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Abstract

Background: Various drugs of abuse activate intracellular pathways in the brain reward system. These pathways 

regulate the expression of genes that are essential to the development of addiction. To reveal genes common and 

distinct for different classes of drugs of abuse, we compared the effects of nicotine, ethanol, cocaine, morphine, heroin 

and methamphetamine on gene expression profiles in the mouse striatum.

Results: We applied whole-genome microarray profiling to evaluate detailed time-courses (1, 2, 4 and 8 hours) of 

transcriptome alterations following acute drug administration in mice. We identified 42 drug-responsive genes that 

were segregated into two main transcriptional modules. The first module consisted of activity-dependent transcripts 

(including Fos and Npas4), which are induced by psychostimulants and opioids. The second group of genes (including 

Fkbp5 and S3-12), which are controlled, in part, by the release of steroid hormones, was strongly activated by ethanol 

and opioids. Using pharmacological tools, we were able to inhibit the induction of particular modules of drug-related 

genomic profiles. We selected a subset of genes for validation by in situ hybridization and quantitative PCR. We also 

showed that knockdown of the drug-responsive genes Sgk1 and Tsc22d3 resulted in alterations to dendritic spines in 

mice, possibly reflecting an altered potential for plastic changes.

Conclusions: Our study identified modules of drug-induced genes that share functional relationships. These genes 

may play a critical role in the early stages of addiction.

Background
Drug addiction is a brain disease with prominent hazard-

ous effects, including the collapse of health and social and

economic status [1]. Acute exposure to drugs of abuse

initiates molecular and cellular alterations in the central

nervous system [2,3] that lead to an increased overall vul-

nerability to addiction with subsequent drug exposures

[4]. These drug-induced alterations employ changes in

gene transcription that result in the synthesis of new pro-

teins [5]. Therefore, one of the important goals of addic-

tion research is to identify the drug-induced gene

expression changes in the specific brain structures that

are related to the addictive properties of various drugs.

The major neural target sites of addictive drugs are the

ventral and the dorsal striatum, that is, the brain regions

that control reward sensitivity, motor function and habit

learning [6]. The dorsal striatum is thought to underlie

stimulus-response and spatial learning, and the ventral

striatum is involved in appetitive behavior and reinforce-

ment [7,8]. However, to some extent, these functions

might overlap [9,10]. All addictive drugs elevate dop-

amine levels in the striatum, and this effect is associated

with reinforcing drug properties [11]. However, the phar-

macological mechanisms and neural substrates involved

in mediating the rewarding action are different for vari-

ous drugs. Psychostimulants directly influence extracellu-

lar dopamine levels in the striatum through inhibitory
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effects on dopamine reuptake [12,13]. Opiates inhibit

GABAergic inhibitory neurons in the ventral tegmental

area and activate dopaminergic neurons projecting to the

striatum [14]. In addition, opiates directly bind to opioid

receptors located on striatal interneurons [15]. Ethanol

acts on GABAergic interneurons in the ventral tegmental

area that, in turn, modulate the activity of dopaminergic

neurons and the action of neurotransmitter-gated ion

channels [16]. Nicotine enhances reward-related dop-

amine release by activating nicotinic acetylcholine recep-

tors [17,18]. Therefore, it is believed that the combination

of dopamine-dependent neurotransmission and endoge-

nous opioid-dependent modulation is responsible for the

acquisition of drug addiction [4,19]. The molecular and

genomic mechanisms by which drugs of abuse induce

neuroplastic changes related to addiction remain largely

unknown [20].

Several studies have evaluated changes in gene expres-

sion profiles in the brain after administration of drugs of

abuse (reviewed in [21]). Exposure to psychostimulants

induces the activity-dependent gene expression of several

transcription activators and repressors [22,23]. Opioids

and ethanol regulate the transcription of genes involved

in metabolic functions and a group of genes encoding

heat-shock proteins [24-28].

Genomic research strategies have recently transitioned

from the search for unknown genes to the identification

and evaluation of coordinated gene networks and tran-

scriptional signatures [29]. New opportunities arising

from the analysis of these networks include identifying

novel relationships between genes and signaling path-

ways, connecting biological processes with the regulation

of gene transcription, and associating genes and gene

expression with diseases [30,31]. The identification of

gene networks requires large gene expression data sets

with multiple data points [32]. The transcriptional

response to a drug treatment analyzed during a time-

course suits the above strategy perfectly.

Exploring dynamic changes in brain gene expression

profiles is possible only in animal models. In these mod-

els, assessments of the behavioral effects of drugs of

abuse are well established. Therefore, integrating brain

gene transcription and phenotypic information provides

us with a unique opportunity to associate the addictive

potential of the drugs with the molecular responses acti-

vated by these drugs [33,34]. The limitations of such a

strategy include differences in drug responses between

humans and rodents and the extreme complexity of the

analyzed tissue. Despite these limitations, the obtained

results may provide new insights into the molecular con-

trol of drug addiction.

In this study, we aimed to identify the transcriptional

networks activated by different classes of addictive drugs

and to translate the gene expression patterns into biologi-

cal themes that are related to the development of addic-

tion.

Results
Comparison of rewarding and stimulant drug properties

In the present study, we assessed the behavioral and tran-

scriptional effects of cocaine (25 mg/kg intraperitoneally

(i.p.)), methamphetamine (2 mg/kg i.p.), morphine (20

mg/kg i.p.), heroin (10 mg/kg i.p.), ethanol (2 g/kg i.p.)

and nicotine (1 mg/kg i.p.) on C57BL/6J mice. Drug doses

previously reported to generate rewarding and addictive

responses in mice were selected [35-37]. The rewarding

properties were compared in our laboratory. Conditioned

place preference (CPP) tests were performed using an

unbiased procedure in a three-arm apparatus. Cocaine,

morphine, heroin and methamphetamine treatment

induced a robust preference for the drug-paired compart-

ment (ANOVA, Newman-Keuls test, P < 0.05; Figure 1a).

For ethanol and nicotine, the procedure was increased to

five sessions of conditioning. Ethanol treatment induced

a moderate effect in the CPP test (t-test, P < 0.05). Nico-

tine treatment produced a tendency for place preference,

which may be associated with a very narrow effective

dose range for reinforcing the effects of nicotine in mice.

An independent group of animals was tested for drug-

induced motor behavior. Cocaine, methamphetamine,

heroin and morphine treatment significantly increased

locomotor activity following acute drug administration

(repeated-measures ANOVA, Newman-Keuls test, P <

0.05; Figure 1b). Ethanol and nicotine treatment did not

produce locomotor activation in comparison to saline-

treated controls. The behavioral data were further used to

analyze associations between phenotypes and transcrip-

tome alterations.

Whole-genome gene expression profiling

We applied a strategy of detailed time-course studies of

gene expression alterations following acute administra-

tion of various drugs of abuse using Illumina Whole-

Genome 6 microarrays. To analyze the dynamics of early,

intermediate and relatively late changes in mRNA abun-

dance, the analysis was performed at four time points (1,

2, 4 and 8 h following drug injection).

Microarray data analysis using two-way ANOVA iden-

tified 42 drug-responsive genes with P < 1 × 10-6 (corre-

sponding to P < 0.05 after adjusting for approximately

48,000 independent tests using Bonferroni correction;

Figure 2). Compared to other gene expression profiling

studies, the statistical threshold was rather conservative.

However, the same threshold is widely accepted in popu-

lation genetic and genome-wide association studies in

humans [38]. The difference between the methodological

standards may result from the number of samples and

biological replicates usually used in these two types of
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whole-genome studies. The present study contained (rel-

atively) many high-quality samples, allowing it to satisfy

restrictive statistical criteria.

Furthermore, we estimated the false discovery rate

(percent FDR) to answer the question of how large was

the fraction of drug-responsive genes discovered at the

assumed threshold [39]. The maximum number of true

positive genes altered in the striatum by drugs of abuse

(drug factor, 104 transcripts) was found at a 29% FDR.

Beyond that level, the number of true positives did not

increase. Surprisingly, the number of true positives

remained stable (84 to 104 transcripts, mean = 94.4 ± 4.9)

over a wide range of FDR (4.7 to 56.3%). The results for

the drug factor are in contrast to alterations in the striatal

gene expression profile related to the time point of the

experiment (time factor). The maximum number of true

positive genes (5,442 transcripts) for the time factor was

Figure 1 Comparison of the reinforcing and activating effects of drugs of abuse in C57BL/6J mice. (a) Bar graph summarizing the development 

of CPP to morphine, heroin, ethanol, nicotine, methamphetamine, cocaine or saline injections (i.p.). The number of drug conditioning sessions is in-

dicated in parentheses. The level of significance was measured using ANOVA following the Newman-Keuls post-hoc test for drug versus saline; *P < 

0.05; **P < 0.01 (n = 6 to 12). (b) Graph summarizing locomotor activation in response to drug treatment measured as increased ambulation in an 

activity cage during 4 h (n = 5). (c,d) Analysis of correlations between drug-induced changes in gene expression and behavioral effects of drugs in 

mice (Additional file 9). Scatter plots present the most significant correlation between the behavioral effects (y-axis) and the level of drug-induced 

transcription (x-axis). Correlation with locomotor activation was computed using data for each particular time point.
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found at a 69.8% FDR and increased linearly in the range

0.1 to 69.8% FDR (Additional file 1).

The above observations suggest a rather unexpected

conclusion. While the diurnal cycle alters a vast fraction

of the brain transcriptome, drugs regulated the expres-

sion of a limited number of genes (approximately 100),

and this alteration was robust. The number of genes

obtained using Bonferroni correction (42 transcripts) was

equal to the number of genes obtained at a 0.1% FDR

threshold. Therefore, at the chosen threshold, we identi-

fied 40.3% (42 of 104 transcripts) of genes altered by

drugs of abuse with 99.9% confidence. The complete

results of the ANOVA, including two different methods

of correction for multiple comparisons (Bonferroni cor-

rection and percent FDR) for both time and drug factors

are provided in Additional file 2.

The changes in mRNA abundance of selected marker

genes were validated by quantitative PCR (qPCR) using

aliquots of the non-pooled total RNA (Figure 3a; Addi-

tional file 3), yielding an overall correlation between the

microarray and qPCR results of r = 0.69 (Spearman's

method, P = 4.87 × 10-24). The alterations in mRNA level

were also confirmed in an independent experiment. In

addition, the expression of the selected genes was evalu-

ated during the acquisition and expression of morphine-

induced CPP (Figure 3b).

Identification of drug-regulated gene expression patterns

Hierarchical clustering revealed two major drug-respon-

sive gene transcription patterns (arbitrarily described as

A and B; Figure 2a). Pattern B consisted of three subse-

quent subclusters (arbitrarily described as B1, B2 and B3).

Example genes from the particular patterns include: pat-

tern A, Fos, Egr2 and Homer1; pattern B1, Sgk1, Plekhf1

and Rasd1; pattern B2, Tsc22d3, Cdkn1a and Map3k6;

and pattern B3, Fkbp5, S3-12 and Sult1a1.

To search for other drug-responsive transcriptional

networks, we performed additional hierarchical cluster-

ing on the lists of genes obtained with 5% (a threshold

commonly used in the literature) and 29% (the maximum

number of true positive results) FDRs. With these less

restrictive statistical criteria, we found no other networks

with distinct gene expression profiles (Additional file 4).

Assuming that we identified all the major gene patterns

altered by drugs of abuse and taking into consideration

Figure 2 Hierarchical clustering of drug-dependent transcriptional alterations in mouse striatum. (a) Microarray results are shown as a heat 

map and include genes with a genome-wide significance from two-way ANOVA of the drug factor. Colored rectangles represent transcript abun-

dance (Additional file 2) 1, 2, 4 and 8 h after injection of the drug indicated above of the gene labeled on the right. The intensity of the color is pro-

portional to the standardized values (between -2 and 2) from each microarray, as indicated on the bar below the heat map image. Clustering was 

performed using Euclidean distance according to the scale on the left. Major drug-responsive gene transcription patterns are arbitrarily described as 

'A', 'B1', 'B2' and 'B3. (b) Gene cluster analysis using data-mining methods (Table 1). The fold cellular enrichment (2, 5 or 20 in a particular cell popula-

tion, as reported in Cahoy et al. [101]) of the selected transcripts in various cell types is indicated by N (neurons), A (astrocytes) or O (oligodendrocytes). 

Over-representation of transcription factor binding site (TFBSs), as indicated on the left, was identified using the cREMaG database (see Materials and 

methods). The statistical significance of enrichment is marked as *P < 0.05.
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the fact that Bonferroni correction for multiple testing is

very conservative, lists of genes with a significant level of

Pearson's correlation to the main clusters (P < 1 × 10-10;

FDR for this analysis was estimated at <0.1%) were

extracted and analyzed.

Gene Ontology (GO) enrichment, literature mining

and identification of cis-regulatory elements was per-

formed on extended lists of transcripts from each gene

expression pattern: A, 38 genes; B1, 45 genes; B2, 31

genes; and B3, 18 genes. Due to the similar profiles of the

B1 and B2, as well as the B2 and B3, gene subsets, the lists

partially overlapped by 27% and 45%, respectively (Addi-

tional file 2). One gene (Car12) was excluded from the

analysis due to its outlying gene expression profile.

The drug-responsive genes are randomly distributed

throughout the entire mouse genome. Chromosome

localizations are shown in Additional file 5.

Comparison of drug effects on the striatal transcriptome

The results of gene expression profiling revealed differ-

ences and similarities in the transcriptional responses to

the various drugs (Figure 2; Additional file 6). Pattern A

was induced 1 to 2 h after injection of cocaine or meth-

amphetamine and 4 h after injection of morphine or her-

oin. Pattern B consisted of three subsequent subclusters:

B1, induced 1 to 2 h after injection of ethanol, morphine,

heroin, methamphetamine and cocaine; B2, induced 2 to

4 h after injection of ethanol, morphine, heroin and

methamphetamine; and B3, induced 4 h after injection of

ethanol, morphine and heroin. The only pattern common

to all inspected drugs was pattern B1. However, this pat-

tern was induced by different drugs to different degrees.

The drugs were divided into two groups. One, includ-

ing cocaine and methamphetamine, exhibited high and

early induction of pattern A and low or absent induction

of pattern B. The second group, including ethanol, mor-

phine and heroin, elicited high induction of pattern B.

The complete results of a Tukey's post-hoc test (P < 0.05,

drug versus saline) after ANOVA are provided in Addi-

tional file 2.

Functional classification of drug-responsive genes

To identify functional associations between the genes

with expression induced by drugs, we used three different

data-mining tools (Figure 2b, Table 1). To characterize

the transcriptional representation of biological processes,

a list of genes from each gene expression pattern was ana-

lyzed by GO. Among the most abundant group of genes

in pattern A, functional clusters of transcripts connected

with protein phosphatase activity (32.4-fold enrichment,

P < 0.01; for example, Dusp1, Dusp6), rhythmic processes

(14.7-fold, P < 0.05; for example, Per1, Per2) and tran-

scriptional regulatory activity (3-fold, P < 0.001; for

example, Fos, Egr2) were over-represented.

The group of genes from pattern B1 was enriched in

transcripts involved in small GTPase-mediated signal

transduction (5.9-fold, P < 0.01; for example, Rhou,

Rasd1), apoptosis (5-fold, P < 0.01; for example, Gadd45

g, Sgk1) and the cell cycle (4.7-fold, P < 0.01; for example,

Gadd45 g, Nedd9). Analysis of pattern B2 revealed the

enrichment of genes connected to enzyme inhibitor

activity (8.9-fold, P < 0.05; for example, Cdkn1a, Angptl4),

the stress response (4.2-fold, P < 0.01; for example,

Cdkn1a, Tsc22d3) and regulation of cell differentiation

(2.5-fold, P < 0.05; for example, Plekhf1, Zbtb16). Over-

representation of transcripts involved in magnesium ion

binding (8.5-fold, P < 0.05; for example, Itgad, Atp10a)

was observed within gene expression pattern B3. A

detailed description of the results of GO classification is

included in Additional file 7.

Comparison with previously reported gene expression 

profiles

To find points of reference for our results, we compared

the lists of genes from the co-expressed gene patterns

with previously described changes in gene expression

profiles. Literature mining was based on the lists of genes

reported as regulated in published manuscripts or found

in publicly available datasets. Overall, we compared our

data with 1,267 gene sets (Additional file 8).

We found high similarity with pattern A to lists of genes

regulated following cocaine (P = 1.33 × 10-36) and meth-

amphetamine (P = 1.04 × 10-13, FDR-corrected) adminis-

tration [40]. Moreover, significant enrichment of genes

regulated by kainic acid (P = 5.88 × 10-13) and domoic

acid (P = 3.52 × 10-12) in the brain and by forskolin (P =

3.87 × 10-12) in vitro was also found in this group [41-44].

All of these in vivo effects were observed at a relatively

early time point (1 to 2 h after injection) and were con-

nected with the induction of a group of immediate early

gene (IEG) transcription factors and neuroplasticity-

related genes like Fos, Arc, Npas4 and Homer1.

Drug-induced transcription pattern B revealed differ-

ent links with the published gene expression profiles than

gene pattern A. The effects of morphine (P = 1.15 × 10-29)

and ethanol (P = 1.87 × 10-11) on the activation of gene

expression pattern B were in agreement with previous

results [45,46]. These genes were induced between 2 and

4 h following drug injection. The regulation of gene

expression pattern B was somewhat similar to the effects

of the glucocorticoid receptor (GR) agonist dexametha-

sone in the hypothalamus (P = 1.57 × 10-8) [47]. More-

over, expression pattern B contained genes reported to be

up-regulated in response to domoic acid (P = 1.41 × 10-18)
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Table 1: Functional classes, results from literature, and transcription factor binding sites associated with drug-regulated 

patterns of gene expression

Gene 

pattern

Gene ontology Literature mining TFBS over-representation

Term Fold (P)a Dataset Pa Binding sitesb Fold (P)c

A Protein phosphatase 

activity

32.4 (0.0036) Rodriguez et al. [108], 

cocaine 1 h

1.33E-36 SRF (MA0083) 5.7 (0.095)

Rhythmic process 14.7 (0.0166) Jayanthi et al. [40], 

methampethamine 2 h

1.04E-13 CREB1 

(MA0018)

3.9 (0.0068)

Phosphotransferase 

activity

10.7(<0.0001) Lemberger et al. [41], 

kainic acid 1 h

5.88E-13

Protein dimerization 

activity

3.6 (0.0203) Ryan et al. [42], domoic 

acid 0.5 and 1 h

3.52E-12

Regulation of 

transcription

3 (0.0001) Impey et al. [43], 

forskolin 1 h

3.87E-12

B1 Small GTPase 

mediated signal 

transduction

5.9 (0.0085) Sanchis-Segura et al. 
[44], morphine 4 h

8.96E-29 Foxd3 

(MA0041)

4.4 (0.02)

Apoptosis 5 (0.0018) Treadwell et al. [46], 

ethanol 6 h

1.87E-11 Foxa2 

(MA0047)

4.2 (0.043)

Cell cycle 4.7 (0.0025) Sato et al. [47], 

dexamethasone 2 h

1.57E-08 FOXF2 

(MA0030)

4 (0.025)

Intracellular 

signaling cascade

3.2 (0.0079) Lemberger et al. [41], 

kainic acid 1 h

9.51E-07 Evi1 (MA0029) 3.8 (0.036)

Intracellular 1.5 (0.0017) Ryan et al. [42], domoic 

acid 4 h

8.90E-07

B2 Enzyme inhibitor 

activity

8.9 (0.041) Korostynski et al. [45], 

morphine 4 h

1.15E-29 NR1H2 

(MA0115)

3.5 (0.288)

Apoptosis 5.9 (0.0007) Ryan et al. [42], domoic 

acid 4 h

1.41E-18 Ar (MA0007) 3.3 (0.074)

Response to stress 4.2 (0.01) McClung et al. [27], 

morphine withdrawal

4.23E-17 NR2F1 

(MA0017)

3.3 (0.0428)

Cell differentiation 2.5 (0.026) Treadwell et al. [46], 

ethanol 6 h

3.58E-13

Intracellular 1.4 (0.0074) Chen et al. [109], heart 

failure left ventricular 

assist device (LVAD)

1.47E-07

B3 Regulation of 

developmental 

process

9.1 (0.0364) Korostynski et al. [45], 

morphine 4 h

3.75E-15 Fos (MA0099) 6.7 (0.0103)

Magnesium ion 

binding

8.5 (0.0416) McClung et al. [27], 

morphine withdrawal

3.52E-10 NR3C1 

(MA0113)

5.6 (0.0058)

Anatomical 

structure 

morphogenesis

3.9 (0.0261) Ryan et al. [42], domoic 

acid 4 h

3.22E-08 Ar (MA0007) 4.7 (0.0021)

Calcium ion binding 3.5 (0.1894) Treadwell et al. [46], 

ethanol 6 h

9.56E-06 TEAD1 

(MA0090)

3.9 (0.0302)
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at a relatively late time point (4 h after injection; Table 1)

[42].

We also found that gene expression pattern A was simi-

lar to the group of dopamine receptor 1 (D1R) antagonist

(SCH23390)-sensitive methamphetamine-responsive

genes (P = 1.05 × 10-6). In contrast, pattern B1 was similar

to the group of SCH23390-resistant methamphetamine-

responsive genes (P = 4.20 × 10-5) [40]. A detailed

description of the results of literature mining is included

in Additional file 8.

Identification of transcription factor binding sites

To discover molecular factors that are involved in the

transcriptional control of the discovered gene expression

patterns, we used an in silico method of transcription fac-

tor binding site (TFBS) identification. We analyzed gene

promoters based on the assumption that a subset of the

co-expressed genes may be co-regulated by common

transcription factors. For this purpose, we developed a

new tool for the discovery of over-represented TFBSs: the

cREMaG database (see Materials and methods).

Gene expression pattern A revealed the highest over-

representation of binding sites for serum response factor

(SRF)/serum-responsive elements (5.7-fold higher than

expected by chance, P = 9.5 × 10-3). Significant over-rep-

resentation of TFBSs for transcription factor cyclic AMP-

response element binding protein (CREB)/cyclic AMP

response elements (3.9-fold, P = 6.8 × 10-3) was also

found. We identified an over-representation of cyclic

AMP response elements (the binding site for the CREB

transcription factor) and serum-responsive elements (the

binding site for the SRF transcription factor) in the core

promoter regions of genes with expression pattern A. The

complementary roles of these transcription factors have

been independently confirmed [41,48].

The analysis of the promoter regions of pattern B1

genes indicated an over-representation of the binding site

for transcription factors of the FOX family, Foxd3/FRE

(4.4-fold, P = 1.96 × 10-2). Forkhead transcription factors

are implicated in the neuronal response to oxidative

stress [49]. Promoter regions of genes from expression

pattern B2 contained relatively more binding sites for ste-

roid hormones NR1H2-RAXR (3.5-fold, P = 2.88 × 10-2)

and Ar/ARE (3.3-fold, P = 7.4 × 10-2) with transcriptional

activity. An enrichment of binding sites for nuclear recep-

tors in promoter regions, including the androgen recep-

tor (ARE/Ar), was found, suggesting that genes from this

subgroup may be regulated by steroid hormones. Over-

representation of binding sites for Fos/AP1 (6.7-fold, P =

1.03 × 10-2) and NR3C1/GRE (5.6-fold, P = 5.8 × 10-3) was

observed within promoter regions of genes from pattern

B3 (Table 1). Components of the transcriptional complex

AP-1 (Fos, Fosb) exhibited gene expression pattern A.

Therefore, the occurrence of an AP-1 site in the promoter

regions of genes expressed relatively late following drug

administration may indicate target genes for the drug-

activated transcription factors. The second putative

mechanism of B3 gene regulation is related to the effects

of glucocorticoid hormones on the central nervous sys-

tem.

Pharmacological dissection of drug-regulated gene 

patterns

The effects of selected pharmacological tools on drug-

induced gene expression changes were analyzed using

DNA microarrays. This novel approach allowed us to

modulate the drug-induced gene transcription and to dis-

sect the particular genetic networks. Based on the results

of the primary microarray experiment, six potential

mechanisms of gene regulation were tested (Figure 4).

However, due to an increase in the number of factors

(various inhibitors and vehicles), it was not possible to

perform all experiments in the time-course. Therefore,

for each analysis, a drug and a time point identified in the

first experiment as producing the maximal transcrip-

tional effect were chosen (Additional file 6). Taking into

account previously suggested anti-addictive properties of

the substances that attenuate gene expression patterns

[50-53], these results are important for further studies of

potential therapeutic drugs.

The selected regulatory processes were tested for their

influence on drug-induced gene expression pattern A.

Pre-treatment with a D1R antagonist (SCH23390)

blocked drug-induced CREB1/SRF-mediated gene tran-

scription in the striatum, with a 126% reduction (26% of

induction below basal level) in the level of cocaine activa-

Transmembrane 

transporter activity

3.4 (0.1973) Hasan et al. [110], 

chronic oxycodone

7.61E-05

The complete results of data-mining are presented in Additional files 7 and 8. aStatistical significance of gene enrichment was computed 

using algorithms implemented in DAVID 2008 database and ErmineJ software. bConserved promoter regions +5,000/-1,000 bp from the 

transcription start site were analyzed (see Materials and methods). cFold change of the detected number of identified transcription factor 

binding sites (TFBSs) compared to the number expected by chance. dStatistical significance of over-representation of TFBS-containing genes 

compared to a number expected by chance was computed using a z-score test.

Table 1: Functional classes, results from literature, and transcription factor binding sites associated with drug-regulated 

patterns of gene expression (Continued)
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tion (P < 0.001) (Figure 4a). This observation suggested

that the regulatory intracellular cascades are activated

mainly in striatal cells containing D1R. At the same time,

SL327, an inhibitor of extracellular signal-regulated

kinase (ERK1/2) activator kinase MEK1/2, inhibited the

cocaine-activated expression of genes from pattern A,

with a 107% reduction (7% of induction below basal level)

in the level of cocaine activation (P < 0.001) (Figure 4b).

This observation clearly indicates the involvement of the

ERK1/2 signaling pathway [50].

Moreover, the administration of the histone deacetylase

inhibitor trichostatin before cocaine administration pro-

voked an intensification of the transcriptional response,

with a 33% increase in the level of cocaine activation (Fig-

ure 4c). This observation suggested that the induction of

genes from the expression pattern A may require

enhanced chromatin unfolding [54].

Opioids increased the abundance of mRNAs from

expression pattern A 4 h after injection. Pretreatment

with the protein synthesis inhibitor cycloheximide (CHX)

Figure 3 Validation of drug-induced regulation of gene expression. (a) Bar graphs summarizing qPCR-based measurement of changes in select-

ed gene expression after the indicated drug injection, presented as fold change over the saline control group with standard error (n = 5 to 6). Signif-

icant differences in the main effects from multivariate ANOVA for drug treatment are indicated by asterisks (***P < 0.001) and from the Bonferroni post-

hoc test (versus appropriate saline control) by dollar signs (P < 0.05). (b) Bar graphs summarizing qPCR-based measurement of selected gene expres-

sion after morphine (MOR) injection in the home cage or during CPP acquisition and expression. Results are presented as fold change over the saline 

control group (SAL) with standard error (n = 6 to 7). Significant differences in transcript abundance between the morphine-treated and control animals 

obtained by a t-test are indicated by dollar signs (P < 0.05).
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Figure 4 Pharmacological dissection of transcriptional networks from the drug-induced gene expression profile. Microarray results are 

shown as heat maps that include drug-responsive genes with genome-wide significance (Figure 2a). Colored rectangles represent transcript abun-

dance and are labeled below the heat map. Each row contains the mean value from three independent array replicates, where samples from two mice 

were pooled and used for each microarray. The intensity of the color is proportional to the standardized values (between -2 and 2) from each microar-

ray, as indicated on the bar below the cluster images. The names of enzyme inhibitors or receptor antagonists (inhibitor/antagonist) are indicated on 

the left. The time scheme of each experiment (a-g) is presented on the right. The arrow indicates (two-tailed t-test, P < 0.05) up- or down-regulation 

of the expression of a particular gene in comparisons between the drug plus vehicle and saline plus vehicle groups (upper row on each heat map) or 

drug plus inhibitor/antagonist and drug plus vehicle groups (bottom row). The overall influence was measured as a percentage of inhibition of the 

drug-induced transcriptional response, with 0% representing no effect and 100% representing complete inhibition. The statistical significance of in-

fluence was measured as a comparison of the mean fold change between the drug plus inhibitor/antagonist and saline plus vehicle versus drug plus 

vehicle and saline plus vehicle groups. The level of significance was measured using a two-tailed t-test: *P < 0.05; **P < 0.01; ***P < 0.001. CRF, corti-

cotrophin-releasing factor; HDAC, histone deacetylase.
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inhibited this induction, with a 66% reduction in the level

of heroin activation (P < 0.05) (Figure 4d), which indi-

cates that this relatively late response depends on protein

translation.

All of the compared drugs induced gene transcription

pattern B1 in the striatum. The relatively early transcrip-

tional response to heroin (CHX blocked 87% of activa-

tion, P < 0.001) and ethanol (CHX blocked 72% of

activation, P < 0.05) was blocked by an inhibitor of pro-

tein synthesis (Figure 4d, e). Similar effects of CHX were

observed on the induction of gene expression pattern B2

in response to heroin (CHX blocked 106% of activation,

6% of activation below basal level, P < 0.001) and ethanol

(CHX blocked 104% of activation, P < 0.001) (Figure 4d,

e).

Microarray results indicated the inhibitory effects of

corticotropin-releasing factor (CRF) receptor 1 (CRFR1)

and GR antagonists (antalarmin and RU486, respectively,

blocked 65% of ethanol activation, P < 0.05) on gene

expression activation of the B3 subcluster (Figure 4f, g).

RU486 also altered the expression of several B1 genes, for

example, Sgk1 and Plekhf1 (Figure 4g). Therefore, the

influence of GR receptor blockage on ethanol-induced

expression of B1genes could not be correctly evaluated.

Correlation with behavioral drug effects

To link the gene expression patterns with drug-related

phenotypes, we analyzed the correlations between the

transcriptional and behavioral drug effects in mice.

Mutual interactions between the brain gene expression

and behavioral profiles are complex and multidimen-

sional. Therefore, it is difficult to define them using anal-

yses performed with only the few available data points.

However, even speculative results obtained from this

analysis create the unique possibility of assigning differ-

ent transcriptional alterations induced by various drugs

to drug-related phenotypes. We observed a positive cor-

relation of r = 0.62 (Pearson's method, P < 0.001) between

the level of drug-induced locomotor activation and the

degree of transcriptional response of gene expression pat-

tern A. Additionally, we found a significant correlation

between the acute induction of B1 genes and the reward-

ing effect of the drug (r = 0.7, Pearson's method, P < 0.05;

Figure 1c, d; Additional file 9).

Evaluation of two drug-regulated genes at the mRNA and 

protein levels

We selected two genes from expression pattern B for fur-

ther evaluation. The first gene, Sgk1, encodes the SGK

protein (serum-and glucocorticoid-inducible kinase) and

exhibited the B1 pattern. The second gene, Tsc22d3,

encodes the GILZ protein (glucocorticoid-induced leu-

cine-zipper protein) and exhibited the B2 pattern. We

inspected alterations in mRNA abundance in the stria-

tum during the acquisition and expression of the mor-

phine-induced CPP. Both genes were induced 4 h after

each of three subsequent sessions of morphine-induced

(20 mg/kg i.p.) conditioning (between 1.5-fold and 3-fold

over the control group). However, transcription of Sgk1

and Tsc22d3 was not activated during the behavioral

expression of morphine-induced CPP (Figure 3b).

Furthermore, in situ hybridization was used to analyze

the brain distribution of drug-induced changes in Sgk1

and Tsc22d3 expression. Both genes showed widespread

induction throughout the brain, including the striatum.

These results are in agreement with the microarray and

qPCR data and confirm the strong striatal activation of

both genes 4 h after morphine injection (20 mg/kg i.p.).

More specifically, activation of Tsc22d3 in the striatum

was limited to the medio-ventral region (nucleus accum-

bens), while Sgk1 was induced ubiquitously in the whole

striatum (Figure 5a).

Western blotting was used to determine whether the

changes in gene expression were translated into altera-

tions in protein levels. The morphine-induced increase in

Sgk1 abundance was associated with a significant

decrease in the level of the protein (0.75-fold). Therefore,

Sgk1 expression changes might be a compensatory effect

to the loss of the protein. Up-regulation of Tsc22d3 was

associated with an increase in the corresponding protein

level (approximately 1.5-fold; Figure 5c). Double-immun-

ofluorescence labeling with neuronal (NeuN) and astro-

glial (S100B) markers was used to identify cells that

expressed SGK (Sgk1) and GILZ (Tsc22d3) proteins. In

the mouse striatum, both genes appeared to be expressed

mainly in neurons (Figure 5b).

Drug-responsive genes are involved in the formation of 

dendritic spines

In order to evaluate the roles of GILZ and SGK1 in neu-

ronal plasticity, we knocked these proteins down in cul-

tured primary neurons and analyzed the morphology of

dendritic spines. To knock down our genes of interest, we

first designed three and four short hairpin RNAs (shR-

NAs) against the Tsc22d3 and Sgk1 sequences, respec-

tively, and cloned them into the pSUPER vector. This

approach permits reliable and medium-term gene knock-

down in neurons [55,56]. Next, we transfected hippocam-

pal and cortical neuronal cultures for 3 days with mixes of

shRNAs targeting each of the genes. The neurons were

grown for 14 days before transfection because, at this

stage, neuronal development is already completed and

morphological changes can be attributed to spine plastic-

ity. Co-transfection of green fluorescent protein (GFP)

was used to identify and visualize the morphology of

transfected cells. We used shRNA mixes to decrease the

potential off-target effects of single hairpins and increase
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the probability of successful knockdown. As shown in

Figure 6, cells transfected with control vector (pSUPER)

displayed characteristics of mature neurons with a mush-

room-type spine morphology. Transfection with the

GILZ shRNA (GILZsh) mix, however, caused pro-

nounced changes in spine morphology. Rather than

mushroom-shaped spines, GILZsh-transfected neurons

had thin, long, filopodia-like protrusions. On the other

hand, transfection with the SGK shRNA (SGK1sh) mix

did not cause pronounced changes in protrusion shape

but resulted in a decrease in protrusion density compared

to control neurons. Therefore, knockdown of GILZ or

SGK1 in mature neurons resulted in changes in dendritic

spine shape or density, respectively.

Discussion
In this study, we aimed to define the sequence of molecu-

lar changes in the striatum in response to various drugs of

abuse. We estimated that the number of genes induced by

administration of the drugs of abuse was limited to

Figure 5 Brain and cellular distribution of two selected drug-regulated genes. (a) False-colored micrographs representing the relative level of 

the indicated mRNA 4 h after saline (SAL) or 20 mg/kg morphine (MOR) treatment revealed by in situ hybridization. Five coronal sections of mouse 

brain are presented, containing: (I) dorsal striatum and nucleus accumbens, (II) mid striatum, (III and IV) dorsal hippocampus and (V) ventral hippocam-

pus/mesencephalon. (b) Confocal fluorescence micrographs showing coronal sections of striatum after immunohistochemical staining against SGK 

(Sgk1, red in the upper panel), GILZ (Tsc22d3, red in the lower panel), NeuN (neuronal marker, green, left) and S100B (glial marker, green, right). Scale 

bar: 50 μm. (c) Immunoblot of striatal lysates from mice 4 h after injection with morphine (MOR, 20 mg/kg i.p.) or saline (SAL) with antibodies against 

SGK and GILZ. The level of significance was measured using a two-tailed t-test: *P < 0.05. Error bars indicate standard error.
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approximately 100. Other studies reveal various numbers

of genes with altered expression by drugs of abuse

[26,41,44,46]. However, their estimations are based on

arbitrary significance or fold-change thresholds, whereas

our prediction was based on the number of true positives

through a wide range of false discovery rates. The tran-

scriptome changes produced by drugs of abuse were in

contrast to alterations related to the diurnal cycle. While

drugs of abuse produced few robust changes, the diurnal

cycle alters the levels of several thousand transcripts

(Additional file 1).

We found that almost all identified genes were regu-

lated in concert with other genes in the form of two drug-

responsive transcriptional modules. No other transcrip-

tional modules were identified, even at lower significance

thresholds. Therefore, we can assume that this study

depicted all of the main patterns of induction in the

mouse striatum after administration of drugs of abuse in

rewarding doses. However, a recent study showed that

after administration of higher, neurotoxic doses of meth-

amphetamine, distinct gene expression patterns appear

[40].

The first identified pattern (pattern A) consisted of

IEGs, which are well described and commonly used as

markers of neuronal activation [57-59]. Particular genes

from this cluster were previously identified in the

response to drugs of abuse, including Fos, Fosb and Egr1

[60,61]. Using bioinformatic analyses, we were able to

postulate a role of the CREB and SRF transcription fac-

tors as main regulators of IEGs, which has been suggested

previously [62,63]. Previous studies indicate that the

cocaine-induced activity of CREB and SRF in the stria-

tum is dependent on the D1R-downstream MEK/ERK

signaling pathway [50,64]. Using pharmacological inter-

vention, we established the role of D1R and the MEK/

ERK signaling pathway for the whole group of IEGs.

However, the role of a group of simultaneously expressed

IEGs in neurons is not known. Some genes from pattern

A (Npas4, Homer1a and Arc) may be involved in protect-

ing against neuronal overexcitability [65,66]. Npas4 regu-

lates inhibitory synapse development in an activity-

dependent manner and diminishes the excitatory synap-

tic input neurons receive [67]. Homer1a appears to par-

ticipate in the attenuation of the gradual inhibition of

glutamate receptor-dependent calcium mobilization, as

well as in mitogen-activated protein kinase activation

[68]. Finally, increased expression of Arc may play a role

in reducing AMPA receptor-mediated synaptic transmis-

sion [69,70]. We clearly demonstrated a lack of an effect

of ethanol on the induction of IEGs in the striatum. It is

worth mentioning that the induction of Fos (a member of

pattern A) by cocaine is inhibited by ethanol [71-73]. We

demonstrated that this lack of induction by ethanol was

true for all IEGs. Therefore, the role of striatal IEGs in the

development of ethanol addiction is rendered question-

able.

The second identified pattern (pattern B) is relatively

unknown. To our knowledge, this is the first comprehen-

sive report describing the time- and drug-dependent

induction of this gene expression pattern, although some

of these genes have been previously reported by us and

others [26,45,46]. This pattern consists of three subse-

quent sub-clusters (B1, B2 and B3). The examined drugs of

abuse, with diverse pharmacological actions and behav-

ioral effects, were all able to induce gene transcription of

the relatively early pattern B1. Expression pattern B1

appeared to depend on several regulatory proteins, for

example, transcription factors of the FOX family. The

data also imply that patterns B2 and B3 appear to be regu-

lated by steroid hormones that respond to morphine, her-

oin and ethanol. This is in agreement with activation of

the hypothalamic-pituitary-adrenal axis (HPA) after

administration of opioids and ethanol [74,75]. Our phar-

macological dissection of drug-regulated gene expression

profiles showed the inhibitory effects of CRFR1 and GR

antagonists on ethanol-activated gene expression of the

B2 and B3 subclusters. Therefore, the present results sug-

gested that ethanol- and/or opioid-induced activation of

these genes depends on HPA and the release of steroid

hormones from the adrenal gland. This CRF- and GR-

dependent signaling system is emerging as a key element

of the neuroadaptive changes that are induced by drugs of

Figure 6 The effects of Tsc22d3 and Sgk1 knockdown on dendritic 

spine morphology in cultured primary neurons. Representative mi-

crographs and three-dimensional Imaris reconstructions of dendritic 

segments of hippocampal and cortical neurons are presented. The 

neurons were transfected with pSUPER (control) or GILZsh mix or 

SGK1sh mix in pSUPER on day in vitro 14 for 3 days. GFP was used to 

highlight transfected cell morphology.
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abuse [76-78]. The identification of novel drug-respon-

sive genes downstream of CRF/GR may help uncover the

molecular mechanisms linking stress and addiction

[79,80]. Pattern B genes modulate various aspects of cell

functioning: hexose transport (Slc2a1), lipid metabolism

(Angptl4, Pparg), regulation of sodium channels and the

actin cytoskeleton (Sgk1) and regulation of the cell cycle

(Cdkn1a), to mention just a few [81-84]. Our results

clearly revealed qualitative and quantitative differences

between the transcriptional networks affected by drugs of

abuse. Therefore, it appears that various molecular mech-

anisms induced by drugs may lead to common addictive

behaviors.

Previous studies show that cocaine administration

leads to the release of glucocorticoids [85]. However, in

our experiments, cocaine did not induce glucocorticoid-

responsive genes (patterns B2 and B3). Expression of these

genes was also affected relatively weakly by methamphet-

amine, compared to the much stronger effects of opioids

and ethanol. Notably, both psychostimulants were the

only drugs in our study that produced a prominent induc-

tion of IEGs (pattern A) within the first hour after drug

injection. The pattern A genes included components of

the transcription factor AP-1 (Fos, Fosl2, Fosb). Since AP-

1 is a potent repressor of GR activity [86], it seems that

GR-mediated effects of HPA activation on gene tran-

scription in the striatum after psychostimulant adminis-

tration may have been inhibited by previous induction of

the AP-1 complex proteins due to D1R activation. More-

over, the identified clusters A and B contained their self-

repressors. The IEG group contained ICER, an isoform of

Crem, which acts as a powerful repressor of cyclic AMP-

induced transcription [87]. Pattern B, which was partially

controlled by glucocorticoids, includes Fkbp5, a chaper-

one that inhibits GR translocation into the nucleus [88].

HPA activation is one of the most recognized attributes

of stress. Moreover, HPA activation is also a common

effect of various drugs of abuse [74,75,85,89]. Chronic

exposure to stress is associated with increased vulnerabil-

ity to addiction [90,91]. The enhancing effects of stress on

drug self-administration have also been documented in

animal models [92]. Moreover, Mantsch et al. [93] show

that corticosterone itself produces almost the same

effects on drug taking as stress. Therefore, it is possible

that corticosterone released after drug administration

enhances the rewarding properties of the subsequent

drug doses in the same way stress does. The mechanism

of corticosterone contribution to addiction vulnerability

is not well understood. Steroid-mediated enhancement of

mesocorticolimbic dopamine neuron activity has been

suggested to play a role [92].

A correlation analysis between the induction of gene

clusters and the behavioral effects of particular drugs

revealed that the induction of both B1 and B2 gene pat-

terns may be associated with the rewarding effects of

drugs. The present results suggested that two genes, rep-

resentatives of patterns B1 (Sgk1) and B2 (Tsc22d3), might

be associated with neuroplastic changes after administra-

tion of drugs of abuse. Some other authors have

attempted to identify the role of Sgk1 in the central ner-

vous system [94-96]. We demonstrated that knockdown

of Sgk1 expression in neurons caused lower protrusion

density and altered formation of dendritic spines [97].

GILZ (Tsc22d3) has already been considered in the con-

text of its neuronal function [42,45,80]. However, we are

the first to show that knockdown of Tsc22d3 provoked

changes in spine morphology. Rather than mushroom-

shaped spines, GILZsh-transfected neurons had thin,

long, filopodia-like protrusions. These cellular changes

may reflect an altered potential for neuronal plasticity

and could be involved in the positive effect of corticoster-

one on vulnerability to addiction.

Conclusions
We have identified two gene expression patterns that

were induced in the striatum by various drugs of abuse

and demonstrate that these patterns are the only ones

induced by rewarding doses of these drugs. The gene pat-

terns were not equally induced by the various drug

classes. Therefore, clear differences between various

drugs of abuse exist. We then identified upstream factors

that control the discovered patterns. One of the patterns

is at least partially controlled by HPA activation. We pro-

posed a molecular mechanism that is involved in the

HPA-activated enhancement of drugs' rewarding proper-

ties. Finally, we selected two genes and confirmed their

influence on neuronal plasticity. In conclusion, this study

provides valuable comparisons of the actions of various

drugs of abuse on the striatal transcriptome and identifies

potential target genes responsible for drug-induced neu-

roplasticity.

Materials and methods
Animals

Adult male (8 to 10 weeks old) C57BL/6J inbred mice

were housed 6 to 10 per cage, under a 12-h dark/light

cycle, with free access to food and water. Animals weigh-

ing 20 to 30 g were used throughout the experiments. The

animal protocols used in the study were approved by the

local Bioethics Commission at the Institute of Pharma-

cology, Polish Academy of Sciences (Krakow, Poland).

Drug treatment

Mice were sacrificed by decapitation 1, 2, 4 or 8 h after a

single morphine (20 mg/kg), heroin (10 mg/kg), ethanol

(2 g/kg), nicotine (1 mg/kg), methamphetamine (2 mg/

kg) or cocaine (25 mg/kg) i.p. injection, with respective

saline and naïve control groups. The inhibitors and

antagonists used in the secondary microarray experiment
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were i.p. injected 30 minutes before any of the drugs of

abuse and were dissolved in an appropriate vehicle: 1 mg/

kg SCH23390 (Biotrend, Koln, Germany) in saline; 30

mg/kg SL327 (Biotrend) in dimethyl sulfoxide (DMSO;

Sigma-Aldrich, Steinheim, Germany); 40 mg/kg RU486

(Biotrend) in 3% Tween 20 (Sigma-Aldrich); 75 mg/kg

cycloheximide (Biotrend) in saline; and 20 mg/kg anta-

larmin (Sigma-Aldrich) in 10% Cremophor EL (Sigma-

Aldrich). Trichostatin (Sigma-Aldrich; 1 mg/kg in

DMSO) injections were given 2 h before the cocaine. The

doses of inhibitors/antagonists were based on the litera-

ture, paying particular attention to their ability to block

drug-induced behavior.

Behavioral testing

CPP tests were performed using an unbiased procedure

in a three-arm apparatus. The experiment consisted of

the following phases separated by 24 h: pre-conditioning

test (day 0), conditioning with a drug dose as explained

above (days 1, 3, 5), conditioning with saline (days 2, 4, 6)

and post-conditioning test (day 7). For ethanol and nico-

tine, the procedure was prolonged to five sessions of con-

ditioning. An independent group of animals was tested

for drug-induced motor activation. Locomotor activity

was measured in an activity cage in 15-minute intervals

for 4 h following acute drug treatment.

Tissue collection and RNA preparation

Samples containing the rostral part of the caudate puta-

men and the nucleus accumbens (referred to hereafter as

the striatum) were collected. Tissue samples were placed

in RNAlater reagent (Qiagen Inc., Valencia, CA, USA)

and preserved at -70°C. Samples were thawed at room

temperature and homogenized in 1 ml Trizol reagent

(Invitrogen, Carlsbad, CA, USA). RNA was isolated fol-

lowing the manufacturer's protocol and further purified

using the RNeasy Mini Kit (Qiagen Inc.). The total RNA

concentration was measured using a NanoDrop ND-1000

Spectrometer (NanoDrop Technologies Inc., Montcha-

nin, DE, USA). RNA quality was determined by chip-

based capillary electrophoresis using an RNA 6000 Nano

LabChip Kit and Agilent Bioanalyzer 2100 (Agilent, Palo

Alto, CA, USA), according to the manufacturer's instruc-

tions. RNA from two mice was pooled to create a sample

for each microarray.

Gene expression profiling

A starting amount of 200 ng high-quality total RNA

(equally pooled from two animals) was used to generate

cDNA and cRNA with the Illumina TotalPrep RNA

Amplification Kit (Illumina Inc., San Diego, CA, USA).

The procedure consisted of reverse transcription with an

oligo(dT) primer bearing a T7 promoter using Array-

Script. The obtained cDNA became a template for in

vitro transcription with T7 RNA polymerase and biotin

UTP, which generated multiple copies of biotinylated

cRNA. The purity and concentration of the cRNA were

checked using an ND-1000 Spectrometer. Quality cRNA

was then hybridized with Illumina's direct hybridization

array kit (Illumina). Each cRNA sample (1.5 μg) was

hybridized overnight to the MouseWG-6 BeadChip

arrays (Illumina) in a multiple-step procedure according

to the manufacturer's instructions; the chips were

washed, dried and scanned on the BeadArray Reader

(Illumina). Raw microarray data were generated using

BeadStudio v3.0 (Illumina). Three biological replicates of

the microarrays were prepared per experimental group. A

total of 108 Illumina MouseWG-6 v1.1 and 84 Illumina

MouseWG-6 v2 microarrays (with probes for approxi-

mately 48,000 transcripts) were used in the two experi-

ments. To rule out the effects of injection and

fluctuations related to circadian rhythms, we compared

the drug effects to saline-treated and naïve animals. The

microarray experimental design involved pooling two

animals per array and combining three independent

arrays per group. To provide an appropriate balance in

the whole dataset, groups were equally divided between

the array hybridization batches.

Microarray data analysis

Microarray quality control was performed using BeadAr-

ray R package v1.10.0. The following parameters were

checked on all 192 arrays: number of outliers, number of

beads and percent of detected probes. After background

subtraction, the data were normalized using quantile nor-

malization and then log2-transformed. The obtained sig-

nal was taken as the measure of mRNA abundance

derived from the level of gene expression. The results

were standardized to reduce the effect of hybridization

batches using z-score transformation. Statistical analysis

of the results was performed using two-way ANOVA (for

the factors drug and time) followed by Bonferroni correc-

tion for multiple testing. Alternatively, the FDR (percent

FDR) was estimated using the Benjamini and Hochberg

method [39]. To obtain drug-versus-saline comparisons,

two-way ANOVA was followed by Tukey's post-hoc test.

All statistical analyses were performed in R software ver-

sion 2.8.1 [98]. Gene cross-annotation between the two

versions of each microarray was performed automatically

based on probe sequence, transcript ID and gene identi-

fier, with some manual corrections.

Cluster analysis

Hierarchical clustering was performed using the measure

of Euclidian distance and average distance linkage meth-

ods. The cluster separation was performed according to

an arbitrary threshold (h = 13). Several alternative clus-

tering strategies produced similar hierarchical relation-

ships, as shown in Figure 2a. Cluster visualization was

performed using dChip software [99].
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Functional annotation, GO enrichment, cell type 

enrichment and literature mining

The functional annotation analysis tool DAVID 2008 was

used to identify over-represented ontologic groups

among the gene expression patterns and to group genes

into functional classifications [100]. The list of transcripts

represented on the Illumina Mouse WG-6 v1.1 microar-

ray was used as a background list. Over-represented GO

terms were defined as having at least three transcripts

and P < 0.05 under Fisher's exact test. For cell-type

enrichment of mRNA, a recently published brain tran-

scriptome database was used [101]. The database of 1267

gene lists was used for the literature enrichment analysis.

This included gene lists manually extracted from the pub-

lished data, as well as a collection of gene sets from the

MSigDB database [29]. The statistical significance analy-

sis of transcript enrichment was performed using the

ORA algorithm in ErmineJ software [102]. Annotation

handling was based on Mouse Gene Symbol IDs (MGI),

and all other annotation formats were translated using

BioMart [103]. Input data, annotations and the obtained

results are included in Additional files 2, 7 and 8.

Identification of transcription factor binding sites enriched 

in co-regulated transcripts

The identification of over-represented TFBSs was per-

formed using the cREMaG database [104] with default

parameters. Briefly, a 70% conservation threshold and a

maximum number of 50 conserved TFBSs in non-coding

regions between 5,000 bp upstream and 1,000 bp down-

stream of the transcriptional start site were used. Func-

tional promoter sequences were identified by alignments

between 5' upstream sequences of mouse and human

orthologous genes. The identification of TFBSs was per-

formed using the Perl TFBS module and matrices from

the JASPAR database [105]. MGI Gene Symbol lists were

submitted, and default parameters were used.

Validation of microarray data by qPCR

We performed qPCR measurements for a set of genes

representative of the identified gene clusters. Reverse

transcription was performed with Omniscript Reverse

Transcriptase enzyme (Qiagen) at 37°C for 60 minutes.

The reaction was carried out in the presence of the RNase

inhibitor rRNAsin (Promega, Madison, WI, USA), and an

oligo(dT16) primer (Qiagen) was used to selectively

amplify mRNA. qPCR reactions were performed using

Assay-On-Demand TaqMan probes (Additional file 3)

according to the manufacturer's protocol (Applied Bio-

systems, Foster City, CA, USA) and were run on an iCy-

cler (Bio-Rad, Foster City, CA, USA). For each reaction,

approximately 50 ng of cDNA synthesized from a total

RNA template (isolated from an individual animal) was

used (n = 4 to 10). To minimize the contribution of con-

taminating genomic DNA, primers were designed to span

exon junctions. Additionally, control reactions without

reverse transcription enzyme for each assay were per-

formed. The amplification efficiency for each assay was

determined by running a standard dilution curve. The

expression of the Hprt1 (hypoxanthine guanine phospho-

ribosyl transferase 1) transcript, which had a stable

mRNA level, was quantified to control for variations in

cDNA levels. The cycle threshold values were calculated

automatically by iCycler IQ 3.0a software with default

parameters. The abundance of RNA was calculated as 2-

(threshold cycle).

Measurement of the effects of pharmacological dissection

Further microarray experiments were performed to ana-

lyze the effects of selected pharmacological tools on

drug-induced gene expression changes. Mean fold

changes of drug-induced transcriptional activation for

each gene expression pattern with and without the

administration of a particular inhibitor or antagonist

were compared. The influence was measured as a per-

centage of inhibition of the drug-induced transcriptional

response, with 0% representing no effect and 100% repre-

senting complete inhibition. The statistical significance of

influence was measured as a comparison of the mean fold

change between the drug plus inhibitor/antagonist and

saline plus vehicle versus drug plus vehicle and saline plus

vehicle groups. All necessary controls, including different

vehicles and time points, were included.

Association of gene expression patterns with phenotype

The correlation between the effects of the drugs and

behavioral effects in animals was measured using Pear-

son's method. The mean expression change of each gene

was summarized for all time points together for correla-

tion with CPP and for single time points for correlation

with locomotor activation.

Western blotting

Protein was extracted from the samples using RIPA buf-

fer. The protein concentration of each sample was deter-

mined using the BCA Protein Assay Kit (Sigma-Aldrich).

Aliquots of crude extracts (containing 5 to 20 μg of pro-

tein) were then subjected to electrophoresis on a 12%

SDS-polyacrylamide gel, and proteins were electroblot-

ted onto microporous polyvinylidene difluoride (PVDF)

membranes (Roche, Germany). The membranes were

blocked for 1 h, washed and incubated overnight with

primary antibodies at 4°C. After washing, immunocom-

plexes were detected using a Chemiluminescence West-

ern Blotting Kit (Mouse/Rabbit, Roche), visualized with a

Fujifilm LAS-1000 fluoroimager system and quantified

using Image Gauge software (Fujifilm, Tokyo, Japan). For

immunoblotting, a rabbit polyclonal antibody raised
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against: a synthesized non-phosphopeptide derived from

human SGK1 around the phosphorylation site of serine

78 (P-P-SP-P-S; Abcam, Cambridge, MA, USA); or a syn-

thetic peptide conjugated to keyhole limpet hemocyanin

derived from residue 100 to the carboxyl terminus of

Mouse GilZ/TilZ (Abcam) was used. To control for trans-

fer quality, each PVDF blot was stained with Ponceau S.

In situ hybridization

The frozen brains were cut into 12-μm-thick coronal sec-

tions on a cryostat microtome CM 3050S (Leica Micro-

systems, Germany), and the sections were thaw-mounted

on gelatin-chrome alum-coated slides and processed for

in situ hybridization. The hybridization procedure was

performed as previously described [106]. Briefly, the sec-

tions were fixed with 4% paraformaldehyde, washed in

PBS and acetylated by incubation with 0.25% acetic anhy-

drite (in 0.1 M triethanolamine and 0.9% sodium chlo-

ride). The sections were then dehydrated using increasing

concentrations of ethanol (70 to 100%), treated with chlo-

roform for 5 minutes and rehydrated with decreasing

concentrations of ethanol. The sections were hybridized

for 15 h at 37°C with oligonucleotide probes complemen-

tary to nucleotides 493-536 of the mouse Tsc22d3 cDNA

(5'-CAGTTGCTCGGGGCTTGCCAGCGTCTTCAG-

GAGGGTGTTCTCGC-3'; NM 010286.3) and nucle-

otides 1682-1725 of the mouse Sgk1 cDNA (5'-

TTGATCACAGCTCAGACAGACTGCGGGGATTC-

CTCTTAGACCTG-3'; NM 011361.1). The probes were

labeled with 35S-dATP by the 3'-tailing reaction using ter-

minal transferase (MBI Fermentas, Vilnius, Lithuania).

After hybridization, the slices were washed three times

for 20 minutes with 1×SSC/50% formamide at 40°C and

twice for 50 minutes with 1×SSC at room temperature.

Then, the slices were dried and exposed to phosphorim-

ager plates (Fujifilm) for 5 days. The hybridization signal

was digitized using a Fujifilm BAS-5000 phosphorimager

and Image Reader software.

Immunohistochemistry

The animals were deeply anesthetized (pentobarbital, 60

mg/kg i.p.) and perfused transcardially with saline fol-

lowed by 4% paraformaldehyde in 0.1 M phosphate buf-

fer, pH 7.4. Brains were removed, postfixed for 4 h,

transferred to PBS and stored at 4°C. Free-floating sec-

tions were cut 40-μm thick using a Leica vibratome. For

double-immunofluorescence labeling, sections were

blocked for 1 h in 5% donkey serum, pH 7.4 (Vector Labs,

Burlingame, CA, USA) and then incubated overnight at

4°C in a mixture of primary antibodies. Respective pairs

of antibodies included rabbit polyclonal anti-GILZ

(1:100; Abcam) or rabbit polyclonal anti-SGK1 (1:400;

Abcam) with mouse monoclonal anti-s100-beta (1:1,500;

Sigma-Aldrich) or mouse monoclonal anti-NeuN (1:250;

Chemicon, Rosemont, IL, USA). After three washes in

PBS, double immunofluorescence was revealed by incu-

bating the sections for 2 h at room temperature in a mix-

ture of secondary antibodies: Alexa Fluor 488-conjugated

donkey anti-mouse IgG and Alexa Fluor 555-conjugated

donkey anti-rabbit IgG (both at 1:750; Molecular Probes

Inc., Eugene, OR, USA). The sections were washed three

times with PBS, mounted on slides in Vectashield (Vector

Labs) and coverslipped. The negative controls were pre-

pared by omitting the primary antibody. The sections

were examined using a 63× objective on a confocal

microscope (DMRXA2 TCS SP2, Leica Microsystems).

The background noise of each confocal image was

reduced by averaging four scans per line and four frames

per image. To visualize image details, plates were gener-

ated adjusting the contrast and brightness of digital

images (ImageJ, NIMH).

Primary neuron cultures and transfection

Primary hippocampal and cortical cultures were pre-

pared from embryonic day 16 mouse brains, according to

the Banker and Goslin procedure. Cells were plated on

coverslips coated with poly-L-lysine (30 μg/ml; Sigma)

and laminin (2 μg/ml; Roche) at a density of 500 (hip-

pocampal) or 1,250 (cortical neurons) cells/mm2. Neu-

ronal cultures were grown in Neurobasal medium

(Invitrogen) supplemented with B27 (Invitrogen), 0.5

mM glutamine, 12.5 μM glutamate and penicillin/strep-

tomycin mix (Sigma). On the 14th day in vitro (DIV),

neurons were transfected with Lipofectamine 2000

(Invitrogen) for 3 days, as previously described [55].

Briefly, for cells growing in a single well of a 24-well dish,

0.9 μg of DNA was mixed with 1.67 μl of Lipofectamine

2000 in 100 μl of Neurobasal medium and incubated for

30 minutes. During the incubation time, fresh culture

media were prepared, mixed half and half with old media

and split into two equal aliquots. The first aliquot was

added to the cells, and the second was saved during the

transfection period. Next, complexes of DNA with Lipo-

fectamine 2000 were added to the cells and incubated for

4 h at 37°C, 5% CO2. Finally, cells were washed twice with

Neurobasal medium and incubated in the saved culture

media. The pSUPER vector [107] and β-actin-GFP [56]

mammalian expression plasmids have been described.

GILZ shRNAs were designed against mouse GILZ

(Tsc22d3) mRNA (EntrezGene ID: 14605) targeting

nucleotides 383-401, 385-407 and 437-459, respectively.

SGK1 shRNAs targeted nucleotides 265-283, 719-737,

975-993 and 1008-1026 of Sgk1 (EntrezGene ID: 20393),

respectively. All shRNAs were cloned into pSUPER. In

RNA inyerference experiments, the mix of shRNAs

encoding plasmids and β-actin-GFP were cotransfected

at a 3:1 ratio.
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Immunocytochemistry of in vitro cultured neurons

For immunofluorescent staining of transfected GFP, neu-

rons were fixed with 4% paraformaldehyde containing 4%

sucrose in PBS for 10 minutes at room temperature. After

fixation, cells were washed three times with PBS for 5

minutes at room temperature and incubated with pri-

mary antibody in GDB buffer (0.2% gelatin, 0.8 M NaCl,

0.5% Triton X-100 and 30 mM phosphate buffer, pH 7.4)

overnight at 4°C. Cells were then washed three times with

PBS for 10 minutes at room temperature. Secondary anti-

Figure 7 A proposed scheme of the core regulatory network of drug-induced molecular mechanisms and gene expression alterations in 

the striatum. Small nodes represent transcripts belonging to the identified gene expression patterns. The color of each node reflects its gene pattern 

membership: blue, A; yellow, B1; orange, B2; and red, B3. Thin blue edges between the nodes indicate a correlation between the expression profiles of 

two genes. Functional connections were implemented based on our results from literature mining, pharmacological experiments and in silico predic-

tions of TFBSs. Large hexagonal nodes represent elements of drug-activated signaling pathways. Solid and dashed edges between the nodes indicate 

direct or indirect interactions, respectively, as suggested by the literature. A red node color and thin red edge indicate a pharmacologically verified 

connection (Figure 4). Green triangle nodes represent gene transcription regulatory elements. Thin green edges indicate positive detection of TFBSs 

in a promoter region of a particular gene. Transparent arrows suggest the influence of gene expression changes on addiction-related traits based on 

the correlations between the transcriptional and phenotypic response (Figure 1c, d; Additional file 9).
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bodies were applied in GDB for 1 h at room temperature

and washed out by three 10-minutes PBS washes. The

secondary antibodies were rabbit anti-GFP (Medical and

Biological Laboratories Co. Ltd., Nagoya, Japan) and anti-

rabbit Alexa Fluor 488-conjugated secondary antibody

(Invitrogen). Confocal images of cells were obtained with

sequential acquisition settings at the maximal 1,024 ×

1,024 pixel resolution of the Zeiss LSM 5 Exciter micro-

scope (Carl Zeiss, Germany). Each image was a z-series of

images, and each was averaged two times. The obtained

stacks were directly analyzed using Imaris v6.3.1 (Bit-

plane AG, Zurich, Switzerland). The changes in spine

length, diameter and volume were quantified based on

the three-dimensional reconstructions computed by

Imaris.

Regulatory network modeling

Putative drug-activated signaling pathways and interac-

tions between the transcription factors and drug-respon-

sive genes were modeled. Data were integrated based on

our results from gene expression profiling, pharmacologi-

cal experiments and in silico predictions of TFBSs. Only

strong correlations (r > 0.6) between the expression pro-

files of two genes and pharmacologically verified connec-

tions (P < 0.1) were analyzed. The main construction of

signaling pathways was based on the literature. To gener-

ate the molecular network shown in Figure 7, we used

Cytoscape software.

Accession codes

Microarray data were submitted to the NCBI Gene

Expression Omnibus (GEO) under accession number

[GEO:GSE15774].

Additional material

Abbreviations

bp: base pair; CHX: cycloheximide; CPP: conditioned place preference; CREB:

cyclic AMP-response element binding protein; CRF: corticotrophin-releasing

factor; CRFR1: corticotrophin-releasing factor receptor 1; D1R: dopamine

receptor 1; DMSO: dimethyl sulfoxide; ERK1/2: extracellular signal-regulated

kinase; FDR: false discovery rate; GFP: green fluorescent protein; GO: Gene

Ontology; GR: glucocorticoid receptor; HPA: hypothalamic-pituitary-adrenal

axis; IEG: immediate early gene; i.p.: intraperitoneally; PBS: phosphate-buffered

saline; PVDF: polyvinylidene difluoride; qPCR: quantitative PCR; shRNA: short

hairpin RNA; SRF: serum response factor; TFBS: transcription factor binding site.
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Additional file 1 A figure presenting ANOVA results of gene expression 

profiling of drug effects in mouse striatum. The upper panel shows the rela-

tionship between the number of true positive results and the proportion of 

false positives for (a) time and (b) drug factors and (c) their interaction in 

ANOVA. The lower panel presents the relationship between the obtained P-

values (y-axis) for both the factors and their interaction and the theoreti-

cally expected P-values (x-axis).

Additional file 2 A table listing the results of two-way ANOVA (followed 

by correction for multiple comparisons or Tukey's post-hoc test). The lists 

include: those genes altered by drug treatment, by time and with interac-

tion between the factors; those genes regulated by each particular drug (P 

< 0.05, versus saline); and the expression levels of genes from patterns A 

and B. Each of these is available as a separate spreadsheet. P-values 

obtained from two-way ANOVA were further corrected using Bonferroni or 

Benjamini and Hochberg (percent FDR) corrections.

Additional file 3 A data file providing the results from the qPCR validation 

of the microarray data. Results for selected genes are presented as the 

mean (± standard error) compared with the saline control group (n = 3 to 

10). A list of TaqMan assays used in the qPCR experiments with IDs and 

exon boundaries is included as a separate sheet.

Additional file 4 A figure showing hierarchical clustering of drug-induced 

gene expression alterations in mouse striatum. Microarray results are 

shown as a heat map and include genes with a significance obtained from 

two-way analysis of variance of the drug factor at (a) 5% and (b) 29% of 

FDR. Colored rectangles represent the transcript abundance (Additional file 

5) of the gene and are labeled on the right. The intensity of the color is pro-

portional to the standardized values (between -2 and 2) from each microar-

ray, as indicated on the bar below the heat map image.

Additional file 5 A figure showing chromosome localizations of drug-

responsive genes.

Additional file 6 A figure showing comparison of drug-induced effects in 

mouse striatum. (a-g) Average activity of time-dependent, drug-induced 

gene expression patterns. The results are presented as mean changes in 

gene expression (measured using z-values, in the extended A, B1, B2 and B3 

groups of genes). The values are relative to the level of transcript abun-

dance in naïve animals (at each of the time points 1, 2, 4 and 8 h). The thick-

ness of the line is proportional to the number of genes in each cluster. (h,i) 

Matrices of correlation between all compared drug-induced gene expres-

sion profiles. The results were obtained using (h) DNA microarrays and (i) 

qPCR. The qPCR analysis was used to validate microarray results (Additional 

file 3).

Additional file 7 A table listing the complete results of the GO analysis 

presented in the manuscript. The analyses were performed on lists of genes 

that correspond to patterns A, B1, B2 and B3. The genes are listed in Addi-

tional file 2. Selected results are presented in Table 1.

Additional file 8 A table listing the complete results of the literature min-

ing presented in the manuscript. The analyses were performed on lists of 

genes that correspond to patterns A, B1, B2 and B3. The genes are listed in 

Additional file 2. Selected results are presented in Table 1.

Additional file 9 A table providing the results of correlation analysis 

between the transcriptional response to drugs of abuse and behavioral 

traits related to drug abuse (see Materials and methods). Behavioral data 

and the matrix of correlations are available as separate sheets. Gene expres-

sion data from each pattern were normalized using z-score transformation 

and summarized as a function of time. Associations were computed using 

Pearson's correlation.
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