, the three dimensions of the ramp are
more prominent (relative to the rest of the profile) for
the group of genes with the highest values for the pro-
duct ribosomal density (the charge, folding energy, and
tAI ramp lengths are 15, 17, and 19, respectively, for the
group with the uppermost values versus 4, 17, and 14,
respectively, for the group with the lowest values). The
gap between these two groups increases when consider-
ing the group of genes with the uppermost values for
the product of (mRNA levels) × (Ribosomal density)
versus the group of genes with the lowest values for this
product; this value represents the actual number of ribo-
somes ‘consumed’ by the gene, and the charge, folding
energy, and tAI ramp lengths are 11, 53, and 17, respec-
tively, for the group with the uppermost values versus 0,
17, and 0, respectively, for the group with the lowest
values (see Figure S2b, c in Additional file 2 for similar
results based on folding energy measurements). Similar
results were also obtained for other organisms whose
mRNA levels are available (E. coli and Caenorhabditis
elegans; Figures S4 and S5 in Additional file 2) or when
we analyze measurements of mRNA folding [28] (Figure
S2 in Additional file 2; Materials and methods). These
results support the conclusions reported above. Specifi-
cally, the case of the folding energy profile is more

complex as highly expressed genes and genes with
higher ribosomal density should have stronger selection
for weak folding at the first few codons to promote
ribosomal binding and increase the rate of translation
initiation [14,21,29]. However, as can be seen in Figure
2, the preceding codons have stronger mRNA folding in
the case of highly expressed genes and genes with
higher ribosomal density.
We further verified that the three observed profiles are

not due to a small group of genes with a specific func-
tion(s) that may skew the results (for example, mem-
brane proteins or heat shock proteins; see results in
Figures S6 and S7 in Additional file 2; Additional files 3
and 4).

The three genomic profiles exhibit stronger robustness to
transcription errors at the beginning of genes
The error rate in the process of gene transcription is
estimated to be 1 in every 104 nucleotides [30]. Thus,
on average, one in every 67 windows with a length of 50
codons will have a transcriptional error. Considering the
fact that there are thousands of copies of mRNA mole-
cules in the cell (for example, the number of mRNA
molecules in S. cerevisiae is around 60,000 [31], and in
E. coli it is around 1,380 [32]) and that genes are tran-
scribed and translated continuously, together this may
amount to a non-negligible error probability (in terms
of its effects on an organism’s fitness).
To study the robustness to transcription error, we

used three measures of the robustness of mRNA
sequence to transcription errors in terms of its folding
structure and energy. The first measure is the mean
change (over all point mutations) in mRNA folding
energy; the second measure is the number of errors
causing modification of mRNA folding; and the third is
the mean number of nucleotide-nucleotide connections
that are present/absent in the two-dimensional folding
structure of the original mRNA sequence but absent/
present in the two-dimensional structure of the mutated
one [33] (Figure 3A; Materials and methods). These
measures were computed for all sliding windows of 40
nucleotides (close to the footprint of the ribosome on
the mRNA sequence; Materials and methods) in all S.
cerevisiae and E. coli genes.
We found a significant signal for increased robustness

to transcription errors in terms of the folding energy at
the beginning of genes (P = 1.4 × 10-100; Figure 3B;
Materials and methods). The signal remains significant
when controlling for the folding energy of the mRNA
sequences (that is, to rule out the possibility that the
robustness is a result of the more extreme folding in
this region as mentioned in the previous sections; all P-
values < 0.05; the most significant P-value = 9.6 × 10-68;
Figure 3C; Materials and methods) and when comparing
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the profile to that of randomized sequences with identi-
cal amino acids (and maintaining the codon bias of the
organisms; that is, controlling for amino acid bias; P =
6.5 × 10-5; Figure 4D; Materials and methods). Thus,
these results suggest that at the beginning of genes
there is selection for increased robustness to transcrip-
tion errors in terms of changes in mRNA folding.

Similar results were obtained for E. coli (see all the
results, controls, and corresponding P-values in Figures
S11 to S19 in Additional file 2).
Next, we performed a similar analysis with respect to

the tAI and the charge for windows of 13 codons (the
footprint of the ribosome on the mRNA [15,34], small
variations in the window size did not alter the

Figure 2 Profiles of charge, folding energy, and co-adaptation between codon bias and the tRNA pool for genes with high and low
ribosomal density. (a-c) Profiles of charge (a), folding energy (b) and co-adaptation between codon bias and the tRNA pool (c) for genes with
high ribosomal density (red; top 10%) and genes with low ribosomal density (green; bottom 10%) in S. cerevisiae. (d-f) Profiles of charge (d),
folding energy (e) and co-adaptation between codon bias and the tRNA pool (f) for genes with high (mRNA levels) × (Ribosomal density) (red;
top 10%) and genes with low (mRNA levels) × (ribosomal density) (green; bottom 10%) in S. cerevisiae. The ramps and corresponding P-values
are shown in the figure. Similar graphs were obtained for E. coli and C. elegans (see graphs and corresponding P-values in Figures S4 and S5 in
Additional file 2).
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conclusion; Materials and methods). Our analysis
demonstrates that also in these cases, the beginnings of
genes tend to be more robust relative to other parts of
the coding sequence (P = 8.3 × 10-45 for charge and P =
1.3 × 10-34 for the tAI; Figure 3e, f; see Figures S20 to
S25 in Additional file 2 for various controls related to
these genomic profiles of robustness, as was performed
for the folding energy robustness). In the case of the
charge robustness profile, the profile also includes a
decrease in the robustness in the second half of the
‘ramp’ region, followed by a gradual return that is close
to the baseline (but still lower). The unique shape of
this profile suggests that it was influenced by additional
determinants that are not necessarily related to the
‘ramp’. Similar results were obtained for E. coli (see
plots and P-values in Figures S20 to S25 in Additional
file 2).

It is possible that different transcription errors have
different occurrence probabilities. To the best of our
knowledge, however, there are no measurements/esti-
mations of these errors. Nevertheless, we show that
the robustness profiles obtained under the assumption
that the probability of a transition error (a change of a
purine by a purine and of a pyrimidine by a pyrimi-
dine) is higher than the probability of a transversion
error (a change to a different base type) remain very
similar (see Figures S26 to S31 in Additional file 2 and
the corresponding P-values; see details in Materials
and methods). In addition, in the case of the charge
robustness profile, both transcription and translation
errors are relevant. Thus, we also show that, when
considering the fact that translation errors are very
rare in the second nucleotide of a codon [35], the
charge robustness profile remains very similar (Figures

Figure 3 Genomic profiles of robustness to transcription error demonstrate that there is an increased selection for robustness at the
beginning of genes in S. cerevisiae. (a) An illustration of the robustness computation: for each sliding window (length 13 codons) and in
every coding sequence we computed the mean distance (in terms of folding energy (FE), tAI, and charge) from all its single nucleotide point
mutations. In the next stage, the genomic profiles of robustness were plotted and analyzed (see more details in the Materials and methods). (b)
The genomic profiles of robustness to transcription error (mean number of mutations that do not change the mRNA folding). The number of
transcription errors (point mutations) that change the folding energy is lower at the beginning of genes (P = 1.4 × 10-100, Kolmogorov-Smirnov
(KS) test). (c) The profiles of robustness to transcription error for five bins of equal size corresponding to the folding energy of the windows
(Materials and methods; the boundaries of each bin are reported in the figures). The increased robustness at the beginning of genes remains
significant even when controlling for local folding energy of the mRNA sequences. (d) The robustness to transcriptional errors in terms of
folding energy is stronger than in randomized sequences (that maintain the codon bias and amino acid content of the original sequences;
Materials and methods) at the beginning of genes (P = 6.5 × 10-5, KS test). (e, f) Profile of the robustness to transcriptional errors in terms of
charge (e) and tAI (f). There is increased robustness at the beginning of genes in terms of the charge (e) as well as in terms of tAI (f). Ramp
length and corresponding P-values are reported in the figures.
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S30 and S31 in Additional file 2; see details in Materi-
als and methods).

The three genomic profiles explain the ribosomal density
profile
Each of the three coding sequence profiles has significant
partial correlation with the ribosomal density profile
Under the assumption of a constant flux of ribosomes,
the density of ribosomes is higher for lower ribosomal
velocity and it is proportional to 1/(Ribosomal velocity)
[8]. In this section, we aim to verify that the three pro-
files of coding sequence features (previously reported)
contribute to the genomic ribosomal density profile
[8,15] and thus to the ribosomal speed profile. If there
is correlation between the ribosomal speed or density
and features of the coding sequence, it should appear

along the entire sequence and not only at the beginning.
As longer sequences should have larger statistical power
(but the length should be shorter than most of the
genes), we decided to check the three profiles along 200
codons.
First, we found that the three genomic profiles of the

coding sequence correlate significantly with the profile
of ribosomal density. The correlation of the tAI profile
and the ribosomal density profile is -0.59 (P < 10-16; for
the first 200 codons; as reported in [8]); the correlation
of the folding energy profile and the ribosomal density
profile is -0.4743 (P = 1.05 × 10-6; for codons 5 to 100;
as reported in [14]); the correlation of the charge profile
and the ribosomal density profile is 0.48 (P < 5.25 × 10-
13; for the first 200 codons; dot plots in Figure S32 in
Additional file 2).

Figure 4 Predictions and modeling of the ribosomal density profile based on the features of the coding sequence. (a) Genomic profiles
of tAI, folding, charge, a linear regressor based on all these variables, and ribosomal density. In the case of the linear regressor, the predicted
ribosomal density is plotted as a function of the distance from the beginning of the ORF (x-axis). The linear regressor is a better predictor of the
ribosomal density profile than each of these variables separately (dot plots in Figure S32 in Additional file 2). (b, c) Modeling of ribosomal
velocity and density. (b) The velocity of translating the i-th codon is a function of the co-adaptation of the codon to the tRNA pool of the
organism, the tAI, the folding energy (FE) after the codon (40 nucleotides), and the charge of the amino acids before the codon (31 amino
acids; Materials and methods). (c) To compute the actual velocity we should also consider the initiation and termination times and the fact that
a ribosome may be delayed by the ribosome in front of it due to ‘traffic jams’ (Materials and methods). (d) The profile of ribosomal density (red)
versus the predicted profile of translation times based on a deterministic model (green; see (b, c)) and the predicted profile based on a
stochastic model (blue; Materials and methods). (e) Correlations of various predictors of ribosomal density with the actual ribosomal density. The
predictor that is based on the three variables and the model of ribosomal movement achieved the highest correlation.
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Second, we verified that these correlations are main-
tained even if we control for the other two variables
(Materials and methods; Note S4 in Additional file 1).
Indeed, all partial correlations were significant: the par-
tial correlation of the charge and the ribosomal density
profile given the other two variables, R(Charge, Riboso-
mal density | tAI, Folding), is 0.314 (P = 6.5 × 10-6;
empirical P < 0.01); the partial correlation of the tAI
and the ribosomal density profile given the other two
variables, R(tAI, Ribosomal density | Charge, Folding), is
-0.47 (P = 3.35 × 10-12; empirical P < 0.01); the partial
correlation of the local folding and the ribosomal den-
sity profile given the other two variables, R(Folding,
Ribosomal density | Charge, tAI), is -0.224 (P = 0.0015;
empirical P < 0.01).
In addition, when we inferred a linear regressor

(Materials and methods) based on the three features of
the coding sequence we obtained an improved correla-
tion with ribosomal density compared to the correlation
with each of the features separately, resulting in a plot
that significantly resembles the ribosomal density graph
(Spearman correlation 0.87, P < 10-16; Figure 4a; Figure
S32d in Additional file 2; when we did not consider the
first 50 codons (the region of the ramp) the correlation
was only 0.33, P = 4 × 10-5). The formula of the regres-
sor was: (1/tAI) × 3.18 + Folding energy × (-0.177) +
Charge × 5 - 3.034. In addition the P-values (confidence
intervals) of the three features were significant (folding
P = 0.01; charge and tAI P-values < 0.005), suggesting
that all three have a significant contribution to the
regressor.
The results remained robust when we performed

leave-one-out iterations, where in each iteration the
regressor was inferred based on 50% of the sequences
and was applied on the remaining sequences (P < 0.01;
Materials and methods).
As a whole, the results reported in this section

demonstrate that each of the features of the coding
sequence makes a distinct contribution to the transla-
tion rate and density of ribosomes. In addition, the
results reported in this section suggest that the tAI
makes the most substantial contribution, whilst the fold-
ing energy makes the smallest, to the ribosomal density
profile.
An integrated model of ribosomal density and translation
rate
We investigated the possibility of improving the correla-
tion with the genomic profile of ribosomal density by
employing a model based on: 1) the three features of
the coding sequence; and 2) ribosomal size and the
interactions between them [8,34].
A depiction of the model is shown in Figure 4b, c: the

nominal velocity of each codon is a superposition of its
tAI, the charge of the amino acid before the codon and

the folding energy before and after the codon (see the
exact details in Materials and methods). In addition, a
ribosome translating slower codons may block the
advancement of ribosomes moving behind it (Materials
and methods). Assuming constant ribosomal flux and
no ribosomal abortion, the length of time a ribosome
translates each codon should be proportional to the
ribosomal density of the codon [8]. Indeed, when we
correlated the predictions of this model (the mean geno-
mic translation time of codons) with the genomic profile
of ribosomal density, the correlation was near maximal
(r = 0.982; P < 10-16; Figure 4d, e) and was significantly
better when we considered all three genomic features
rather than a subset of them (P < 0.05; Materials and
methods); a similar correlation (r = 0.98; P < 10-16) was
obtained when we performed a cross-validation (Materi-
als and methods). We found that small changes in the
model (regarding the subsequences near the codon that
affect its translation; Materials and methods) have
minor effect on the results of the model (all correlations
between 0.984 and 0.985) but the slope of the current
model (Figure 4b, c) better resembles the slope of the
measured ribosomal density profile.
In addition, when we used a stochastic model of gene

translation [36] (Materials and methods) we were able
to get a slope of the predicted genomic profile of riboso-
mal density that better resembles the slope measured
from the ribosomal density profile (Figure 4d). However,
the correlation remained as in the deterministic case (r
= 0.985; P < 10-16).

Ribosomal densities versus the three coding sequence
features: a site-by-site comparison
In this section, we establish the existence of a relation-
ship between coding sequence features and ribosomal
density in each individual gene. However, we expect
that such correlations will be much lower than those
with the genomic profiles, due to the noisiness of ribo-
somal density measurements (Materials and methods).
In addition, the measures used for estimating the adap-
tation to the tRNA pool and the effect of charge/folding
are only approximations of the real measures.
First, we computed the ‘bottleneck’ for each gene, that

is, the slowest region (10 codons; small changes in the
window gave similar results) in terms of adaptation to
the tRNA pool, charge, and folding energy (considering
the first 200 codons of the gene). As expected (Figure
5a-d), most genes exhibit these three ‘bottlenecks’ at the
beginning of the ORF (first 40 codons), rather than in
any other region. The result demonstrates that the three
dimensions of the ‘ramp’ previously reported can be
observed at the single gene level, and that the genomic
profiles are not the result of a minute set of genes with
a large impact.
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We then searched for the window with the highest
ribosomal density in each individual gene and compared
its position to the position with the slowest translation
rate, based on the three genomic features. Figure 5e, f
shows that, in addition, this window tends to be the one
predicted based on the combination (that is, the linear
regressor (Figure 5e) or the model (Figure 5f)) of the
three genomic features (P = 3.2 × 10-6 and P < 1.2 × 10-
9, respectively; Materials and methods). Thus, again, this
result suggests that the correlation between ribosomal
density and the three genomic features can be observed
at the single gene level.

Conclusions
In this study we have rigorously shown that the rate of
translation elongation on native genes can be largely
determined by knowledge of the three primary features
of the coding sequence: the folding energy of the
mRNA, its codon bias and the amino acid charge. More
precisely, our analysis shows that the translation rate of
a ribosome at a certain codon along the coding
sequence can be determined by the codons before it
(the amino acids that are in its exit channel) and after it
(the unfolding of the mRNA structure by mRNA heli-
cases). These features are not distributed uniformly

Figure 5 Relationship between ribosomal density, local tAI, folding, and charge in single genes of S. cerevisiae. (a) Histogram of the
positions of the tAI bottleneck (the region with the slowest tAI). (b) Histogram of the positions of the folding energy bottleneck (the region
with the strongest folding energy). (c) Histogram of the positions of the charge bottleneck (the region with the highest positive charge). (d)
Histogram of the positions of the region with the highest ribosomal density. (e) Histogram of the distance between the composite bottleneck
(based on the regressor that weighs the tAI, charge, and folding energy; Materials and methods) and the region with the highest ribosomal
density positions. (f) Histogram of the distance between the composite bottleneck (based on the ribosome movement model; Materials and
methods) and the region with the highest ribosomal density positions. Similar results were observed when we performed cross-validations.
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along the coding sequence, probably due to selection for
slower ribosomal translation rates (higher ribosomal
density) at the beginning of the coding sequences in
order to improve ribosomal allocation and decrease
ribosomal jamming [8]. Furthermore, we have ascer-
tained that these results remain significant under various
controls, in various organisms, and for different sets of
genes (Note S5 in Additional file 1 covers additional
genomic profiles that relate to translation).
It is important to note that although the predicted

genomic ribosomal density profile highly correlated with
the measured profile, there is still a gap between the
shapes of both profiles (for example, the slope of the
measured profile is higher; Figures 4 and 5). This gap
may be the result of additional factors that are related
to ribosomal translation speed that were not taken into
account in this paper; among these factors are the initia-
tion rate, ribosomal abortion, and condition-specific
tRNA abundance and mRNA folding. Furthermore, this
gap might also be partially related to noise and bias in
the ribosomal density measurements (Materials and
methods).
One important aspect of gene translation that clearly

can be improved in the model presented in this study is
the initiation step. In the future we plan to improve our
model by taking into account different features of the
5’UTR (for example, mRNA folding energy, lengths of
the 5’UTR, the Kozak context of the first ATG of the
ORF [37], and the number of times the sequence ATG
appears in the 5’UTR) and by modeling ribosomal abor-
tions; we believe that these changes in the model will
improve the ribosomal density predictions.
It is important to remember that in this paper we ana-

lyze native genes; thus, it is possible that part of the
reported effect of the coding features on the ribosomal
density profile is not causal. To verify this point, further
experimental studies of ribosomal profiles based on var-
iants of the same non-native protein(s) should be per-
formed (as was done in [7,38] for studying determinants
of protein abundance).
In addition, we demonstrate that coding sequences

have increased robustness to transcription errors at
their beginning, in terms of these three features. While
robustness to mutations related to DNA mutation in
terms of their effect on the properties of the amino acid
they encode have been demonstrated before [35], here
we suggest a new type of robustness - increased robust-
ness to transcription error in terms of the effect of such
mutations on translation at the beginning of the coding
sequences. The results reported in this paper and in
[35] may suggest that the robustness of the genetic code
is partially related to the resilience of the ribosome pro-
cessing speed.

The results reported in this paper may suggest that
mutations/errors at the beginning of the coding
sequence that alter the tAI/folding energy/charge usually
have a higher influence on the fitness of the organism
than mutations/errors occurring in other regions of the
coding sequence. As we can not prove causality by ana-
lyzing endogenous genes, further experimental analysis
is needed to verify if this is indeed the case.
This increased robustness can be related directly to

ribosomal allocation, which is more affected by muta-
tions in the ramp, but may also be indirectly related, for
example, to an increased effect on misfolding of proteins
and the production of toxic proteins (see, for example,
[39]). Thus, it is not clear how to evaluate the contribu-
tion of ramp robustness to the fitness of an organism.
Thus, the increased robustness to transcription errors

in the first 30 to 50 codons may suggest that this is the
most critical region of the coding sequence for the regu-
lation of gene translation and ribosomal allocation. A
possible explanation of this result is the fact that this
region is occupied by relatively more ribosomes (see, for
example, Figure 1), that is, it is subject to heavier ribo-
somal traffic. Thus, it is possible that changes in elonga-
tion rates due to transcription errors in coding regions
that are occupied by more ribosomes have a larger effect
on an organism’s fitness.
The results reported in this paper suggest practical

ways to optimize heterologous coding sequences in
order to express them in a new host, a common bio-
technological task (see, for example, [6,7,38]). Since the
rate of translation elongation is affected by not just
codon bias, one should also consider the effect of the
chosen codons on the folding energy (and/or the
charge) of the sequences. Specifically, a ‘ramp’ that
slows down ribosomes is helpful to increase the fitness
of the host and thus the protein production rate [8].
This ramp should be shaped according to the combined
effect of the folding energy, charge and codon bias of
the coding sequences.

Materials and methods
Various sources of information
tRNA copy numbers
The tRNA copy numbers of S. cerevisiae were down-
loaded from [40]; other tRNA copy numbers were
downloaded from [41].
Coding sequences
The coding sequences of the analyzed organisms were
downloaded from the FTP site of the National Center
for Biotechnology Information (NCBI).
Protein abundance
Protein abundance measurements were downloaded
from [42].
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Gene Ontology associations
The Gene Ontology (GO) associations of S. cerevisiae
genes are from [43].
Gene expression
mRNA levels of E. coli were downloaded from [18];
mRNA levels of S. cerevisiae were downloaded from
[15]; mRNA levels of C. elegans come from the Gene
Expression Omnibus (GEO) [44] (GDS1786).
Lists of ribosomal proteins
The lists of ribosomal proteins were downloaded from
[43].
Measurements of mRNA folding
Measurements of mRNA folding in S. cerevisiae genes
are from [28].
Ribosomal densities
We used two data sources of ribosomal density in S. cer-
evisiae. The first dataset comes from Arava et al. [13]
and includes measurements of ribosome number on
each mRNA molecule (without information about the
per-codon density); they were used to generate Figure 2.
To obtain ribosomal densities, we normalized these
values by the length of the ORFs.
The second dataset [15] includes measurements of

ribosomal density at a single nucleotide resolution. This
dataset is noisy at the single gene level (for example, the
ribosomal density along a gene may change from a posi-
tive number to zero and, again, to a positive number)
but when considering large enough sets of genes, it
enables a good estimation of the spatial ribosomal den-
sity trend.
Data generated in this paper
The data that were generated in this study can be down-
loaded from [45].

Computing folding
Folding energy was calculated using the Vienna package
[46].

Computing the tRNA adaptation index
We computed the tAI similarly to the way it was com-
puted in the work of dos Reis et al. [25]. This measure
gauges the availability of tRNAs for each codon along
an mRNA. As codon-anti-codon coupling is not unique
due to wobble interactions, several anti-codons can
recognize the same codon, with different efficiency
weights (see dos Reis et al. for all the inter-codon-anti-
codon relations).
Let ni be the number of tRNA isoacceptors recogniz-

ing codon i. Let tCGNij be the copy number of the j-th
tRNA that recognizes the i-th codon, and let Sij be the
selective constraint on the efficiency of the codon-anti-
codon coupling. We define the absolute adaptiveness,
Wi , for each codon i as:

Wi =
ni∑
j=1

(1 − Sij)tCGNij

From Wi we obtain wi, which is the relative adaptive-
ness value of codon i, by normalizing the Wi values
(dividing them by the maximum of all 61 Wi values).
The final tAI of a gene g, is the following geometric

mean:

tAIg =

⎛
⎝

lg∏
k=1

wikg

⎞
⎠

1/lg

where ikg is the codon defined by the k-th triplet on
gene g; and lg is the length of the gene (excluding stop
codons).
We implemented one alteration compared to the com-

putations of dos Reis et al.; we re-inferred the Sij values
(appearing in the equation above) by performing a hill-
climbing optimization of the Spearman correlation
between protein abundance and translation efficiency in
S. cerevisiae.
To this end we used the protein abundance measure-

ments mentioned above.
The Sij values can be organized in a vector (S vector)

as described in [25]; each component of this vector is
related to one wobble nucleoside-nucleoside pairing: I:U,
G:U, G:C, I:C, U:A, I:A, and so on.

Computing profiles of tRNA adaptation index, folding and
charge
The local folding profile of a gene was defined as the
vector of the folding values assigned to the sliding win-
dows of length 40 nucleotides, that is:

Local FEGenei = (FE1, FE2, ..., FEn)

where FE is the folding energy.
All the genes in the genome were lined up once

according to their start codon, and once according to
their stop codon. The two profiles of mean folding
energy were calculated as:

Local FEstart = (FE2, FE3, FE4, ...)

Local FEend = (FEn, FEn−1, FEn−2, ...)

where:

FEi =
∑
Genesi

FEi/ |Genesi|

and Genesi is the number of genes with at least i + 1
40-nucleotide windows.
Local profiles of amino acid charge were computed in

a similar way. First, we computed for each gene a vector
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of the charge assigned to the amino acids of the gene
(+1 for a positive charge, -1 for a negative charge, 0 for
a neutral amino acid). Next, we lined up the genes once
according to their start codon, and once according to
their stop codon, and computed the mean charge at
each position.
The local profiles of tAI were computed in a similar

way [8]. First, we computed for each gene a vector of
the tAI assigned to the codons of the gene. Next, we
lined up the genes once according to their start codon,
and once according to their stop codon, and computed
the mean tAI at each position (codon).
When we computed the reported profiles we consid-

ered all the genes (that is, we did not filter short genes)
as we believe that the important feature in our context
is the distance from the ATG in codons and not in per-
centage of the coding sequences (see also [8]). Most of
the analyzed genes are longer than 200 codons; in S. cer-
evisiae, for example, less than 20% of the genes are
shorter than 200 codons (1,119 out of 5,861; a histo-
gram of the S. cerevisiae gene lengths is shown in Figure
S46 in Additional file 2).

Computing the profile of ribosomal density
The data for the ribosomal density profile were kindly
supplied to us by Dr Ingolia. He sent us the data that
were used for generating Figure 2d in their paper [15].
The data included read density at single nucleotide reso-
lution as a function of position along the gene for well-
expressed genes. The read density of each gene was nor-
malized compared to itself (see details in [15]). We aver-
aged the ribosomal density values of the nucleotides of
each codon (as the data of Ingolia et al. was at the at
single nucleotide resolution) in each gene to obtain a
per-codon measurement of ribosomal density. The
genomic ribosomal density profile was computed in a
way similar to the tAI, folding energy and charge pro-
files (the values of each codon were averaged over all
the relevant genes).

Profiles of tRNA adaptation index, folding and charge for
groups of genes
Profiles of coding sequence determinants for specific
gene groups (for example, ribosomal proteins and GO
slim groups) were computed as reported above. In these
cases, however, we only considered the genes in the
group.

The tRNA adaptation index as a predictor of protein
abundance
Highly expressed genes have more efficient codons to
improve their translation rate, the allocation of ribo-
somes, and the fitness of the organism [7,14]. Thus, it is
not surprising that in many organisms measures of

codon bias such as the tAI exhibit significant correlation
with protein abundance [5,14,40,47]. In S. cerevisiae, for
example, the correlation between tAI and protein abun-
dance is higher than 0.6 [5,40].

Linear regression and partial correlations
Let X and Y denote two variables and Z = [Z1, Z2, Z3,..]
denote a set of variables. The non-parametric multivari-
ate analysis that is reported in this paper includes partial
Spearman correlations of the from R(X,Y|Z). Roughly, if
such a correlation is significant, it means that there is a
relationship between X and Y that can not be explained
by the variables in Z. Specifically, we computed the cor-
relation between ribosomal density (X) and one of the
three coding sequence determinants (Y; tAI, charge, or
folding energy) given the rest of the coding sequence’s
determinants. This analysis was performed by the com-
mercial MATLAB software (see more details in
MATLAB help. Founded in 1984, MathWorks employs
2200 people in 15 countries, with headquarters in
Natick, Massachusetts, USA).
Let rxy denote the matrix of the correlation coefficient

corresponding to the vectors x and y. The partial corre-
lation for two variables (x and y) when controlling for a
third variable (z), rxy_z, is computed according to the
following formula (see, for example, [48]):

rxy z =
rxy − rxz ∗ ryz√(

1 − (rxz)2
) ∗

(
1 − (

ryz
)2) (1)

When we want to control for more than one variable
we can use the formula above in a recursive way. For
example, the correlation between x, y when controlling
for z and w (the case that was reported in the paper) is:

rxy zw =
rxy z − rxw z ∗ ryw z√(

1 − (rxw z)2
) ∗

(
1 − (

ryw z
)2) (2)

In Equation 2, rxy_z, rwy_z, ryw_z, rxw_z, and ryw_z
are computed using Equation 1.
The P-values are computed for linear and rank partial

correlations using a Student’s t distribution for a trans-
formation of the correlation. This is exact for linear par-
tial correlations when the variables are normal, but if
this is not the case it is a large-sample approximation.
We also computed an empirical P-value that was based
on 100 permutations of x and y (the variables that are
not controlled for). The empirical P-value is the fre-
quency of the times that the partial correlation of the
permutated vector was larger than the original one (it
was significant for all variables).
The regressor mentioned in the main text is a linear

regressor, where the explained variable is the ribosomal
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density and it is explained by the three coding sequence
determinants (tAI, charge, and folding energy). As we
mentioned above, the ribosomal density data are noisy;
thus, we utilized the smoothed version of all the profiles
(five-point moving average; the default parameter in
MATLAB), but obtained very similar results without
smoothing.

Simulation of ribosomal movement
The ribosomal movement model was based on the work
of [34] (Figure 4c). According to this model, the nom-
inal translation time of a codon is determined by the
charge of the amino acid encoded by the codon (and
the charge of the amino acids encoded by the neighbor-
ing codons upstream), the co-adaptation of the codon to
the tRNA pool, and the strength of mRNA folding near
(upstream of) the codon (see more details in the next
section).
The actual translation time of a codon is also related

to the potential presence of a ribosome downstream of
it. If there is a proximal ribosome in front of it, the
ribosome translating the codon is delayed until the ribo-
some downstream of it proceeds.
Other parameters of the simulations are: the mini-

mum distance between two consecutive ribosomes (that
is, the size of the ribosome); the ribosome binding time
(initiation time); and the termination time (the time
required for the ribosome to release the mRNA). The
properties (for example, translation time) of the ribo-
some movement regime were computed at steady state
(that is, when there was a negligible change in the trans-
lation time between consecutive ribosomes and after at
least one ribosome completed the translation).

Stochastic model of translation elongation
This model is based on [36]. We model an mRNA with
N codons as a chain of sites, each of which is labeled by
i. The first and last codons, i = 1, i = N, are associated
with the start and stop codons, respectively. At any
time, t, attached to the mRNA are M(t) ribosomes. Each
ribosome will cover l codons. Any codon may be cov-
ered by a single ribosome or none. To locate a ribo-
some, we arbitrarily assume that the codon being
translated is the one in the middle of the ribosome. For
example, if the first (l + 1)/2 codons are not covered, a
ribosome can bind to the first codon on the mRNA
strand, and then it is said to be ‘on codon i = 1’. A com-
plete specification of the configuration of the mRNA
strand is given by the codon occupation number: ni = 1
if codon i is being translated and ni = 0 otherwise. Note
that when ni = 1 the (l - 1)/2 codons before and after
codon i are covered by the ribosome that is on site i but
since they are not the ones being translated the codon
occupation number for them is equal to zero.

We will now specify the dynamics of this model. A
free ribosome will attach to codon i = 1 with rate l,
provided that the first (l + 1)/2 codons on the mRNA
are empty. An attached ribosome located at codon i will
move to the next codon i + 1 with rate li, provided
codon i + (l + 1)/2 is not covered by another ribosome.
In case i + (l + 1)/2 >N (the ribosome is bulging out of
the mRNA strand) an attached ribosome will move to
the next codon with rate li. The translation rates li are
inversely proportional to the mean translation times ti.
In order to simulate these dynamics, we assume that

the time between initiation attempts is distributed expo-
nentially with rate l. Similarly, the time between jump
attempts from site i to i + 1 is assumed to be exponen-
tially distributed with rate li. Note that in the case of i
= N the jump attempt is in fact a termination step. We
define an ‘event’ as an initiation, jump attempt, or ter-
mination step. From our definition it follows that the
time between events is exponentially distributed (mini-
mum of exponentially distributed random variables)
with rate:

μ({ni}) = λ +
N∑
i=1

niλi

Note that a jump attempt from codon i can only be
made if there is a ribosome translating this codon and
hence the rate μ({ni}) depends on the set of site occupa-
tion numbers.
The probability that a specific event was an initiation

attempt is given by l/μ({ni}). Similarly, the probability
that a specific event was a jump attempt (or termina-
tion event) from site i to site i + 1 is given by nili/
μ({ni}).
At each step of the simulation, we determine the nat-

ure of the event and the time passed till its occurrence
by these rules. The set of site occupation numbers is
then updated accordingly and the simulation proceeds
to the next event. For example, if an initiation attempt
was made, we check if the first (l + 1)/2 codons on the
mRNA are not covered. If so, we set ni = 1, otherwise
the attempt fails and ni remains as is. If a jump attempt
from codon i to codon i + 1 was made, we check if site
i + (l + 1)/2 is not covered. If so, we set ni = 0 and ni+1
= 1, otherwise the attempt fails and ni, ni+1 remain as is.
Starting with an empty mRNA strand we simulated

the system for 250,000 steps. The system was then
simulated for an additional 1,000,000 steps where we
kept track of the total number of terminations and the
total time that have passed from the point this phase
started. The steady state rate of protein production was
determined by dividing the number of termination
events by the total time that has passed. The number of
steps in the second stage was taken after observing that
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increasing the number of steps fourfold had a negligible
effect on the predicted protein production rate.

Simulation of ribosomal movement: translation time of a
codon
The translation time (or rate) of a codon (or the nom-
inal speed of its translation) is based on three features
of the coding sequence. First is the co-adaptation of the
codon to the tRNA pool; this value was based on the
tAI. Second is the charge of the amino acids corre-
sponding to the 31 neighboring upstream codons. The
exit tunnel of a ribosome has negative charge and its
length is around 31 amino acids [24]; thus, amino acids
with positive charge should slow the translation time of
a ribosome [24]. At the beginning of the gene we con-
sidered the l < 32 amino acids before the codon. Third
is the folding energy of the neighboring downstream
mRNA (40 nucleotides from the start of the codon).
Stronger folding should slow the ribosome [49,50].
When the ribosome translates a codon the A site of the
ribosome lies in the middle of a stretch of mRNA that
is physically occupied and unwound by the ribosome;
however, we are interested in modeling the delay/speed
of the ribosome when it is translating this codon. At
this stage, the mRNA folding before the ribosome is not
relevant (the ribosome already translated these codons);
the mRNA folding after the ribosome is relevant as this
part of the mRNA should be unfolded by the helicase
before the ribosome continues and moves forward.
The non-normalized time corresponding to the adap-

tation to the tRNA pool of the organism (tAIi) of codon
i is: 1/tAIi.
The non-normalized time corresponding to the charge

upstream of codon i is the sum of ‘amino acid charges’
among the 32 amino acids before the codon (where a
neutral amino acid adds 0 to the sum, a positively
charged amino acid adds 1 to the sum, and a negatively
charged amino acid adds -1 to the sum; the amino acids
with positive charge are Arg and His, and Lys, while the
amino acids with negative charge are Asp and Glu).
The non-normalized time corresponding to the fold-

ing energy downstream of codon i is the folding energy
of the 40-nucleotides starting from the beginning of the
codon (at the end of the sequence consider the 3’ UTR).
The three normalized times were computed as follows:

for each of the three features we divide their non-nor-
malized value by their mean value along all the coding
sequences and all windows, such that the mean of each
of the normalized features will be 1.
Let Ntai(i) denote the ‘normalized tRNA pool adapta-

tion time’ of codon i; let Nch(i) denote the ‘normalized
charge time’ of codon i; let Nfe(i) denote the ‘normal-
ized folding energy time’ of codon i.

The total time corresponding to the the i-th codon is
a1

Ntai(i)
· ea2·Nch(i)+a3·Nfe(i) .

We checked a1, a2, a3 in the range 0[1] and chose
the values that optimized the correlation between the
prediction of the ribosomal movement model (with the
times above) and the actual ribosomal density. The cor-
relation was based on the smoothed version of the real
and predicted profiles (five-point moving average).
We obtained similar correlations when we used charge

and folding before or after the codon, probably since the
charge and folding in close windows in a gene tend to
be similar and thus correspond to relatively similar
speeds.

The size of the ribosome
Based on previous studies [8,15,30,34,51], the footprint
of the ribosome on the transcript is 10 to 20 codons. As
was mentioned before, the exit channel, which is in a
different compartment of the ribosome, is longer (31
codons).

Profiles of mRNA secondary structure robustness
An mRNA sequence is robust to errors (point muta-
tions) if point mutations tend to maintain its two
dimensional structure (compared to random sequences
with similar features).
We computed profiles of secondary structure robust-

ness by performing the following steps for each window
of length 40 nucleotides in each mRNA sequence. First,
compute the folding structure and folding energy for
each of the 40 × 3 one-nucleotide point mutations of
the sub-sequence. Second, compute the distance of each
mutated sequence from the original one in terms of
absolute change in folding energy and the number of
changes in the base-pair connections required for trans-
ferring one structure to the other (see, for example,
[33]); we also plotted the mean number of point muta-
tions (errors) that do not change the mRNA structure.
Third, average the distances for each window.
As a control, we generated a randomized genome

maintaining the codon bias and the amino acid
sequences in the original genome. We compared the
distribution of robustness obtained in the original gen-
ome and the randomized one.
To control for folding energy we divided the windows

into five groups of equal size; each group includes win-
dows (over all genes) with similar folding energy. We
plotted the profiles of folding energy robustness for
each group separately.
To manage the extensive amount of computations

needed for performing so many predictions of secondary
structure, we employed a cluster of eight computers
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(each of which had an AMD Opteron(tm) 252 2. GHz
processor, two cores, and 6 GB RAM) and a six-core
computer (AMD Phenom(tm) II X6 1090T 3.2 GHz
processor, six cores, 16 GB RAM) for several weeks.

Profiles of tRNA adaptation index and charge robustness
tRNA adaptation index and charge robustness profiles
were computed in a similar manner. In the case of the
charge, we computed for each window of 13 codons the
number of point mutations that change the charge of
the corresponding amino acids, and the mean change in
the charge due to point mutations. In the case of the
tAI, we computed for each window of 13 codons the
average (over all point mutations) change in the tAI
score of the codon, and the number of mutations that
do not change the tAI of the codon. At the next step,
we plotted the corresponding genomic profiles of
robustness as was described for the folding energy
robustness.

Robustness profiles: control for folding, tRNA adaptation
index, and charge
To make sure that the robustness profiles are not trivi-
ally a result of the fact that the folding, tAI, and charge
values are more extreme at the beginning of the coding
sequences, we also analyzed the robustness profiles
when considering only windows in certain ranges of
folding, tAI, and charge, respectively (five bins of equal
size).
It is also important to note that the codons (and simi-

larly the folding or the charge) at the beginning of the
coding sequence are less optimal than those at the end
of it; that is, relative to the immediate context, these
codons are not necessarily the universally least efficient
ones. For example, in highly expressed genes, these
codons can be more efficient than all the codons of
lowly expressed genes (Figure 2c).

Robustness profiles: assuming different probabilities of
transition and transversion errors; assuming that
translation errors are relatively rare in the second
position of the codons
To consider the fact that transcription errors that result
in transition may have higher probability than transcrip-
tion errors that result in transversion, we gave higher
weights to the first type of errors when we computed
the robustness scores. For example, if we assume that
the probability of a transition error is twice the prob-
ability of a transversion error, the weight of such an
error/mutation in the folding/charge/tAI robustness
score of an mRNA window is two times the weight of
transversion.
Similarly, in the case of charge robustness, to consider

the fact that translation errors are very rare in the

second position of codons [35], the weight of such an
error/mutation in the charge robustness score of a
mRNA window is lower (for example, 0.1) than the
weight of an error in the first/third positions of the
codons.

The length of the ramps
The length of the ramp (for a profile of tAI, charge,
folding energy, or robustness) was computed similarly to
[8] by comparing the mean (KS test) of sliding windows
of length 13 codons to the mean of the rest of the cor-
responding profile (we considered the first 200 codons).
The region at the beginning corresponding to a set of
consecutive windows with a mean value significantly
lower (P ≤ 0.05) than the mean of the entire profile was
defined as the length of the ramp (the length of the
ramp is the number of significant consecutive windows
plus 12). We allowed this region to begin in the first
five codons (if there was no significant window in this
region, we declared that there is no ramp).

P-values for the folding, charge, and tAI profiles and the
corresponding robustness profiles
We performed two statistical tests to check if the coding
sequence determinants of a certain position were
significant.
In the first test we checked if the value is more extreme

than in other positions. This test does not take into
account constraints on amino acid sequences. Firstly,
however, we believe that selection for translation effi-
ciency can also occur at the amino acid level - that is,
there are many pairs of amino acids that, when substi-
tuted, do not change the function of the protein but can
improve translation (see, for example, [52-54] about var-
ious distances between amino acids). The effect on trans-
lation and the coding sequence function is determined by
the position of the codon along the coding sequence. Sec-
ondly, the effect of the various features of a codon on the
translation rate of the ribosome can be significant, even
though these profiles are not selected for.
The first test was performed by comparing (KS test)

all the values in the positions within the ramp (see the
previous section) to the rest of the positions. A similar
test was performed also while testing subgroups of
genes (for example, ribosomal proteins and GO groups).
In the second test we checked if the value is more

extreme than the randomized version of the position.
The randomized version of the genome was generated
by maintaining the amino acid composition of each cod-
ing sequence and the codon bias of the genome, and
sampling for each gene, a randomized version under
these constraints. In this case, we compared the values
of the positions within the ramp of the real genome and
the randomized one by a KS test.
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Predicted ribosomal density versus real ribosomal density
in single genes
We used the linear regressor and the model that gave
the best genomic ribosomal density to predict the ribo-
somal density at a resolution of single codons in each of
the S. cerevisiae genes. Next, we plotted the graph (his-
tograms) of distances between the window with the
highest ribosomal density, and the window with highest
predicted ribosomal density. We show that the distances
tend to be small. We compared the distribution of dis-
tances corresponding to the real genome to a rando-
mized genome, where the vectors of ribosomal densities
were randomly permutated and show (by KS test) that
the original mean is significantly smaller than the rando-
mized mean.

Cross-validation tests and evaluation of the ribosomal
movement model and the regressor
We compared the model and regressor with all three
features to models that include only some of the fea-
tures (for example, only charge and tAI without folding)
by performing 20 cross-validation tests. In each test the
model was trained based on 50% of the data (training
sets) and was implemented on the second 50% of the
data (test sets). We performed correlations between the
ribosomal density and the predicted ribosomal density
(by the model or the regressor) for the test sets in the
full model and compared them to the correlations
obtained for the partial models. The empirical P-value
was computed as percentage of cases where the partial
model was better then the full one on the same test set.
Differences (between pairs of correlations) larger than
0.4% were assumed to be significant. We also compared,
in a similar manner, the absolute sum of distances
between the predicted and real genomic profile of ribo-
somal density.
In the case of the predicted profile of ribosomal den-

sity in single genes, we divided the genes into two
groups as before, inferred the parameters of the model
based on one of the groups and applied it to the second
group (as reported above).

Site-by-site comparisons of predicted versus real
ribosomal density
We wanted to test whether there is a direct relationship
between the coding sequence determinants and the
ribosomal translation rate (speed). Thus, we aimed at
showing a significant relationship between local density
of ribosomes [15] and charge, tAI, and folding profiles
in single genes. Such a task comes with several caveats:
1) as mentioned, the measurements of ribosomal density
are very noisy; 2) ribosomes may interact with each
other (jam); 3) often, the rate-limiting step may be
initiation, which varies across genes.

To overcome these problems, we searched for the
window with the highest ribosomal density in each indi-
vidual gene and compared its position to the position
with the slowest translation rate based on the three
genomic features. This relationship should hold also
when initiation is rate limiting and varies among genes,
or when there are interactions between ribosomes.

Randomized profiles
To show that the genomic profiles reported in this study
(the three ramps at the beginning of genes and the
increased robustness to transcription errors at the begin-
ning of genes) are not due to amino acid bias, we com-
pared the genomic profile of folding energy with a profile
of folding energy observed for a randomization of the
genome. The genome was randomized in the following
manner. Each codon was replaced by a random codon,
according to the distribution (frequency) of codons cod-
ing the same amino acid in the genome of the organism.
Thus, the randomized genomes maintained both the
amino acid content of each coding sequence and the
codon frequencies of the original genome.

Genomic profiles based on measurements of mRNA
folding
We downloaded the mRNA measurement data from
[28]. These data include for each nucleotide, in thou-
sands of S. cerevisiae transcripts, the log ratio between
the probability that it is in a double-stranded conforma-
tion and the probability that it is in a single-stranded
conformation (parallel analysis of RNA structure (PARS)
score [28]). If this value is higher, the position is
involved in a double-stranded conformation and this is
related to a higher folding energy. At the first stage (Fig-
ure S2 in Additional file 2), we computed for each posi-
tion the mean PARS score (over all the genes) and
plotted two profiles: 1) a simple average; and 2) a
weighted average (in which the weight of G or C, which
are involved in pairings with three hydrogen bonds, is 3,
while the weight of A or T, which are involved in pair-
ings with two hydrogen bonds, is 2). We performed a
KS test and compared each position to the remaining
600 ‘first’ positions along the genes. We found that the
first three positions have a significantly low PARS score
(weak mRNA folding) while the next two positions have
a significantly high PARS score (strong mRNA folding).
At the second stage we plotted this profile for highly

expressed genes (top 10% of the genes in terms of
mRNA-levels × ribosomal density) and lowly expressed
genes (bottom 10% of the genes in terms of mRNA-
levels × ribosomal density) and demonstrated that the
high/low PARS score reported above is stronger for
highly expressed genes (Figure S2 in Additional file 2;
similar results were obtained for the weighted profile).
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One problem of the PARS score is that it is global and
not local (like the predicted local folding energy mea-
sure reported in this study) - a nucleotide has a higher
PARS score even if it is connected to another nucleotide
inside or outside the 40-nucleotide window. Thus, we
used the inferred folding of complete mRNA sequences
of yeast based on the PARS scores that are reported in
the study of Kertesz et al. [28]. We computed for each
sliding window in each gene how many pairs of nucleo-
tides where both nucleotides are within the window are
connected. We plotted the mean genomic graph of
these values (as we did with the predicted folding
energy). The new graphs indeed look similar to the
graph obtained based on predictions of mRNA folding
(Figure S2 in Additional file 2).

Genomic profiles of pairs of identical slow codons
To study the distribution of pairs of identical slow
codons along the coding sequences, we divided the
codons into slow (the lowest 10% in terms of the tAI)
and fast ones (the remaining codons). We computed the
profile of the mean number of pairs of identical slow
codons in each position in E. coli and S. cerevisiae. We
compared this profile to those obtained under two ran-
domization regimes: 1) when controlling for amino acid
content and codon bias as mentioned above; and 2)
when permutating only the slow codons in each gene
(that is, a control that considers the fact that there are
positions, such as the ramp, with more slow codons).
We also computed this profile separately for highly and
lowly expressed genes in these organisms.

Additional material

Additional file 1: Supplementary Notes S1 to S5: [55-61]

Additional file 2: Supplementary Figures S1 to S7 and S9 to S46.

Additional file 3: Supplementary Table S1 - properties of ramps for
GO groups.

Additional file 4: Supplementary Figure S8.
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