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Chromatin in undifferentiated cellsIn undifferentiated Drosophila cells, differentia-tion-associated genes have monovalent, not bivalent histone modifications, in contrast to differentiation-associated genes in stem cells.
Abstract
Background: Increasing evidence demonstrates that stem cells maintain their identities by a unique transcription 
network and chromatin structure. Opposing epigenetic modifications H3K27me3 and H3K4me3 have been proposed 
to label differentiation-associated genes in stem cells, progenitor and precursor cells. In addition, many differentiation-
associated genes are maintained at a poised status by recruitment of the initiative RNA Polymerase II (Pol II) at their 
promoter regions, in preparation for lineage-specific expression upon differentiation. Previous studies have been 
performed using cultured mammalian embryonic stem cells. To a lesser extent, chromatin structure has been 
delineated in other model organisms, such as Drosophila, to open new avenues for genetic analyses.

Results: Here we use testes isolated from a Drosophila bag of marbles mutant strain, from which germ cells are in their 
undifferentiated status. We use these testes to study the endogenous chromatin structure of undifferentiated cells 
using ChIP-seq. We integrate the ChIP-seq with RNA-seq data, which measures the digital transcriptome. Our genome-
wide analyses indicate that most differentiation-associated genes in undifferentiated cells lack an active chromatin 
mark and initiative Pol II; instead, they are associated with either the repressive H3K27me3 mark or no detectable mark.

Conclusions: Our results reveal that most of the differentiation-associated genes in undifferentiated-cell-enriched 
Drosophila testes are associated with monovalent but not bivalent modifications, a chromatin signature that is distinct 
from the data reported in mammalian stem or precursor cells, which may reflect cell type specificity, species specificity, 
or both.

Background
Extensive studies indicate that embryonic stem cells
(ESCs), lineage-committed adult stem cells and early pro-
genitor cells maintain their identities by a unique tran-
scriptional network and chromatin structure (reviewed
by [1,2]). In particular, the bivalent domains harboring
both the active H3K4me3 and repressive H3K27me3
marks label developmental regulators [3]. The H3K4me3
and H3K27me3 marks are placed by the Trithorax group
(TrxG) complex [4-6] and the Polycomb group (PcG)
complex [7,8], respectively. Increasing evidence indicates
that the PcG and the TrxG complexes play critical roles in
the choice between the proliferating progenitor cell state
and terminal differentiation program [4,9]. It has been
reported that bivalent genes in ESCs or early progenitor
cells are bound by PcG proteins and are maintained at a

'poised' status by recruitment of RNA Polymerase II (Pol
II), in preparation for lineage-specific expression upon
differentiation [10-12]. In various stem cell lineages,
reversal of repression by the PcG silencing machinery
may act as the first step toward robust activation of ter-
minal differentiation genes [13,14].

The Drosophila male germline stem cell (GSC) lineage
is a naturally existing adult stem cell system and has
emerged as an excellent system for studying the molecu-
lar mechanisms that control stem cell maintenance versus
differentiation [15]. Each GSC divides asymmetrically to
self-renew and give rise to a gonialblast, the daughter cell
that first undergoes a transit-amplifying spermatogonial
stage before converting to differentiating spermatocytes
[16]. The maintenance of GSCs and spermatogonia in an
undifferentiated and proliferative state, as well as the sub-
sequent reversal of these controls to allow terminal differ-
entiation, are both critical to continuous production of
gametes throughout lifetime. Despite extensive genetic
studies on maintenance of GSCs, it is unclear how epige-
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netic mechanisms may establish and maintain a unique
chromatin structure for their undifferentiated status; and
how mis-regulation of such a structure may lead to mis-
determination of their fate [14].

Previous studies in this system have shown that PcG
transcriptional silencing proteins repress the genes
required for terminal differentiation in undifferentiated
germ cells. Developmental programs reverse Polycomb
silencing and activate the expression of differentiation
genes in spermatocytes [17]. This work uncovered an
intriguing parallel between Drosophila GSC and ESC lin-
eages, because PcG proteins play an extensive role in
keeping developmental regulators at a silent status in
murine and human ESCs [10,11]. To investigate whether
other features in mammalian ESCs apply to Drosophila,
we studied the chromatin structure in the undifferenti-
ated-cell-enriched Drosophila testis. Our results revealed
two distinct features in this tissue: a monovalent chroma-
tin signature and lack of paused RNA Pol II at the differ-
entiation genes. Both features are different from what
have been reported for ESCs and other mammalian adult
stem cells, suggesting a potential novel mechanism of
regulating the germ cell differentiation program in Droso-
phila testis.

Results and discussion
Summary of the ChIP-seq results in undifferentiated-cell-
enriched Drosophila testis
Since it is unfeasible to obtain a sufficient number of nat-
urally existing GSCs for epigenomic mapping using cur-
rent chromatin immunoprecipitation (ChIP) techniques,
we took advantage of the bag of marbles (bam) mutant
strain. Mutations in the bam gene inhibit the transition
from spermatogonial progenitor stage to differentiating
spermatocytes, which results in an accumulation of
undifferentiated cells, including GSCs, transit-amplifying
spermatogonial cells, as well as somatic cells [18,19].
Although the bam testes are not a pure source of GSCs,
they are enriched with undifferentiated germ cells and
have been used for transcription profiling by microarray
[20] or RNA-seq [21] to search for undifferentiated-cell-
enriched genes. These analyses further confirmed the
undifferentiated status of cells in bam testes, in which the
expression of meiotic and terminal differentiation genes
was extremely low or undetectable.

To investigate the epigenetic mechanisms that regulate
the male germline cellular differentiation program, we
used bam testes for chromatin landscape mapping using
ChIP followed by high-throughput sequencing (ChIP-
seq). The ChIP-seq technique has been demonstrated to
be a highly sensitive method to detect binding sites of
chromatin-associated proteins at a genome-wide cover-
age (reviewed by [22,23]). More importantly, this tech-
nique is compatible with small amounts of starting

material, such as the hand-dissected fly testes in our
experiments. To compare our data with the previous
results using mammalian cells, we used the same set of
antibodies, including antibodies against RNA Pol II,
H3K4me3, H3K36me3, H3K27me3 and unmodified his-
tone H3, to perform ChIP-seq experiments using bam
testes (Materials and methods; Additional file 1). The
anti-Pol II antibody (4H8) used in our assays recognizes
both the initiating and elongating forms of Pol II accord-
ing to published work [12,24]. Sequencing depth analysis
indicated that we have reached or almost reached the pla-
teau of peak detection for each of these histone modifica-
tions as well as Pol II (Materials and methods; Additional
file 2a-d).

To validate our ChIP-seq data, we compared the rela-
tionship between gene expression level and enrichment
of RNA Pol II as well as distinct histone modifications.
The Drosophila genome is highly compact, including
many overlapping genes and genes with transcriptional
start sites (TSSs) within a short distance of one another,
complicating interpretations of ChIP-seq results. To
avoid this, we classified 9,459 annotated genes that are
applicable for ChIP-seq analysis into four groups (Materi-
als and methods) according to their expression levels
determined by RNA-seq in RPKM values [21,25,26] (Fig-
ure 1a; RPKM is sequencing reads per kilobase of exon
per million mapped reads [26]). Our data demonstrated
that both RNA Pol II and H3K4me3 were highly elevated
near the TSSs of annotated genes. They also positively
correlated with gene expression level (Figure 1b, c). And
H3K36me3 was enriched downstream of the TSSs and
also positively correlated with expression level (Figure
1d). In contrast, H3K27me3 was negatively correlated
with gene expression, as expected for a repressive mark
(Figure 1e). These results are consistent with observa-
tions in human T cells [27] and mammalian ESCs [28].

Monovalent chromatin signature is prevalent in 
undifferentiated-cell-enriched bam testis
The coexistence of active H3K4me3 and repressive
H3K27me3 marks is detected in a large number of devel-
opmental regulator genes in mammalian ESCs [3,29,30]
and adult stem/progenitor cells [31,32]. These 'bivalent'
modifications are proposed to poise genes for rapid
induction during cellular differentiation to become differ-
ent cell lineages. However, the mechanisms that contrib-
ute to the bivalency of genes may be diverse under
different circumstances, and still remain unsolved at the
structural level [33].

To test whether bivalency also applies to the undiffer-
entiated cells of Drosophila testis, we first examined sev-
eral critical genes that regulate cellular differentiation in
the GSC lineage. The Enhancer of Zeste (E(z)) gene
encodes a PcG complex component that is highly
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expressed in undifferentiated cells, but abruptly down-
regulated upon differentiation initiation in spermato-
cytes. The co-existence of H3K27me3 and H3K4me3 was
not observed at the E(z) gene locus near the TSS. Instead,
we found only the active H3K4me3 mark at the E(z) gene
locus, enriched near the TSS (Materials and methods;

Figure 2a, b). The spermatocyte arrest (sa) gene, which
encodes a testis-specific homolog of TBP associated fac-
tor (tTAF), is turned on in spermatocytes. The tTAF gene
acts to antagonize PcG repression and regulate a cell-
type-specific transcription program for terminal differen-
tiation [17,34] (Figure 2b). In contrast to the E(z) gene, we

Figure 1 Summary of the ChIP-seq results using bam testis. (a) The four groups of genes were classified according to their RPKM value based on 
the RNA-seq results [21]. The numbers in brackets denote genes used for H3K36me3 (K36) analysis. *See Materials and methods for gene selection 
criteria. Antibodies used for ChIP-seq were: (b) anti-RNA Pol II (Pol II); (c) anti-H3K4me3 (K4); (d) anti-H3K36me3 (K36); and (e) anti-H3K27me3 (K27). 
Enrichment of each histone modification and RNA Pol II is plotted over a -3-kb to +3-kb region with respect (w.r.t.) to genes' TSSs, except for K36, for 
which a -5-kb to +5-kb region is used.
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found that the chromatin of the sa gene locus was only
associated with the repressive H3K27me3 mark near its
TSS in bam testis (Figure 2c). More examples of the his-
tone modification patterns of differentially expressed
genes are shown in Additional file 3. These data suggest
that developmental regulator genes in the germline lin-

eage may be associated with a 'monovalent' modification
(either H3K4me3 or H3K27me3 mark) in undifferenti-
ated cells of bam testis.

To test the prevalence of monovalency at a genome-
wide scale, we analyzed all 9,459 annotated genes that are
applicable for ChIP-seq analysis (Materials and methods).

Figure 2 Monovalent chromatin signature is prevalent in undifferentiated cells of bam testis. (a) UCSC genome browser screenshot showing 
the H3K4me3 monovalency at the E(z) gene locus in undifferentiated cells. The read counts are labeled on the y-axis and the genomic region used to 
calculate the enrichment of modified histones (0 to +500 bp with respect to the TSS) is shaded in grey. (b) Transcription level of two representative 
monovalent genes, E(z) and sa, in bam and wild-type (wt) testis, respectively. According to the RNA-seq data, the RPKM for E(z) mRNA is four-fold higher 
in bam testis, and that for sa mRNA is 113-fold higher in wild-typetestis. (c) UCSC genome browser snapshot showing the H3K27me3 monovalency 
at the sa gene locus in undifferentiated cells. The read counts are labeled on the y-axis and the genomic region used to calculate the enrichment of 
modified histones (0 to +500 bp with respect to the TSS) is shaded in grey. (d) Scatter plot for H3K4me3 and H3K27me3 enrichment of all annotated 
genes. A common window (0 to +500 bp with respect to the TSS) was used to calculate H3K4me3 and H3K27me3 reads. The blue dashed lines indicate 
the statistical cutoff line - P < 0.05 in a 1-kb window per 1 million total reads. Gene numbers in each quadrant are labeled in black. Differentiation genes 
are defined as those with RPKM in bam testis < 0.5 and RPKM in wild-type testis ≥ 1 and are labeled as red dots. Among the 1,894 differentiation genes, 
1,304 genes are applicable for ChIP-seq analysis (Materials and methods). Up-regulated genes are defined as those with RPKM in wild-typetestis/bam 
testis ≥ 2 (if the RPKM in bam testis < 0.5, the value is raised to 0.5) and are labeled as green inverted triangles. Among the 3,377 up-regulated genes, 
2,188 genes are applicable for ChIP-seq analysis (Materials and methods).
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We identified 3,360 genes that were enriched with a sig-
nificant level of active H3K4me3 and 1,631 genes
enriched significantly with repressive H3K27me3 (P <
0.05; Materials and methods). Surprisingly, only 91 genes
were associated with both H3K4me3 and H3K27me3
marks (Figure 2d).

Although we could validate several bivalent genes using
independent ChIP followed by real-time PCR analysis
(Additional file 4), we found that, different from the silent
status of bivalent genes in ESCs [3], 56% of the bivalent
genes in bam testis were actively expressed (Additional
file 5; the RPKM cutoff for expressed genes is based on
Additional file 6), indicating that the bivalency may be a
result of temporally and/or spatially regulated gene
expression, as has been reported in Xenopus embryos
[35,36]. One particular example is the benign gonial cell
neoplasm (bgcn) gene (Additional file 4b), whose product
acts with the Bam protein in the transition of germ cells
from the proliferative to the differentiating stage [18]. We
reasoned that the bivalency at the bgcn gene may have
resulted from mixed cell types in bam testes. The active
status of bgcn in spermatogonial cells is likely associated
with the enriched active H3K4me3 mark, whereas its
repressive status in GSCs and somatic cells may contrib-
ute to the detection of the repressive H3K27me3 mark.
Consistent with this, we found that none of the 91 puta-
tive bivalent genes we identified in bam testis retained
their bivalency in the cultured Drosophila cells, including
S2, BG3 and D23 cell lines [37] (Additional files 5 and 7;
Materials and methods). Although the culture cells were
not synchronized, they were more pure than tissues with
mixed types and staged cells. In addition, we performed
Gene Ontology analysis to search for significantly
enriched gene categories in both molecular function and
biological process terms (Materials and methods). Sur-
prisingly the only category that is significantly enriched
(P < 0.01) for these 91 putative bivalent genes is the 'mul-
ticellular organismal process' category, further suggesting
that the apparent bivalency may come from different cells
and is not specifically involved in cellular differentiation
during spermatogenesis.

To test the prevalence of monovalency for all differenti-
ation genes in testis, we compared the expression profile
of fully differentiated wild-type testis with undifferenti-
ated bam testis using the RNA-seq data [21]. We found
1,894 genes that were silent in the undifferentiated-cell-
enriched bam testis (RPKM < 0.5) but were turned on in
the differentiated cells from wild-type testis (RPKM ≥ 1).
We defined these genes as differentiation genes (the
RPKM cutoffs are based on Additional file 6). Among
these 1,894 differentiation genes, 1,304 are applicable for
ChIP-seq analysis (Materials and methods). Examination
of the histone modifications on these 1,304 genes
revealed that only 18 genes were associated with both

active H3K4me3 and repressive H3K27me3 in bam testis
(Figure 2d; Additional file 5), whereas 448 were associ-
ated with only H3K27me3, 48 were associated with only
H4K4me3 and 790 were not associated with either of
these modifications. We also checked all genes that are
up-regulated at least two-fold in wild-type testis, regard-
less of their expression level in bam testis (RPKM in wild-
type testis/bam testis ≥ 2). We found 3,377 genes that fall
into this category, including all differentiation genes.
Among these 3,377 up-regulated genes, 2,188 are applica-
ble for ChIP-seq analysis. We analyzed the H3K27me3
and H3K4me3 enrichment of these genes and found only
25 genes enriched with both histone marks (Figure 2d).
These results indicate that most differentiation genes in
undifferentiated-cell-enriched testis are marked by either
a monovalent chromatin signature or no modification
(H3K4me3 or H3K27me3), which is very different from
the modification patterns in mammalian ESCs [3] or pro-
genitor cells [32]. Consistent with our findings, previous
studies demonstrated the paucity of bivalent domains in
fly embryos, which contain progenitor cells mainly for
somatic tissues [38]. In summary, our results reveal that
monovalent modification is a prevalent chromatin signa-
ture of differentiation genes in undifferentiated-cell-
enriched Drosophila testis.

Most genes are unpoised in the undifferentiated-cell-
enriched bam testis
For the purpose of discussion here, we use 'poised' to
describe the prepared status of a gene for transcription
[3,24,39-42], which is associated with the promoter prox-
imal binding of RNA Pol II at a 'paused' status [43-49]
and/or with active histone modification marks [12,32].
Previous studies in mammalian ESCs [12] and Drosophila
embryos [39] have suggested that many differentiation
genes are unexpressed yet have paused RNA Pol II associ-
ated with their promoters, in order to stay at a poised
state ready for robust transcription upon developmental
stimuli. For example, more than 13% of the ectodermal
differentiation genes were repressed but have paused
RNA Pol II in the Toll10b mutant Drosophila embryos, in
which all cells are transformed to the mesodermal fate
[39]. Here we examined whether paused Pol II is also
prevalent in the undifferentiated-cell-enriched male
gonads. Surprisingly, we found only 63 (4.8%) of the 1,304
differentiation genes were bound by Pol II (P < 0.05) in
undifferentiated-cell-enriched bam testis (Figure 3a).
These data indicate that most genes that are silent in
undifferentiated cells (RPKM in bam testis <0.5) but
turned on upon differentiation (RPKM in wild-type testis
≥ 1) remained at an unpoised status in undifferentiated
cells.

On the other hand, analyses of the expression levels of
all genes with significant Pol II binding (P < 0.05) demon-
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strated that approximately 95% of genes (3,796 genes)
that are enriched with Pol II (4,008 genes) were actively
expressed (RPKM in bam testis ≥ 1; Figure 3b). Only 5%
of Pol II-enriched genes (212 genes) were expressed at
very low to undetectable levels (RPKM <1), which may be
candidate poised genes in this cell lineage but only com-
prised 2% of all genes analyzed (9,459 genes). Interest-
ingly, we found that a subset of these potentially poised
genes (43%; 92 genes in Additional file 4b) are up-regu-
lated upon differentiation (RPKM in wild-type testis/bam

testis ≥ 2), with the significantly (P < 0.01) enriched ontol-
ogy category 'transcription regulator activity'. In contrast,
75 genes (35%) remain silent throughout spermatogenesis
(RPKM <0.5 in both wild-type and bam testis). Consis-
tent with their low or undetectable expression (RPKM
<1) in bam testis, we found that only 28 out of the 212
(13.2%) potentially poised genes are enriched with
H3K36me3, a transcription elongation epigenetic mark
[27]. Furthermore, we compared these 92 putative poised
genes with the 91 potential bivalent genes in bam testis.

Figure 3 Most genes are unpoised in undifferentiated cells of bam testis. (a) Scatter plot for H3K4me3 and RNA Pol II enrichment of all annotated 
genes. All labels and the definition of up-regulated genes are the same as in Figure 2d, except that a -250 to +250-bp window with respect to the TSS 
was used to calculate reads for RNA Pol II. (b) Scatter plot for RNA Pol II enrichment and RPKM values for all annotated genes. All labels are the same 
as in Figure 2d, except that RPKM ≥ 1 is used as a cutoff for expressed genes. (c) RPKM values for genes that have three absent calls (3A) in the mi-
croarray. (d) Analysis of the RPKM values of transcripts demonstrates that genes with stalled Pol II are weakly transcribed genes. Genes that show an 
active Pol II profile are expressed at significantly higher levels. Genes with no Pol II profile are expressed at significantly lower levels. The box represents 
the 25th and 75th percentiles, with the 50th percentile as a black bar. The whiskers refer to outliers that are at least 1.5× the interquartile range from 
the box. The y-axis represents the RPKM value.
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Surprisingly, only two genes (CG8517 and CG13611)
overlapped. These data demonstrate that different from
what has been reported in mammalian ESC lineages [10-
12], most differentiation genes stay at an unpoised status
before exposure to the developmental signals in the
undifferentiated-cell-enriched Drosophila bam testis.

In addition to RNA Pol II, H3K4me3 is another well-
established mark for active chromatin status, and is asso-
ciated with many unexpressed but poised genes in ESCs
[12]. In our analysis, we found 95.4% of all H3K4me3-
enriched genes (3,360 genes) are actively expressed (3,204
genes in Additional file 8). This result further confirmed
that most genes in undifferentiated-cell-enriched Droso-
phila testis are either actively expressed or silent, without
an intermediate poised status.

Direct comparison of RNA-seq and microarray data reveals 
genes with low expression levels may contribute to the 
paused Pol II phenomenon
One explanation for the difference in our results from
previous publications is that previous analysis of gene
expression mainly relied on microarray studies, which
may not be sensitive enough to distinguish genes with
low expression levels from genes that are absolutely silent
[50]. Indeed, when we compared the gene expression pro-
files in bam testis determined by microarray versus RNA-
seq techniques, we found that 670 genes considered as
silent based on microarray analysis (three 'absent' calls in
all three biological replicates) were actually expressed
according to their RPKM values in the RNA-seq data set
(RPKM ≥ 1; Figure 3c). Approximately 24.8% of these
genes (107 of the 432 genes that are applicable for ChIP-
seq analysis among all 670 genes) had significant enrich-
ment of Pol II (P < 0.05) at their promoter regions. There-
fore, our results suggest that some of the 'poised' genes
may actually be expressed but below the detection
threshold in microarray analysis.

Since the Pol II antibody we used in our ChIP-seq
experiment recognizes both the initiating and elongating
(Ser5 phosphorylated) forms [12,24], we used the Pol II
ChIP-seq data to calculate the stalling index for each gene
([39] and Materials and methods). Using this assay, we
identified 695 genes that have paused Pol II at their pro-
moter regions in bam testis (Additional file 9a; Materials
and methods). Ontology analysis revealed significant
functional categories (P < 0.01) for these genes (Addi-
tional file 9b). However, approximately 93.0% (647 out of
695) of these genes were expressed (RPKM ≥ 1), albeit at
relatively low levels (Figure 3d).

Do different techniques contribute to the different features 
of the chromatin landscape?
There are two major differences between our work and
published studies in Drosophila or mammalian cells: first,

we used direct sequencing-based techniques (ChIP-seq
and RNA-seq) instead of hybridization-based techniques
(ChIP-chip and microarray); and second, we used a tissue
that is enriched with undifferentiated germ cells instead
of embryos [39], embryo-derived cell lines [51], or mam-
malian cells [12], which mainly comprise cells with
somatic fate. In order to make a more direct comparison
to address whether the difference is due to distinct tech-
niques or different cell types, we performed ChIP-seq and
RNA-seq analyses using the same cell type - Drosophila
S2 cells - that was used in a previous study [51].

We analyzed the chromatin status in Drosophila S2
cells using antibodies against RNA Pol II, H3K4me3,
H3K36me3 and H3K27me3 (Additional file 10; Materials
and methods). Sequencing depth analysis indicated that
most of these assays almost reached (Additional file 2e,g)
or reached (Additional file 2f,h) the detection saturation
plateau. For libraries that are not completely saturated,
the strongest peaks enriched with the corresponding
modified histones or Pol II should be detected first and
are therefore identified by our assays. Through analyzing
the ChIP-seq data, we identified 3,742 genes with
enriched active H3K4me3 and 2,095 genes with enriched
repressive H3K27me3 in S2 cells (P < 0.05; Materials and
methods). Among them, we found only 27 genes enriched
in both H3K4me3 and H3K27me3 (Figure 4a; Additional
file 7), indicating that bivalency is also not a prevalent
chromatin signature for genes in S2 cells. To compare the
ChIP-seq data with the gene expression level, we profiled
the S2 cell transcriptome using the RNA-seq method
(Materials and methods). We found that 25 out of the 27
(93%) bivalent genes in non-synchronized S2 cells are
actively expressed (RPKM ≥ 1), indicating that the biva-
lency may be a result of temporally regulated gene
expression during cell cycle. Our S2 cell data are consis-
tent with a previous report using fly embryos [38], where
the authors identified 4,893 H3K4me3- and 2,480
H3K27me3-enriched regions, with only 161 overlapping
regions. The even fewer bivalent genes in S2 cells (27
genes) than those in bam testis (91 genes) may reflect a
higher homogeneity of cultured cells than of dissected
tissues. We also identified 3,956 genes that have signifi-
cant binding of RNA Pol II at their promoter region (P <
0.05), and 5,281 genes that are unbound by Pol II (Figure
4b). We found that among all the Pol II-enriched genes,
93% are expressed genes (RPKM ≥ 1; Figure 4b). In con-
trast, only 260 genes that were expressed at very low to
undetectable levels (RPKM <1) have enriched Pol II bind-
ing at their promoter region; these genes comprise
approximately 6.6% of the entire Pol II-enriched genes
and 2.7% of the total genes analyzed (9,459 genes). Con-
sistently, more than 99.8% of H3K4me3-enriched genes
are actively expressed (3,720 genes out of 3,728 genes
with significant enrichment of H3K4me3 have RPKM
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values ≥ 1; Additional file 11). When we compared the
gene expression profiles in S2 cells determined by
microarray versus RNA-seq techniques, we found that
770 genes considered as silent based on microarray analy-
sis (two 'absent' calls in both biological replicates) were
actually expressed according to their RPKM values
(RPKM ≥ 1; Figure 4c) in the RNA-seq data set.

We next applied the ChIP-seq data using antibodies
against RNA Pol II to compute the stalling index of indi-

vidual genes. Through this assay, we identified 1,821
genes with stalled Pol II in S2 cells (Additional file 9a;
Materials and methods and [39]). We compared these
1,821 genes with the genes with promoter-proximal
enrichment of polymerase, which were identified in the
previous study using S2 cell [51]. In fact, approximately
86.2% genes with promoter-proximal enrichment of poly-
merase overlapped with the genes with stalled Pol II iden-
tified in our analysis (Additional file 9a), indicating that

Figure 4 Comparison of RNA-seq and ChIP-seq data using S2cells. (a) Scatter plot for H3K4me3 and H3K27me3 enrichment of all annotated 
genes. A common 0 to +500-bp window with respect to the TSS was used to calculate both H3K4me3 and H3K27me3 reads. The blue dashed lines 
indicate the statistical cutoff line - P < 0.05 in a 1-kb window per 1 million total reads. Gene numbers in each quadrant are labeled in black. (b) Scatter 
plot for RNA Pol II enrichment and RPKM values for all annotated genes. All labels are the same as in Figure 2d, except that RPKM = 1 is used as a cutoff 
for expressed genes. (c) The RPKM value for genes that have two absent calls (2A) in the microarray. (d) Analysis of the RPKM value of transcripts dem-
onstrates that genes with stalled Pol II are weakly transcribed genes. Genes that show an active Pol II profile are expressed at significantly higher levels. 
Genes with no Pol II profile are expressed at significantly lower levels. The box represents the 25th and 75th percentiles, with the 50th percentile as a 
black bar. The whiskers refer to outliers that are at least 1.5× the interquartile range from the box. The y-axis represents the RPKM value.
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the criteria we used to define genes with stalled Pol II is
consistent with previous studies. Ontology assays further
confirmed that the significant categories (P < 0.01) of
genes identified using either method are similar (Addi-
tional file 9c,d). Noticeably, compared to genes with
active Pol II, the genes with stalled Pol II have lower
expression levels (Figure 4d), although most (88.5%) of
them are actively expressed (RPKM ≥ 1). These results
suggest that Pol II binding correlates well with active gene
expression status. More sensitive techniques, such as
RNA-seq, can accurately detect transcript level for com-
parison with chromatin structure, in order to understand
how epigenetic mechanisms regulate gene expression. To
further confirm that our results are not algorithm-spe-
cific, we re-analyzed the data with an independent
method, the SICER software [52] (Materials and meth-
ods). This software uses different algorithms to identify
Pol II or modified histone-enriched genomic regions,
regardless of their associations with genes. The SICER
software has been used to identify bivalent domains in
multipotent hematopoietic stem cell lineages in mam-
mals [31,32]. Using SICER, we confirmed that most
H3K4me3- and H3K27me3-enriched regions are not
overlapping (data not shown) and therefore are monova-
lent in Drosophila bam testis and cultured S2 cells. Using
SICER, we also confirmed that most genes associated
with Pol II-enriched regions in these two samples are
actively expressed (data not shown).

Does cell type specificity dictate chromatin architecture?
One possible reason for the different chromatin features
identified in our data versus previously published mam-
malian studies is cell type differences. The bam testis we
used for ChIP-seq analysis is mainly enriched with tran-
sit-amplifying spermatogonial cells, and the chromatin
differences we found could come from the distinction
between transit-amplifying cells and bona fide stem cells.
Another possibility for such differences between undif-
ferentiated germ cell-enriched testis samples and ESCs is
that germ cells are part of a unilineage stem cell system,
but ESCs are pluripotent. Thus, in the germline lineage,
differentiation genes have a unidirectional switch from
silent to activated status during spermatogenesis,
whereas developmental genes in ESC lineages have multi-
directional switches during lineage-specific differentia-
tion. The bivalent signature of ESC genes may enable
more dynamic and refined activation upon perceiving
additional signals (Figure 5a). Indeed, a permanganate
footprint assay using early staged Drosophila embryos,
which are pluripotent, showed evidence of paused Pol II
at several genes. In contrast, there was no such evidence
when using S2 cells derived from older embryos, at which
stage the pluripotency may be lost [39]. Alternatively,
these differences may simply reflect distinctive features

between somatic cells and germ cells. Germ cells give rise
to gametes, which are the most 'immortal' cell type due to
their ability to produce the next generation of an entire
organism upon fertilization [53]. This requirement to
reset totipotency may distinguish germ cells from
somatic cells with regard to their chromatin features (Fig-
ure 5a).

Does species specificity dictate chromatin architecture?
The chromatin structure we observed in undifferentiated
germ cell-enriched bam testis may also apply to Droso-
phila S2 cells, raising another possibility that species dif-
ference should be considered. It has been demonstrated
that bivalent genes in mammalian ESCs are also enriched
with PcG activities [10-12]. These PcG components have
the capability to recruit DNA methyltransferases to
methylate DNA and silence gene expression in a more
permanent manner [54-56]. In contrast, the active
H3K4me3 mark placed by the TrxG complex [4-6] may
keep chromatin in a relatively open state by recruiting
RNA Pol II and initiating low level transcription to pre-
vent DNA methylation (Figure 5b). Indeed, many bivalent
domains in ESCs reside at the highly conserved non-cod-
ing elements, which are enriched with CpG islands and
potentiated for DNA methylation [3]. In contrast to
mammalian systems, the DNA methylase activity is
almost negligible in adult flies [57-60]. Therefore, differ-
entiation genes in Drosophila are not subject to a 'stable'
repression caused by DNA methylation as in the mam-
malian systems, which may promote more dynamic gene
regulation while rendering bivalency and paused RNA
Pol II status dispensable in Drosophila. Noticeably, recent
work in Xenopus embryos also demonstrated that active
H3K4me3 and repressive H3K27me3 regulate distinct
groups of genes in a spatially controlled manner. It will be
interesting to study monovalency versus bivalency during
animal development, as well as evolution.

Conclusions
Recent data have suggested two non-mutually exclusive
mechanisms of gene expression regulation, paused Pol II
and bivalent modifications, in mammalian ESCs and
other stem or progenitor cells. In these primitive cell
types, developmental regulators are characterized by
bivalent domains harboring both the H3K4me3 and
H3K27me3 marks [3]. These genes may also be bound by
paused Pol II, which may poise them for rapid induction
during differentiation or in response to developmental
and environmental stimuli [2,3,12]. Here our analysis of
undifferentiated-cell-enriched Drosophila bam testis, by
combining highly sensitive ChIP-seq and RNA-seq meth-
ods, indicates that most differentiation genes are not
enriched with the bivalent signature. In addition, these
genes are unpoised with no significant binding of paused
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Pol II. These data suggest that transcription of differenti-
ation genes in this system is mainly controlled at the Pol
II recruitment step but not at the elongation step. These
chromatin signatures we identified could reflect cell type
specificity, species specificity, or both.

Materials and methods
Fly strains and husbandry
Flies were raised using standard medium at 25°C unless
stated otherwise. The bam1/TM3 stock was obtained
from Bloomington Drosophila Stock Center. The bam114-

97/TM6B stock was a gift from Dr Margaret Fuller. The
bam1/bam114-97 testis was used for immunostaining with
antibodies against a germ cell-specific mark Vasa [61] and
a somatic cell-specific mark Traffic jam (Tj) [62] to dem-
onstrate that most of the cells in this tissue are germ cells
(Additional file 12).

Culturing S2 cells
The Drosophila S2 cells (ATCC, CRL-1963, Lot#5054622,
Manassas, VA, USA) were cultured following the manu-
facturer's protocol. Briefly, one vial of S2 cell stock was

Figure 5 Cartoons comparing ESCs and undifferentiated cells of bam testis. (a) During ESC differentiation, bivalent genes resolve into monova-
lent genes according to cell type specificity in somatic lineages. In the Drosophila male germline lineage, monovalent genes in undifferentiated cells 
may either retain their chromatin signature or switch to another pattern. Differentiation genes that are required for spermatogenesis require addition-
al activation mechanisms to turn on their expression robustly, in addition to the removal of the repressive H3K27me3 mark. (b) A potential molecular 
mechanism that renders the bivalency and poised status dispensable in the Drosophila germline stem cell lineage, due to the lack of endogenous 
DNA methylase activity. DNMT, DNA methyltransferase.
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taken from liquid nitrogen and thawed quickly at room
temperature. Once the cells were completely thawed, they
were transferred to a 25 cm2 flask (Corning, CLS430639-
20EA, Lowell, MA, USA) containing 5 ml of room tem-
perature complete Schneider's Drosophila medium
(GIBCO, #11720-034, Carlsbad, CA, USA; contains 10%
heat-inactivated fetal bovine serum (GIBCO #16140-
071)). After incubating at 25°C for 30 minutes, the S2 cells
were centrifuged at 1,000 rpm, the medium was removed
and the cells were transferred into a 25 cm2 flask (Corn-
ing, CLS430639-20EA) containing 5 ml of room tempera-
ture complete Schneider's Drosophila medium. The S2
cells were harvested at the exponentially growing stage
after incubating at 25°C for about 90 hours.

Microarray experiments and data analysis
Total RNA from approximately 200 pairs of bam (bam1/
bam114-97) fly testes was extracted using TRIzol (Invitro-
gen, #15596-018, Carlsbad, CA, USA) following the man-
ufacturer's instructions and the genomic DNA was
degraded using 2 Units of DNase I (Fermentas, #EN0521,
Glen Burnie, MD, USA) at 37°C for 20 minutes. Total
RNA from Drosophila S2 cells was extracted using the
Qiagen RNeasy Mini Kit (catalogue number 74014,
Valencia, CA, USA), and the genomic DNA was degraded
with RNase-Free DNase (catalogue number 79254). RNA
integrity was checked by gel electrophoresis (1% agarose).
Approximately 4 μg of total RNA from each biological
replicate were used to generate labeling probes to hybrid-
ize with the Affymetix GeneChip Drosophila Genome 2.0
Array according to the Affymetrix protocol. Three bio-
logical replicates were performed for bam testes and two
biological replicates for S2 cells.

Microarray hybridization was processed at the Genom-
ics Core Facility at the National Heart, Lung and Blood
Institute and the raw data were exported from the
Affymetrix Microarray Suite (MAS). The CEL files were
used for signal normalization with RMA as part of the
limma package from the Bioconductor R packages [63].
The 'Present (P)', 'Absent (A)' and 'Marginal (M)' calls
were retrieved with the code of 'eset' in the Affy package.

RNA-seq
Extraction of RNA using bam testes or S2 cells was per-
formed using similar methods as described for microar-
ray experiments. For the total RNA from bam testes (8.5
μg) and S2 cells (approximately 20 μg), we performed two
rounds of mRNA isolation using Dynabeads mRNA puri-
fication kit (Invitrogen, #610-06), according to the manu-
facturer's instructions. The final mRNAs were eluted in
13.5 μl 10 mM Tris-HCl (pH 7.5) and immediately used
to generate the first strand cDNA, using 4 μl random hex-
amers (ABI, #N8080127, Foster City, CA, USA) and
SuperScript II Reverse Transcription Kit (Invitrogen,

#18064-014) in a 30 μl final volume, following the manu-
facturer's instructions. The second strand cDNA was
generated with the following recipe: 10 μl 5× second
strand buffer (500 mM Tris-HCl pH7.8, 50 mM MgCl2,
10 mM DTT), 30 nmol dNTPs (Invitrogen, #18427-013),
2 Units of RNase H (Invitrogen, #18021-014) and 50
Units of DNA Pol I (Invitrogen, #18010-025). The entire
reaction mix was incubated at 16°C for 2.5 hours. The
double-stranded DNA (dsDNA) was purified with a
QIAquick PCR purification kit (Qiagen, #28106) and the
concentration was quantified using a Qubit fluorometer
(Invitrogen).

To generate sequencing libraries, about 300 ng dsDNA
from each sample was fragmented by sonication using
Bioruptor (Diagenode, UCD-200-TM-EX, Sparta, NJ,
USA) using medium power output for 30 minutes in ice
water. The resulting DNA fragments were analyzed by
agarose gel to verify they were within the approximately
100 to 300 bp size range. Sequencing libraries were pre-
pared as follows: end-repair (DNA end-repair kit from
Epicenter, #ER0720, Madison, WI, USA); A-tailing (300
ng dsDNA, 5 μl Thermo buffer, 10 nmol dATP, 15 Units
of Taq polymerase, at 70°C for 30 minutes); Solexa adap-
tor ligation (300 ng dsDNA, 4 μl DNA Ligase buffer, 1 μl
Solexa adaptor mix, 3 ul DNA Ligase, at 70°C overnight);
PCR (98°C 10 s, 65°C 30 s, 72°C 30 s for 16 cycles; then
additional 72°C for 5 minutes) amplification with adaptor
primers and size selection (200 to 400 bp). Then the
library dsDNA for S2 cells was used on an Illumina
Genome Analyzer II at a concentration of 10 ng per lane.

We obtained 20,041,035 and 9,780,523 total reads from
an Illumina Genome Analyzer II for bam testis and S2
cell samples, respectively. And 10,163,916 (bam testis)
and 6,263,318 (S2 cell) unique and non-redundant reads
were used for downstream data analysis.

The Gene Expression Omnibus accession number for
the raw and analyzed RNA-seq data is [GEO:GSE19325].

Comparison of microarray results with RNA-seq data
To compare the RPKM value from RNA-seq data with
microarray results, we first retrieved 12,728 Drosophila
genes from the Ensembl database, which also have
probe(s) in the Affymetix GeneChip Drosophila Genome
2.0 Array. Genes with multiple probes were filtered out if
different probes gave inconsistent 'Present (P)' or 'Absent
(A)' calls. We then analyzed the RPKM distribution for
genes with all 'Absent' calls or all 'Present' calls in
microarray datasets, for both bam testis and S2 cell sam-
ples.

The histograms were generated using the 'hist' function
in the R programming environment (R version 2.5.0 [64]).
To calculate the log2 RPKM values of individual genes, all
their original RPKM values were added a pseudo-count of
1.
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Chromatin immunoprecipitation
For each modified histone and Pol II ChIP experiment,
we dissected approximately 200 pairs of bam testes in
cold phosphate-buffered saline (PBS) and grouped them
in 200 μl PBS that contained protease inhibitor (Roche
complete mini, #11836153001, Nutley, NJ, USA) and 0.5
mM phenylmethanesulfonyl fluoride (PMSF; MP Bio-
medicals, #195381, Solon, OH, USA). Approximately
1,000 cells could be extracted from one bam testis. We
then added 5.5 μl 37% fresh formaldehyde (Supelco,
#47083-U, Bellefonte, PA, USA) and incubated at 37°C for
15 minutes. The testes were washed twice with 450 μl
cold 1× PBS (with inhibitors and PMSF). Then 200 μl lysis
buffer (50 mM Tris-HCl, pH7.6, 1 mM CaCl2, 0.2% Triton
X-100, 5 mM butyrate, 1× protease inhibitor cocktail, and
0.5 mM fresh PMSF) was added and the tissues were
homogenized thoroughly followed by incubation at room
temperature for 10 minutes. Chromatin was sheared into
approximately 200-bp fragments by sonication using
Microtip (Misonix, Inc., Microson XL-2000, Farm-
ingdale, NY, USA) with the following procedure: 4 s at
power 20, rest for 50 s, 4 to 5 times, followed by spinning
at 14k rpm for 10 minutes at 4°C. The chromatin was
diluted 10× with RIPA buffer (10 mM Tris, pH7.6, 1 mM
EDTA, 0.1% SDS, 0.1% Na-Deoxycholate, 1% Triton X-
100, with protease inhibitors and PMSF) and 50 μl of this
dilution was reverse cross-linked with 0.25 M NaCl for 2
hours at 65°C and used as input for real-time PCR analy-
sis.

We washed 40 μl of Dynabeads Protein A (Invitrogen,
#100.01D) with 600 μl 1× PBS. We then added 100 μl 1×
PBS with 4 μg antibody and incubated the antibody-Pro-
tein A beads mixture at room temperature for 40 minutes
with occasional tapping. After the unbound antibody was
removed using the manipulator (Invitrogen, DYNAL
MPC-S), 1 ml of the chromatin extract was added to the
beads and the mixture was rotated at 4°C overnight. The
beads were then washed twice with 1 ml RIPA buffer,
twice with 1 ml RIPA buffer containing 0.3 M NaCl, once
with LiCl wash buffer (0.25 M LiCl, 0.5% NP40, and 0.5%
sodium deoxycholate), once with 1 ml TE (10 mM Tris-
HCl, pH 8.0 and 1 mM EDTA) containing 0.2% Triton X-
100, and once with 1 ml TE. The beads were then sus-
pended in 100 μl 1× TE containing 3 μl 10% SDS and 5 μl
20 mg/ml proteinase K, followed by incubation at 65°C
overnight. After the supernatant was collected, the beads
were washed once more with 100 μl TE with 0.5 M NaCl.
The supernatant from this wash was combined with the
previous supernatant. The combined samples were
treated by Phenol/Chloroform extraction, salt/EtOH pre-
cipitation, and dissolved in 50 μl 1× TE. The products
were either used for real-time PCR analyses or processed
for Solexa sequencing according to the established proto-
col. Antibodies used include those against H3K4me3

(Abcam, #ab8580, Cambridge, MA, USA), H3K27me3
(Millipore, #07-449, Billerica, MA, USA), H3K36me3
(Abcam, #ab9050), H3 (Abcam, #ab1791) and RNA Pol II
(Abcam, ab5408).

ChIP experiment using S2 cells
Exponentially growing S2 cells were harvested and dis-
solved in digestion buffer (50 mM Tris-HCl, pH7.6, 1 mM
CCl2, 0.2% Triton X-100, 5 mM butyrate, 1× protease
inhibitor cocktail and 0.5 mM PMSF). Chromatin was
prepared and ChIP-seq experiments were performed as
described previously [27] with antibodies against Pol II
(Abcam, #ab5408), H3K4me3 (Abcam, #ab8580),
H3K27me3 (Millipore/Upstate, #07-449), and H3K36me3
(Abcam, #ab9050).

Solexa pipeline analysis
The 25-bp sequencing reads were obtained from the Illu-
mina Genome Analyzer pipeline. All reads were aligned
to the Drosophila genome (dm3) using the ELAND (Effi-
cient Local Alignment of Nucleotide Data) software,
allowing up to two mismatches with the reference
sequence. Only uniquely mapped reads were retained.
For multiple identical reads, at most three copies were
retained to reduce the possibility of biases from PCR
amplification. The output of the Genome Analyzer pipe-
line was converted to browser extensible data (BED) files.
The wig files used for visualization on the UCSC browser
were generated from the uniquely mapped reads using a
4-bp window and 160 bp as the DNA fragment size, as
previously described [27]. The size of the DNA fragment
was determined by the distance from the 5' to the 3' peak
of the mapped reads, as shown in Additional file 13.

The Gene Expression Omnibus accession number for
the raw and analyzed ChIP-seq data is [GEO:GSE19325].

Defining genomic regions for analyzing modified histone 
and Pol II enrichment
To determine the regions used for modified histone and
Pol II occupancy of the annotated transcripts in Figure 1,
we first plotted each histone modification and Pol II using
the entire annotated transcripts that are applicable for
ChIP-seq analysis. Based on the overall enrichment plot,
we used the region from -250 to +250 bp (the TSS was
defined as 0) to calculate the Pol II enrichment of individ-
ual transcripts. A 0 to +500-bp window was used for
H3K4me3 and H3K27me3, and a +500 to 1,500-bp win-
dow was used for H3K36me3 enrichment calculations.
For genes with a transcript size longer than 1 kb, a +500
to +1,000-bp window was defined as the gene body
region to calculate the stalling index.

Drosophila genes used for ChIP-seq analysis
Drosophila genes used for ChIP-seq analysis were derived
from the UCSC database (April 2006/BDGP R5/dm3),
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which contained 14,058 genes and 21,243 transcripts.
The coordinates for these transcripts were downloaded
(August 2009) from the UCSC table browser [65]. Com-
pared to human and mouse genomes, the Drosophila
genome is more gene-dense, including many overlapping
genes and short distances between TSSs, which may lead
to incorrect conclusions from ChIP-seq analysis. To avoid
this, we chose transcripts for analysis using the following
three steps. First, exclude transcripts shorter than 500 bp
(transcript size is defined as the distance between the
annotated transcription start and end sites) because these
short transcripts will affect the promoter analysis for
H3K4me3 and H3K27me3. A total of 740 transcripts (736
genes) were excluded using this criterion. Second,
exclude overlapping transcripts from different genes
(Additional file 14) and transcripts that have short dis-
tances between their TSSs; 6,497 transcripts (4,535
genes) overlap with at least one other transcript, but
3,832 transcripts (2,555 genes) among them were useful
for promoter analysis (-250 to +250 bp, or 0 to +500 bp),
because the overlapping regions do not affect promoter
analysis of these genes. A total of 3,558 non-overlapping
transcripts (2,729 genes with opposite transcription
direction) have a distance between TSSs shorter than 400
bp, which will affect the Pol II promoter analysis (-250 to
+250 bp), and were thus excluded. Third, after removal of
certain transcripts using the above two criteria, 14,849
transcripts (9,459 genes) were retained for ChIP-seq pro-
moter analysis. In total, 7,799 genes were applicable for
stalling index analysis, and 6,400 genes for H3K36me3
enrichment analysis. Among these 9,459 genes, 2,612
have multiple transcripts, but only one transcript for each
was used for ChIP-seq analysis.

Choosing the dominant transcript for multi-isoform genes
For genes with multiple isoforms, we used the most abun-
dant one for the comparison between ChIP-seq and
RNA-seq data.
bam Pol II versus testis RPKM, and S2 Pol II versus cell RPKM
1, The dominant transcript was determined as that with
the highest number of Pol II ChIP-seq reads in the -250 to
+250-bp window with respect to the TSS region. If multi-
ple transcripts have the same number of reads in this
region, criterion 2 is used. 2, For transcripts that are lon-
ger than 1 kb, the dominant transcript was determined as
that with the highest number of ChIP-seq reads in the
gene body (+500 to +1,000-bp with respect to the TSS).
For those transcripts that are shorter than 1 kb, the domi-
nant transcript was determined as that with the highest
number of ChIP-seq reads for H3K4me3 in the region 0
to +500 bp with respect to the TSS. If multiple transcripts
have the same numbers of reads, criterion 3 is used. 3,
The dominant transcript was determined as that with the

longest transcript. If all isoforms have the same length,
one was chosen randomly.
bam H3K4me3 versus H3K27me3, bam H3K4me3 versus testis 
RPKM, S2 cell H3K4me3 versus H3K27me3, and S2 H3K4me3 
versus RPKM
1, The dominant transcript was determined as that with
the highest number of H3K4me3 ChIP-seq reads in the
region 0 to +500 bp with respect to the TSS. If multiple
transcripts have the same number of reads, criterion 2 is
used. 2, For transcripts that are longer than 1.5 kb, the
dominant transcript was determined as that with the
highest number of ChIP-seq reads for H3K36me3. For
transcripts that are shorter than 1.5 kb, and thus are not
applicable to calculate H3K36me3 reads, the dominant
transcript was determined as that with the highest num-
ber of ChIP-seq reads for Pol II in the region -250 to +250
bp with respect to the TSS. If multiple transcripts have
the same number of reads, criterion 3 is used. 3, The
dominant transcript was determined as that with the lon-
gest transcript. If all isoforms have the same length, one
was chosen randomly.
bam H3K36me3 versus testis RPKM, and S2 cell H3K36me3 
versus RPKM
1, For the 6,400 genes that have at least one transcript
longer than 1.5 kb, the dominant transcript was deter-
mined as that with the highest number of H3K36me3
ChIP-seq reads in the region +500 to +1,500 bp with
respect to the TSS. If multiple transcripts have the same
number of reads, criterion 2 is used. 2, The dominant
transcript was determined as that with the highest num-
ber of ChIP-seq reads for H3K4me3 in the region 0 to
+500 bp with respect to the TSS. If multiple transcripts
have the same number of reads, criterion 3 is used. 3, The
dominant transcript was determined as that with the lon-
gest transcript. If all isoforms have the same length, one
was chosen randomly.

Comparison of ChIP-seq results with the RNA-seq data
To generate the plots in Figure 1, we retrieved annotated
Drosophila genes from the Ensembl database for ChIP-
seq analysis. We classified them into silent and expressed
genes according to RPKM value (genes with RPKM = 0
were classified as the silent group, and genes with RPKM
≥ 1 were classified as the expressed group). The expressed
group was further classified into low, moderate and high
groups based on RPKM values. The coordinates of these
transcripts were downloaded from the UCSC table
browser [65]. The read density was calculated in a 5-bp
window across the genome.

Comparison of our ChIP-seq data with the published ChIP-
chip data
We compared our 91 bivalent genes in bam testis with the
ChIP-chip data using BG3 and D23 cells [37]. We first
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downloaded both the H3K4me3 and H3K27me3 sgr files
from the NCBI website. We retained the probes whose
ChIP/input hybridization intensity ratios are ≥ 2, to be
consistent with the authors' definition of enriched
regions. We then mapped the probes to the promoter
regions (0 to +500 bp) of our 91 bivalent genes. For BG3
cells, we found 6 out of the 91 bam testis bivalent genes
contained an enriched H3K4me3 signal; and 4 of these 91
bivalent genes contained an enriched H3K27me3 signal.
However, none of these 91 bivalent genes is enriched with
both H3K4me3 and H3K27me3 in BG3 cells. Similarly,
for D23 cells, 5 and 11 out of these 91 bam testis bivalent
genes contained enriched H3K4me3 and H3K27me3 sig-
nals, respectively. Again, none of these 91 bivalent genes
is enriched with both H3K4me3 and H3K27me3 in D23
cells.

We also checked the ChIP-on-chip data using Droso-
phila embryos [38] and found 4,893 H3K4me3 and 2,480
H3K27me3 enriched regions. However, only 161 of them
overlap with each other. We then compared the 91 biva-
lent genes we identified in bam testis with these 161 biva-
lent regions in embryos. From this comparison, we found
only two genes (CG4637 and CG9610) for which the pro-
moter region (0 to +500 bp) overlaps two bivalent regions
in embryos (chr3R: 18965718-18967662 and chr3R:
4158335-4159501).

Determination of the P-value of enrichment of ChIP-seq 
reads within a 500-bp window
Since we used a 500-bp window to detect enrichment of
Pol II and histone modifications (for example, active
H3K4me3 and repressive H3K27me3), a sequencing read
count threshold was chosen according to the Poisson dis-
tribution, which distributes the total and unique reads
randomly across the Drosophila genome that can be
mapped. For every 500-bp window with read number
ranging from 1 to 99, the P-value was calculated. The
threshold was chosen as the minimal number of reads
that reached a significant enrichment compared to the
random distribution (that is, P < 0.05). For example, for
the total 1,342,075 reads of anti-Pol II ChIP-seq in bam
testis, a 500-bp window containing 11 read counts has a
P-value of 0.03, which passes the threshold P-value of ≤
0.05. We then set the threshold of significant enrichment
within a 500-bp window in this data set to be 11 read
counts.

Analysis of the RNA Pol II stalling index
To analyze the RNA Pol II stalling index, we modified a
method that was adapted from published work [39,66].
Basically, the stalling index reflects differential Pol II
binding at the promoter region versus the gene body
region. Therefore, we defined the -250 to +250-bp region

around the TSS as the promoter region (with respect to
the TSS), and the +500 to +1,000-bp region (with respect
to the TSS) as the gene body region. To calculate the stall-
ing index, we first counted the total Pol II reads at the
promoter region and at the gene body region. A stalling
index was defined as the ratio of total reads in the pro-
moter region divided by the total reads in the gene body
region. Based on the stalling index, we classified genes
into active, stalled or no Pol II categories based on the fol-
lowing criteria: active Pol II genes, stalling index ≤ 3 and
significant Pol II enrichment (P < 0.05); stalled Pol II
genes, stalling index ≥ 5 and significant Pol II enrichment
(P < 0.05); no Pol II genes, no significant Pol II enrich-
ment (P > 0.05).

Scatter plot analysis
The scatter plots delineate comparisons of different chro-
matin modifications in bam. All plots were generated in
the R programming environment (R version 2.5.0 [64]).
Transformation to the log value was used to compare
chromatin modifications with RPKM values.

Box plot analysis
The distribution of gene expression level was analyzed
using box plots in the R programming environment (R
version 2.5.0 [64]). The box represents the 25th and 75th
percentiles, with the 50th percentile as a black bar. The
whiskers refer to outliers that are at least 1.5× the inter-
quartile range from the box. The y-axis represents the
RPKM value.

Identification of Pol II or modified histone-enriched regions 
using SICER
To identify the significantly enriched regions, we used
SICER software [52] with the following parameters: win-
dow size = 200 bp, gap size = 0 bp and E-value = 100 for
Pol II and H3K4me3; window size = 400 bp, gap size = 0
bp and E-value = 100 for H3K27me3 and H3K36me3.
The reason we do not allow any gap is due to the density
of genes in the Drosophila genome.

Sequencing depth analysis
To analyze the sequencing depth of ChIP-seq, we first
shuffled the reads and their corresponding genomic loci,
then extracted subsamples (2.5%, 5%, 7.5%, and so on
until 100% of the total unique reads), and then identified
the enriched regions in each subsample using SICER soft-
ware as described previously. The E-value was increased
from the first subsample (E-value = 3) to the last subsam-
ple (E-value = 120) by an increment of 3. We then plotted
the correlation between subsamples and the enriched Pol
II or modified histones in the corresponding regions, as
shown in Additional file 2.
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Gene Ontology assay
The gene function ontology analyses were performed
using the DAVID 2008 informatics tools [67], based on
the Gene Ontology Consortium [68]. All Ensembl anno-
tated genes were used as a background comparison. Two
particular Gene Ontology annotations (molecular func-
tion and biological process) were analyzed with a cutoff P
value of < 0.01.

Additional material
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mapped reads; sa: spermatocyte arrest; TrxG: Trithorax group; TSS: transcrip-
tional start site.

Authors' contributions
QG, SE, GW, KC and XC performed the experiments; QG and DS analyzed the
data; QG, DS, KZ and XC wrote the paper.

Acknowledgements
We thank Caitlin Choi and Ankit Vartak for technical assistance with testis dis-
section. We also thank Chen lab members for their critical reading and insight-
ful suggestions. The gene expression profiling using microarrays was 
performed by the Genomics Core Facility of the National Heart, Lung and 
Blood Institute. This work is supported in part by research grant no. 05-FY09-88 
from the March of Dimes Foundation, the R00HD055052 NIH Pathway to Inde-
pendence Award from NICHD, the 49th Mallinckrodt Scholar Award from the 
Edward Mallinckrodt, Jr Foundation and the Johns Hopkins University start-up 
funding (XC), and support of Division of Intramural Research, the National 
Heart, Lung and Blood Institute, NIH (KZ).

Author Details
1Department of Biology, The Johns Hopkins University, 3400 North Charles 
Street, Baltimore, MD 21218, USA and 2Laboratory of Molecular Immunology, 
National Heart, Lung and Blood Institute, National Institutes of Health, 10 
Center Drive, Building 10, Bethesda, MD 20892, USA

References
1. Boyer LA, Mathur D, Jaenisch R: Molecular control of pluripotency.  Curr 

Opin Genet Dev 2006, 16:455-462.
2. Jaenisch R, Young R: Stem cells, the molecular circuitry of pluripotency 

and nuclear reprogramming.  Cell 2008, 132:567-582.
3. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, 

Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, 
Lander ES: A bivalent chromatin structure marks key developmental 
genes in embryonic stem cells.  Cell 2006, 125:315-326.

Additional file 1 Summary of unique and non-redundant reads in 
each sample.
Additional file 2 Sequencing depth of ChIP-seq using various anti-
bodies in both bam testis and S2 cell samples. Sequencing depth is ana-
lyzed by calculating the enriched regions for each subsample of the 
corresponding ChIP-seq experiment. The blue line represents the trend 
line. The x-axis of the plot indicates the percentage of subsample reads 
compared to the total unique reads, whereas the y-axis indicates the identi-
fied islands.
Additional file 3 More examples of the monovalent genes in bam tes-
tis. (a) Transcription levels of two representative H3K4me3-monovalent 
genes, Decondensation factor 31 (Df31) and Rpd3, and two representative 
H3K27me3-monovalent genes, don juan (dj) and fuzzy onion (fzo), in bam 
and wild-typetestis, respectively. (b-e) UCSC genome browser screenshot 
showing the active H3K4me3 monovalency at (b) Df31 and (c) Rpd3 genes, 
as well as the repressive H3K27me3 monovalency at (d) dj and (e) fzo genes, 
respectively. These examples are chosen based on their expression profiles 
in [21].
Additional file 4 Validation of bivalent genes using ChIP followed by 
real-time PCR analyses on five gene loci. (a) Rpl7A gene is used as a posi-
tive control for the active H3K4me3 enrichment and don juan (dj) is used as 
a positive control for the repressive H3K27me3 mark. All five bivalent genes 
have H3K4me3 and H3K27me3 at levels between the two controls. The y-
axis denotes the ChIP-ed DNA/input DNA percentage. Primer pairs used for 
PCR validation are shown as black boxes in each panel of (b-f ). Primer 
sequence information is in Materials and methods. (b-f) UCSC genome 
browser screenshots showing H3K4me3 and H3K27me3 enrichment at 
each of the following genes' loci: (b) bgcn; (c) Neurochondrin; (d) CG14834; 
(e) NPC2; and (f ) retn.
Additional file 5 Bivalent genes in undifferentiated cells in bam testis. 
In total, 91 bivalent genes were identified in undifferentiated cells in bam 
testis, including 18 differentiation genes (RPKM in bam < 0.5, in wild-type ≥ 
1), which are highlighted in red.
Additional file 6 Determination of the cutoff RPKM value for 
expressed genes by comparing microarray and RNA-seq data. The his-
togram shows the distribution of RPKMs for genes that are unambiguously 
called 'Present' in all three replicates from the gene expression microarray 
data. The RPKM values are adjusted by adding a pseudo-count of 1 prior to 
the logarithm. Threshold RPKM values of 0.5 and 1 are shown as dashed 
lines in blue and green, respectively. Approximately 99% of genes that are 
considered unambiguously 'Present' (3P calls) in the microarray data have 
an RPKM ≥ 1. Therefore, we assigned RPKM ≥ 1 as the cutoff for expressed 
genes. Conversely, only 0.4% of these genes have an RPKM < 0.5, and we 
assigned RPKM < 0.5 as the cutoff for absent or silent genes.
Additional file 7 Bivalent genes in Drosophila S2 cells. In total, 27 biva-
lent genes were identified in Drosophila S2 cells.
Additional file 8 Most genes enriched with H3K4me3 are actively 
expressed in bam testis. Scatter plot for H3K4me3 enrichment and RPKM 
values for all annotated genes. All labels are the same as in Figure 2d, 
except RPKM = 1 is used as a cutoff for expressed genes.
Additional file 9 Comparison of our ChIP-seq data with published 
ChIP-chip data. (a) Flow chart to compare our ChIP-seq data in bam testis 
and S2 cells with published ChIP-chip data in S2 cells [51] and embryos [39]. 
(b-d) Ontology analysis of (b) the 695 genes with stalled Pol II in bam testis, 
(c) the 1,821 genes with stalled Pol II in S2 cells, and (d) the 1,014 genes with 
promoter-proximal enrichment of Pol II [51].

Additional file 10 Summary of the ChIP-seq results using Drosophila 
S2 cells. (a) The four groups of genes were classified according to their 
RPKM value based on the RNA-seq results. The numbers in brackets denote 
genes used for H3K36me3 (K36) analysis. *See Materials and methods for 
gene selection criteria. (b-e) Antibodies used for ChIP-seq are: (b) anti-RNA 
Pol II (Pol II); (c) anti-H3K4me3 (K4); (d) anti-H3K36me3 (K36); and (e) anti-
H3K27me3 (K27). Enrichment of each histone modification and RNA Pol II is 
plotted over a -5 to +5-kb region with respect to the TSSs of the genes.
Additional file 11 Most genes enriched with H3K4me3 are actively 
expressed in S2 cells. Scatter plot of H3K4me3 enrichment and RPKM val-
ues for all annotated genes. All labels are the same as in Figure 2d, except 
RPKM = 1 was used as a cutoff for expressed genes.
Additional file 12 Immunostaining of the bam testis with antibodies 
against the germ cell marker Vasa and the somatic marker Traffic jam (Tj).
Additional file 13 Determination of the fragment size for ChIP-seq 
analysis, based on the distance between the 5' and 3' sequencing read 
peaks. All expressed genes (RPKM ≥ 1) were used for the modification level 
plots over a -2 to +2-kb window with respect to the TSS. (a-e) Antibodies 
used for ChIP-seq in bam testis were: (a) anti-RNA Pol II; (b) anti-H3K4me3; 
(c) anti-H3K36me3; (d) anti-H3K27me3; and (e) anti-H3.
Additional file 14 Cartoons showing overlapping transcripts from dif-
ferent genes that were retained for data analysis. The transcripts 
labeled by blue letters were retained for data analysis, in each situation 
shown for overlapping genes.

Received: 18 November 2009 Revised: 26 February 2010 
Accepted: 15 April 2010 Published: 15 April 2010
This article is available from: http://genomebiology.com/2010/11/4/R42© 2010 Gan et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Genome Biology 2010, 11:R42

http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S1.xls
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S2.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S3.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S4.jpeg
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S5.xls
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S6.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S7.xls
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S8.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S9.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S10.jpeg
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S11.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S12.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S13.tiff
http://www.biomedcentral.com/content/supplementary/gb-2010-11-4-r42-S14.tiff
http://genomebiology.com/2010/11/4/R42
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16920351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18295576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630819


Gan et al. Genome Biology 2010, 11:R42
http://genomebiology.com/2010/11/4/R42

Page 16 of 17
4. Ringrose L, Paro R: Epigenetic regulation of cellular memory by the 
Polycomb and Trithorax group proteins.  Annu Rev Genet 2004, 
38:413-443.

5. Byrd KN, Shearn A: ASH1, a Drosophila trithorax group protein, is 
required for methylation of lysine 4 residues on histone H3.  Proc Natl 
Acad Sci USA 2003, 100:11535-11540.

6. Klymenko T, Muller J: The histone methyltransferases Trithorax and 
Ash1 prevent transcriptional silencing by Polycomb group proteins.  
EMBO Rep 2004, 5:373-377.

7. Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, 
O'Connor MB, Kingston RE, Simon JA: Histone methyltransferase activity 
of a Drosophila Polycomb group repressor complex.  Cell 2002, 
111:197-208.

8. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, 
Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group 
silencing.  Science 2002, 298:1039-1043.

9. Ringrose L, Paro R: Polycomb/Trithorax response elements and 
epigenetic memory of cell identity.  Development 2007, 134:223-232.

10. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, 
Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young 
RA, Jaenisch R: Polycomb complexes repress developmental regulators 
in murine embryonic stem cells.  Nature 2006, 441:349-353.

11. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier 
B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, 
Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom 
DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, 
Young RA: Control of developmental regulators by Polycomb in human 
embryonic stem cells.  Cell 2006, 125:301-313.

12. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA: A chromatin 
landmark and transcription initiation at most promoters in human 
cells.  Cell 2007, 130:77-88.

13. Buszczak M, Spradling AC: Searching chromatin for stem cell identity.  
Cell 2006, 125:233-236.

14. Chen X: Stem cells: What can we learn from flies?  Fly (Austin) 2008, 2:.
15. Fuller MT, Spradling AC: Male and female Drosophila germline stem 

cells: two versions of immortality.  Science 2007, 316:402-404.
16. Fuller MT: Genetic control of cell proliferation and differentiation in 

Drosophila spermatogenesis.  Semin Cell Dev Biol 1998, 9:433-444.
17. Chen X, Hiller M, Sancak Y, Fuller MT: Tissue-specific TAFs counteract 

Polycomb to turn on terminal differentiation.  Science 2005, 
310:869-872.

18. Gonczy P, Matunis E, DiNardo S: bag-of-marbles and benign gonial cell 
neoplasm act in the germline to restrict proliferation during Drosophila 
spermatogenesis.  Development 1997, 124:4361-4371.

19. McKearin DM, Spradling AC: bag-of-marbles: a Drosophila gene required 
to initiate both male and female gametogenesis.  Genes Dev 1990, 
4:2242-2251.

20. Terry NA, Tulina N, Matunis E, DiNardo S: Novel regulators revealed by 
profiling Drosophila testis stem cells within their niche.  Dev Biol 2006, 
294:246-257.

21. Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X: Dynamic 
regulation of alternative splicing and chromatin structure in 
Drosophila gonads revealed by RNA-seq.  Cell Res 2010 in press.

22. Schones DE, Zhao K: Genome-wide approaches to studying chromatin 
modifications.  Nat Rev Genet 2008, 9:179-191.

23. Barski A, Zhao K: Genomic location analysis by ChIP-Seq.  J Cell Biochem 
2009, 107:11-18.

24. Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff 
N, Fisher AG, Pombo A: Ring1-mediated ubiquitination of H2A restrains 
poised RNA polymerase II at bivalent genes in mouse ES cells.  Nat Cell 
Biol 2007, 9:1428-1435.

25. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for 
transcriptomics.  Nat Rev Genet 2009, 10:57-63.

26. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and 
quantifying mammalian transcriptomes by RNA-Seq.  Nat Methods 
2008, 5:621-628.

27. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev 
I, Zhao K: High-resolution profiling of histone methylations in the 
human genome.  Cell 2007, 129:823-837.

28. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez 
P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, 
Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, 

Lander ES, Bernstein BE: Genome-wide maps of chromatin state in 
pluripotent and lineage-committed cells.  Nature 2007, 448:553-560.

29. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, 
Thomson JA: Whole-genome analysis of histone H3 lysine 4 and lysine 
27 methylation in human embryonic stem cells.  Cell Stem Cell 2007, 
1:299-312.

30. Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung WK, 
Shahab A, Kuznetsov VA, Bourque G, Oh S, Ruan Y, Ng HH, Wei CL: Whole-
genome mapping of histone H3 Lys4 and 27 trimethylations reveals 
distinct genomic compartments in human embryonic stem cells.  Cell 
Stem Cell 2007, 1:286-298.

31. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh TY, Watford 
WT, Schones DE, Peng W, Sun HW, Paul WE, O'Shea JJ, Zhao K: Global 
mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity 
in lineage fate determination of differentiating CD4+ T cells.  Immunity 
2009, 30:155-167.

32. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, Zhao K: Chromatin 
signatures in multipotent human hematopoietic stem cells indicate 
the fate of bivalent genes during differentiation.  Cell Stem Cell 2009, 
4:80-93.

33. Wang Z, Schones DE, Zhao K: Characterization of human epigenomes.  
Curr Opin Genet Dev 2009, 19:127-134.

34. Hiller M, Chen X, Pringle MJ, Suchorolski M, Sancak Y, Viswanathan S, 
Bolival B, Lin TY, Marino S, Fuller MT: Testis-specific TAF homologs 
collaborate to control a tissue-specific transcription program.  
Development 2004, 131:5297-5308.

35. Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, 
Stunnenberg HG, Veenstra GJ: A hierarchy of H3K4me3 and H3K27me3 
acquisition in spatial gene regulation in Xenopus embryos.  Dev Cell 
2009, 17:425-434.

36. Herz HM, Nakanishi S, Shilatifard A: The curious case of bivalent marks.  
Dev Cell 2009, 17:301-303.

37. Schwartz YB, Kahn TG, Stenberg P, Ohno K, Bourgon R, Pirrotta V: 
Alternative epigenetic chromatin states of polycomb target genes.  
PLoS Genet 6:e1000805.

38. Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, Tolhuis 
B, van Lohuizen M, Tanay A, Cavalli G: Functional anatomy of polycomb 
and trithorax chromatin landscapes in Drosophila embryos.  PLoS Biol 
2009, 7:e13.

39. Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, 
Young RA: RNA polymerase stalling at developmental control genes in 
the Drosophila melanogaster embryo.  Nat Genet 2007, 39:1512-1516.

40. Vernimmen D, De Gobbi M, Sloane-Stanley JA, Wood WG, Higgs DR: 
Long-range chromosomal interactions regulate the timing of the 
transition between poised and active gene expression.  EMBO J 2007, 
26:2041-2051.

41. Robinson R: Quiet and poised: "silent" genes accumulate transcription 
machinery.  PLoS Biol 2010, 8:e1000269.

42. Orford K, Kharchenko P, Lai W, Dao MC, Worhunsky DJ, Ferro A, Janzen V, 
Park PJ, Scadden DT: Differential H3K4 methylation identifies 
developmentally poised hematopoietic genes.  Dev Cell 2008, 
14:798-809.

43. Lee H, Kraus KW, Wolfner MF, Lis JT: DNA sequence requirements for 
generating paused polymerase at the start of hsp70.  Genes Dev 1992, 
6:284-295.

44. Core LJ, Lis JT: Paused Pol II captures enhancer activity and acts as a 
potent insulator.  Genes Dev 2009, 23:1606-1612.

45. Adelman K, Kennedy MA, Nechaev S, Gilchrist DA, Muse GW, Chinenov Y, 
Rogatsky I: Immediate mediators of the inflammatory response are 
poised for gene activation through RNA polymerase II stalling.  Proc 
Natl Acad Sci USA 2009, 106:18207-18212.

46. Song H, Kang C: Sequence-specific termination by T7 RNA polymerase 
requires formation of paused conformation prior to the point of RNA 
release.  Genes Cells 2001, 6:291-301.

47. Palangat M, Hittinger CT, Landick R: Downstream DNA selectively affects 
a paused conformation of human RNA polymerase II.  J Mol Biol 2004, 
341:429-442.

48. Sydow JF, Brueckner F, Cheung AC, Damsma GE, Dengl S, Lehmann E, 
Vassylyev D, Cramer P: Structural basis of transcription: mismatch-
specific fidelity mechanisms and paused RNA polymerase II with 
frayed RNA.  Mol Cell 2009, 34:710-721.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15568982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13679578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15031712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12408864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17185323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16625203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17632057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16630812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18820440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17446390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9813190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16272126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9334284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2279698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16616121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20440302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18250624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19173299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18037880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19015660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18516045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17603471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18371364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18371363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19144320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19128795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19299119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15456720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19758566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19758552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20062800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19143474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17994019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17380126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20076756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18477461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1737619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19605681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19820169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11318872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15276834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19560423


Gan et al. Genome Biology 2010, 11:R42
http://genomebiology.com/2010/11/4/R42

Page 17 of 17
49. Linn SC, Luse DS: RNA polymerase II elongation complexes paused after 
the synthesis of 15- or 35-base transcripts have different structures.  
Mol Cell Biol 1991, 11:1508-1522.

50. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert 
M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O'Keeffe S, Haas S, 
Vingron M, Lehrach H, Yaspo ML: A global view of gene activity and 
alternative splicing by deep sequencing of the human transcriptome.  
Science 2008, 321:956-960.

51. Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger 
J, Adelman K: RNA polymerase is poised for activation across the 
genome.  Nat Genet 2007, 39:1507-1511.

52. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W: A clustering 
approach for identification of enriched domains from histone 
modification ChIP-Seq data.  Bioinformatics 2009, 25:1952-1958.

53. Cinalli RM, Rangan P, Lehmann R: Germ cells are forever.  Cell 2008, 
132:559-562.

54. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van 
Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de 
Launoit Y, Fuks F: The Polycomb group protein EZH2 directly controls 
DNA methylation.  Nature 2006, 439:871-874.

55. Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, 
Baylin SB: PcG proteins, DNA methylation, and gene repression by 
chromatin looping.  PLoS Biol 2008, 6:2911-2927.

56. Negishi M, Saraya A, Miyagi S, Nagao K, Inagaki Y, Nishikawa M, Tajima S, 
Koseki H, Tsuda H, Takasaki Y, Nakauchi H, Iwama A: Bmi1 cooperates 
with Dnmt1-associated protein 1 in gene silencing.  Biochem Biophys 
Res Commun 2007, 353:992-998.

57. Richards EJ, Elgin SC: Epigenetic codes for heterochromatin formation 
and silencing: rounding up the usual suspects.  Cell 2002, 108:489-500.

58. Lyko F, Ramsahoye BH, Jaenisch R: DNA methylation in Drosophila 
melanogaster.  Nature 2000, 408:538-540.

59. Hung MS, Karthikeyan N, Huang B, Koo HC, Kiger J, Shen CJ: Drosophila 
proteins related to vertebrate DNA (5-cytosine) methyltransferases.  
Proc Natl Acad Sci USA 1999, 96:11940-11945.

60. Lyko F, Whittaker AJ, Orr-Weaver TL, Jaenisch R: The putative Drosophila 
methyltransferase gene dDnmt2 is contained in a transposon-like 
element and is expressed specifically in ovaries.  Mech Dev 2000, 
95:215-217.

61. Jaglarz MK, Howard KR: The active migration of Drosophila primordial 
germ cells.  Development 1995, 121:3495-3503.

62. Leatherman JL, Dinardo S: Zfh-1 controls somatic stem cell self-renewal 
in the Drosophila testis and nonautonomously influences germline 
stem cell self-renewal.  Cell Stem Cell 2008, 3:44-54.

63. Bioconductor R packages   [http://www.bioconductor.org]
64. R programming environment   [http://www.r-project.org]
65. UCSC Table Browser   [http://genome.ucsc.edu/cgi-bin/hgTables]
66. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K: 

Dynamic regulation of nucleosome positioning in the human genome.  
Cell 2008, 132:887-898.

67. DAVID 2008 informatics tools   [http://david.abcc.ncifcrf.gov]
68. Gene Ontology Consortium   [http://www.geneontology.org]

doi: 10.1186/gb-2010-11-4-r42
Cite this article as: Gan et al., Monovalent and unpoised status of most 
genes in undifferentiated cell-enriched Drosophila testis Genome Biology 
2010, 11:R42

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1705007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18599741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17994021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19505939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18295574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16357870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19053175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17214966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11909520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11117732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10518555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10906465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8582264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18593558
http://www.bioconductor.org
http://www.r-project.org
http://genome.ucsc.edu/cgi-bin/hgTables
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18329373
http://david.abcc.ncifcrf.gov
http://www.geneontology.org

	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results and discussion
	Summary of the ChIP-seq results in undifferentiated-cellenriched Drosophila testis
	Monovalent chromatin signature is prevalent in undifferentiated-cell-enriched bam testis
	Most genes are unpoised in the undifferentiated-cellenriched bam testis
	Direct comparison of RNA-seq and microarray data reveals genes with low expression levels may contribute to the paused Pol II phenomenon
	Do different techniques contribute to the different features of the chromatin landscape?
	Does cell type specificity dictate chromatin architecture?
	Does species specificity dictate chromatin architecture?

	Conclusions
	Materials and methods
	Fly strains and husbandry
	Culturing S2 cells
	Microarray experiments and data analysis
	RNA-seq
	Comparison of microarray results with RNA-seq data
	Chromatin immunoprecipitation
	ChIP experiment using S2 cells
	Solexa pipeline analysis
	Defining genomic regions for analyzing modified histone and Pol II enrichment
	Drosophila genes used for ChIP-seq analysis
	Choosing the dominant transcript for multi-isoform genes
	bam Pol II versus testis RPKM, and S2 Pol II versus cell RPKM
	bam H3K4me3 versus H3K27me3, bam H3K4me3 versus testis RPKM, S2 cell H3K4me3 versus H3K27me3, and S2 H3K4me3 versus RPKM
	bam H3K36me3 versus testis RPKM, and S2 cell H3K36me3 versus RPKM

	Comparison of ChIP-seq results with the RNA-seq data
	Comparison of our ChIP-seq data with the published ChIPchip data
	Determination of the P-value of enrichment of ChIP-seq
reads within a 500-bp window
	Analysis of the RNA Pol II stalling index
	Scatter plot analysis
	Box plot analysis
	Identification of Pol II or modified histone-enriched regions using SICER
	Sequencing depth analysis
	Gene Ontology assay

	Additional material
	Abbreviations
	Authors' contributions
	Acknowledgements
	Author Details
	References

