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Abstract

One of the important challenges to post-genomic biology is relating observed phenotypic alterations to the under-
lying collective alterations in genes. Current inferential methods, however, invariably omit large bodies of informa-
tion on the relationships between genes. We present a method that takes account of such information - expressed
in terms of the topology of a correlation network - and we apply the method in the context of current procedures
for gene set enrichment analysis.

Background
A central problem in cell biology is to infer functional
molecular modules underlying cellular alterations from
high throughput data such as differential gene, protein
or metabolite concentrations. A number of computa-
tional techniques have been developed that use expres-
sion for class distinction to identify, from among a
priori defined sets of functionally or structurally related
genes, those that correlate with phenotypic difference
(see, for example, Goeman and Buhlmann [1]). More
sophisticated approaches have used random forests to
capture nonlinear and complex information in expres-
sion profiles [2]; applied linear transformations to mea-
sure the discriminative information of genes [3]; and
combined information from multiple assessments [4].
One of the most widely used methods, gene set

enrichment analysis (GSEA) [5], ranks genes according
to their differential expression and then uses a modified
Kolmogorov-Smirnov statistic (weighted K-S test) as a
basis for determining whether genes from a prespecified
set (for example, Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathways or Gene Ontology (GO)
terms) are overrepresented toward the top or bottom of
the list, correcting for false discovery when multiple sets
are tested [6]. The central message of this paper is that
discovery depends strongly on the type of correlation

used, and we illustrate this point by elaborating on the
biological implications of two different cancer data sets.
GSEA uses a weighted Kolmogorov-Smirnov statistic
(WKS) to quantify enrichment. The weight is related to
the correlation with phenotype, essentially omitting
known network properties of gene sets. Here we take
such properties into account, as explained below. We
reserve the term WKS for describing GSEA, and refer to
our method, which integrates topological information, as
pathway enrichment analysis (PWEA), where a pathway
is defined as a pair of nodes connected by an uninter-
rupted set of intervening nodes and edges, such as those
found in protein-protein interaction networks, signal
transduction networks, and metabolic pathways. In this
paper we use KEGG pathways. Just as WKS represents a
conceptual and practical improvement over the K-S test,
we show in this paper that the inclusion of topological
weighting is not only a conceptual change in enrichment
analysis, but a substantial practical improvement.
Several recently introduced techniques, including

ScorePAGE [7], gene network enrichment analysis [8]
and Pathway-Express [9], incorporate concepts of gene
topology. ScorePAGE uses a topology-weighted cross-
correlation of time-dependent (or condition-dependent)
gene expression data to assign a significance value to a
priori defined KEGG metabolic pathways. Gene network
enrichment analysis first identifies a high-scoring tran-
scriptionally affected sub-network from a global network
of protein-protein interactions, and then identifies gene
sets that are enriched in the sub-network using a Fisher
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test. Pathway-Express contains in its scoring function a
term that increases the scores of the genes that are
directly connected to other differentially expressed
genes, which in turn produces a higher overall score for
predefined KEGG signaling pathways in which the dif-
ferentially expressed genes are localized in a connected
sub-graph. Other strategies that extract enriched func-
tional submodules [10,11] or paths [12] from protein-
protein interaction networks or other topological path-
ways without strict boundary (that is, identify only a
subset of networks without a priori gene set definition)
also take advantage of the topology.
Here we present a new and general method for incor-

porating disparate data into statistical methods used to
infer functional modules from a class distinction metric.
In order to fix ideas and compare with the most popular
method, we use differential expression to distinguish
phenotype and define a topological influence factor (TIF)
to weight the K-S statistic. The TIF, however, can just
as easily be used with other kinds of class distinctions as
data become available, and with other kinds of statistics.
The contributions of this paper are both methodologi-

cal and biological. The methodological contribution
consists of including known correlations among the
genes in a gene set in the weighting procedure. When
applied to cancer data sets we find that the inclusion of
longer-range correlations substantially improves sensitiv-
ity, with little or no loss of specificity. In particular for
colorectal cancer, PWEA and GSEA agree on 24 out of
25 pathways identified by GSEA, but PWEA identifies
an additional 10 pathways, 8 of which, including oxida-
tive metabolism of arachidonic acid, are supported by
evidence from the literature. For small cell lung carci-
noma, PWEA finds all 19 of the pathways identified by
GSEA, and an additional 14 highly plausible pathways,
including apoptosis, MAPK signaling pathway, Jak-
STAT signaling pathway, and the GnRH signaling
pathway.

Results
The topological influence factor
The goal of enrichment analysis is to discover sets of
related genes that correlate with differential behavior.
However, many such sets, including pathways and chro-
mosomal locations in linkage disequilibrium, have long
range correlations whose omission could affect conclu-
sions. Thus, in an established biochemical pathway,
nearest neighbor interactions are implicitly present in
standard analysis, but cross-talk between pathways is
missing, as is possible variation in correlation between
non-neighboring genes that might be identified by
genetic interactions, phylogenetic analysis and so on.
Here, we define the correlation between genes in a net-
work by an influence factor, Ψ. We constrain the

functional form of Ψ by assuming that the influence of
genes i and j on one another will drop as the ratio of
the shortest distance between them to their correlation,
the latter being obtained from variations in expression
over a set of conditions. In particular, we define the
mutual influence between two genes as:

 ij ijf  exp (1)

where fij = dij/|cij|, dij is the shortest distance between
genes i and j, and cij is the correlation based on their
expression profiles. If m is the total number of samples,
including both normal and disease samples, then the
Pearson correlation coefficient is:
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where ik is the expression level of gene i in sample j,
and si is the sample standard deviation of gene i. The
exponential form of Equation 1 is suggested by the
observed discriminative weight of each gene measured
by the machine learning algorithm introduced in Fujita
et al. [3]. It is reasonable to expect that only close
neighbors with strong correlations will contribute signif-
icantly to the score.
Since dij and |cij| are positive definite, and positive,

respectively, 0 < Ψij ≤ 1, and Ψ behaves in an obvious
and intuitive manner as shown in Figure S1 in Addi-
tional file 1. We further define the TIF of a gene i as
the average mutual influence that the gene imposes on
the rest of the genes in the pathway. In particular (see
Materials and methods):
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where n is the total number of genes connected by
paths starting at gene i. If TIFi is small, gene i fails to
affect the pathway and its abnormality can be eliminated
by genetic buffering (Additional file 1) or some other
effect (see Discussion and conclusions). Otherwise, the
gene could play an important role in perturbing the
functionality of the pathway. Although we apply TIF
only to KEGG pathways in this paper, its definition
allows application to a general network.

Controlling the magnitude of TIF
One shortcoming of Equation 2 is that the effect of a
gene on a few nearby and tightly correlated genes can
be washed out if the gene influences many other genes
weakly (see Discussion and conclusions). In order to
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avoid this difficulty, we define a filtering process (see
Materials and methods) to include only genes for which
Ψ is larger than a given threshold, a. From observing
the behavior of Ψ (Figure S2 in Additional file 1), a is
set to 0.05. The final TIF is written as:
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where Θ is the step function (see Materials and

methods) and N fijj
j i

n
  


  ln1 is the total

number of genes connected by paths starting at gene i
and for which Ψ is larger than a. We use TIF as a
weight rather than a statistic, that is, we use the TIF
scores of all genes.
There is no restriction on the type of statistic that TIF

can modify, although in this work we restrict our analy-
sis to a modification of WKS (that is, GSEA), as
described in Materials and methods. Please note that
the value of TIF in the following context is in the form
of 1 + TIF, to accommodate to the usage of the weight-
ing scheme in WKS (see Materials and methods). The
general comparison with three other gene set level sta-
tistical tests (that is, mean, medium and Wilcoxon rank
sum test as described by Ackermann and Strimmer
[13]), are shown in Table S4 in Additional file 1. In
most cases, TIF weighting led to higher sensitivity.

Test with synthetic random input
Rigorous performance evaluation of enrichment meth-
ods is difficult in the absence of a gold standard
[6,9,14]. At a minimum, however, we require that the
likelihood of inferring perturbed pathways from ran-
domly generated data be insignificant, and that the per-
formance of our method be comparable to that of other
methods. In our test, PWEA does not show biased P-
values in a sample generated by 500 random phenotype
shuffles of the small cell lung cancer dataset. The com-
parison with WKS and K-S tests is shown in Figure S3 in
Additional file 1. PWEA yields a uniform distribution of
P-values in a randomly generated null background, just as
do other proven approaches. In addition, as explained
below, our analyses of six test sets suggests that PWEA
has substantial sensitivity advantages with no loss of speci-
ficity compared with GSEA (Additional file 2).

Application to cancer datasets
Expression profiles for two human cancer/normal data-
sets - colorectal cancer and small cell lung cancer -
were extracted from NCBI Gene Expression Omnibus
(GEO) [15]. Of the 14 cancer types represented among

the KEGG pathways, these two are among those whose
currently available cancer expression data in the GEO
database have adequate sample size for statistical testing.

Case study I: colon cancer dataset
The dataset [GEO:GDS2609] [16] consists of 10 normal
and 12 early onset colorectal cancer samples. Since the
mutual influence (Equation 1) of two genes depends on
the correlation between their expression levels, the TIF
of a particular gene pair will differ from one data set to
the next, even though their topological relationship in a
pathway is invariant. For each data set, a TIF score is
assigned to all genes in every pathway. For the colon
cancer pathway dataset, the TIF averaged over all genes
in all 201 KEGG pathways is 1.06 ± 0.008.
In the remainder of this paper, we illustrate how the

use of TIFs can uncover relationships that would other-
wise be missed. As a general observation we note that
although the ten genes with highest TIFs over all KEGG
pathways (Table 1) do not always rank high in terms of
differential expression, their functional annotations in
GO and KEGG – carcinoma, calcium signaling, cell
adherent, cytokine receptor, metabolic system – are
nevertheless consistent with a role in cancer.
A more specific observation is the high TIF but low t-

score for the chemokine receptor CCR7 (Table 1). Its
ligands, CCL19 and CCL21, also have high TIF scores
(1.20 and 1.19, respectively). This finding is reinforced
by the biological relationship among the three in
immune reactions and lung disorders [17]. Indeed, both
receptor-ligand complexes are implicated in colon can-
cer, cell invasion and migration [18].
More generally, by weighting genes according to their

differential expression and longer range correlations,
sensitivity for discovering perturbed pathways in colon
cancer increases. In particular, we identified 34 pathways
using a false discovery rate (FDR) below 0.01 (see Mate-
rials and methods). We applied GSEA to the same data-
set and discovered 25 pathways, 24 of which were
among the 34 identified by PWEA (Table S1 in Addi-
tional file 1).
The only pathway identified by GSEA and not by

PWEA is the Adipocytokine signaling pathway. Poly-
morphism of adipokine genes such as LEPR can increase
the risk of colorectal cancer [19]. Although LEPR’s rela-
tively high TIF (1.15) indicates that it does perturb the
network, the pathway does not have a high overall sig-
nificance. PWEA may fail to discover this pathway due
to its incompleteness, lacking either edges or nodes,
which leads to many false ‘extrinsic’ genetic buffering
effects (see Discussion and conclusions). Ten additional
pathways found exclusively by PWEA are listed in Table
2, with independent evidence. Below, we discuss two
examples that are especially striking.
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Arachidonic acid oxidative metabolism pathway
Briefly, arachidonic acids (AAs) are essential fatty acids
that are released from membrane phospholipids by
phospholipase A2 in response to chemical or mechanical
signals at the cell surface. The hydrolyzed AAs initiate a
cascade of three signaling pathways that produce eicosa-
noids, a family of lipid regulatory molecules that

includes prostaglandins and thromboxanes (when AA is
a substrate for cyclooxygenase (COX)), various oxyge-
nated states of the leukotrienes (when AA is a substrate
for lipoxidase), and three types of P450 epoxygenase-
derived eicosanoids.
Each of these pathways - the COX sub-pathway, the

lipoxidase pathway and the epoxygenase pathway - have

Table 1 Ten highest TIF genes in the colorectal cancer dataset

Gene TIF t-score (P-
value)

KEGG annotation GO annotation (evidence codea)

SLC25A5 1.34 4.79 (2e-6) Calcium signaling pathway
Parkinson’s disease
Huntington’s disease

Function:
Adenine transmembrane transporter activity (TAS)
Process:
Transport (TAS)

CCR7 1.33 1.90 (0.06) Cytokine-cytokine receptor interaction Function:
G-protein coupled receptor activity (TAS)
Process:
Chemotaxis (TAS)
Elevation of cytosolic calcium ion concentration (TAS)
Inflammatory response (TAS)

VDAC1 1.32 5.82 (6e-9) Calcium signaling pathway
Parkinson’s disease
Huntington’s disease

Function:
Protein binding (IPI)
Voltage-gated anion channel activity (TAS)
Process:
Anion transport (TAS)

TCF7L1 1.32 6.02 (2e-9) Wnt signaling pathway
Adherens junction
Melanogenesis
Pathways in cancer
Colorectal cancer
Endometrial cancer
Prostate cancer
Thyroid cancer
Basal cell carcinoma
Acute myeloid leukemia

Function:
Transcription factor activity (NAS)
Process:
Establishment or maintenance of chromatin architecture
(NAS)
Regulation of Wnt receptor signaling pathway (NAS)

NCAM1 1.32 5.80 (7e-9) Cell adhesion molecules (CAMs) Process:
Cell adhesion (NAS)

SERPING1 1.32 7.60 (3e-14) Complement and coagulation cascades Process:
Blood circulation (TAS)

C1R 1.32 4.70 (3e-6) Complement and coagulation cascades
Systemic lupus erythematosus

Function:
Serine-type endopeptidase activity (TAS)

PPID 1.32 4.04 (5e-5) Calcium signaling pathway
Parkinson’s disease
Huntington’s disease

Function:
Cyclosporin A binding (TAS)
Protein binding (IPI)

HADH 1.32 5.94 (3e-09) Fatty acid elongation in mitochondria
Fatty acid metabolism
Valine, leucine and isoleucine degradation
Geraniol degradation
Lysine degradation
Tryptophan metabolism
Butanoate metabolism
Caprolactam degradation

Function:
3-hydroxyacyl-CoA dehydrogenase activity (EXP, TAS)

GOT1 1.30 3.69 (0.0002) Glutamate metabolism
Alanine and aspartate metabolism
Cysteine metabolism
Arginine and proline metabolism
Tyrosine metabolism
Phenylalanine metabolism
Phenylalanine, tyrosine and tryptophan
biosynthesis
Alkaloid biosynthesis I

Function:
L-aspartate:2-oxoglutarate aminotransferase activity (EXP, IDA)
Process:
Aspartate catabolic process (IDA)
cellular response to insulin stimulus (IEP)
response to glucocorticoid stimulus (IEP)

aEvidence codes defined by GO: EXP (Inferred from Experiment), IDA (Inferred from Direct Assay), IEP (Inferred from Expression Pattern), IPI (Inferred from Physical
Interaction), NAS (Non-traceable Author Statement), and TAS (Traceable Author Statement).

Hung et al. Genome Biology 2010, 11:R23
http://genomebiology.com/2010/11/2/R23

Page 4 of 16



been implicated in several human cancers, including
colon cancer [20]. The latter pathway is especially inter-
esting because various P450 cytochromes are essential
to it. In particular, CYP2J2 metabolizes epoxygenase-
derived eicanosoids from AA into four cis-epoxyeicosa-
trienoic acids (EETs), 5,6-EET, 8,9-EET, 11,12-EET, and
14-15 EET [21]. These molecules have been shown to
be involved in cancer pathogenesis by affecting various
physiological processes, including intracellular signal
transduction, proliferation (likely through the Erk/mito-
gen-activated protein kinase (MAPK) signaling pathway
[20]; Figure 1b), inflammation [22], and inhibition of
apoptosis. CYP2J2 has the highest TIF score (1.17) in
this pathway. Other evidence suggests that CYP2J2 and
EETs, which lead to phosphorylation of the epidermal
growth factor receptor and the subsequent activation of
downstream phosphoinositide 3-kinase (PI3K)/AKT and
MAPK signaling pathways, suppresses apoptosis and up-
regulates proliferation in carcinoma [23].
Genes in the COX pathway also show high TIF scores,

such as PTGS1 (that is, COX1), PTGS1 (COX2), and
PTGIS (1.12, 1.15, and 1.12, respectively). Similarly,
genes with high TIF scores can also be observed in the
lipoxidase sub-pathway, especially the arachidonate
lipoxygenase family (ALOX), most of whose members
have TIF scores above 1.09. The large number of genes
showing high TIF scores indicates a significant tumor-
associated perturbation.
Axon guidance pathway
There are four categories of axon guidance molecules
(netrins, semaphorine, ephrine and members of the
SLIT family) and their specific signal transduction routes
comprise the axon guidance pathway. Briefly, netrin-1

(NTN1), the DCC family of receptors and the human
UNC5 ortholog comprise part of a signaling pathway
that is involved in the regulation of apoptosis, and
whose dysregulation has been implicated in human can-
cers [24,25]. The SLIT family is involved in cell migra-
tion, so one might expect that aberrant or aberrantly
expressed genes could contribute to metastasis, and that
they will in any case affect migration of immune cells,
which could predispose toward, or exacerbate, various
disorders. In fact, the pathway involving SLIT and its
roundabout receptor (ROBO) has been implicated in
cervical cancer [26]. SLIT2 appears to be a candidate for
a colon cancer suppressed gene, since it is often inacti-
vated by LoH and hypermethylation [27] and its recep-
tor, ROBO1, has been implicated in colon cancer [28],
although the underlying mechanism of the SLIT-ROBO
involved tumor growth remains obscure.
The SLIT1, SLIT2 and ROBO1 genes have significantly

high TIFs: 1.18, 1.16 and 1.16, respectively. We also
found that other receptors in axon guidance, such as
PLXNA1, have high TIF scores (1.21). Our observations
indicate a strong connection between colon cancer and
axon guidance. Indeed, it has become evident that the
axon guidance pathway reveals the critical roles that
axon guidance molecules play in the regulation of angio-
genesis, cell survival, apoptosis, cell positioning and
migration [29-31]. It has been suggested that axon gui-
dance shares a common mechanism with tumorigenesis,
such as p53-dependent apoptosis [24,25].
Finally, the EphA family of axon guidance genes is

known to be associated with the Ras/MAPK signaling
pathway to control cell growth and mobility [32]; this
pathway is also included in KEGG’s axon guidance

Table 2 Pathways from the colon cancer dataset found exclusively by PWEA

Pathway Size DE
fractiona

Type Possible relation to the cancer Reference.

Arachidonic acid metabolism 50 34% Lipid metabolism Inflammation
Cell growth, related to MAPK signaling
pathway

[20-22,72]

Axon guidance 126 20% Development Cell mobility and cell growth, related to MAPK
signaling pathway

[28,32]

Nicotinate and nicotinamide
metabolism

23 22% Metabolism of cofactors and
vitamins

Stimulate cell growth [73,74]

Drug metabolism - cytochrome
P450

63 30% Xenobiotics biodegradation and
metabolism

Therapeutic target, related to prognosis [75]

Urea cycle and metabolism of
amino groups

28 39% Amino acid metabolic Nutrition intake [76]

Pyruvate metabolism 41 37% Carbohydrate metabolism Nutrition intake [76]

Bile acid biosynthesis 31 39% Lipid metabolism Lead to high concentration of bile acid
Resistance to bile-acid induced apoptosis

[77,78]

Colorectal cancer 84 15% Disease - -

Long-term depression 70 15% Disease Unknown -

Amyotrophic lateral sclerosis 54 15% Disease Inflammation and MAPK signaling pathway -
aDE fraction is the fraction of genes that show differential expression with P < 0.05 using a two-tailed t-test.

Hung et al. Genome Biology 2010, 11:R23
http://genomebiology.com/2010/11/2/R23

Page 5 of 16



pathway. By examining the genes in the path leading
from EphA to the MAPK signaling pathway (Figure 1c),
we found that the MAPK signaling-related genes EphA,
RasGAP, Ras, and ERK all have significant TIF scores
(1.13, 1.15, 1.10, and 1.20, respectively). This finding
implies that another candidate modulator of the abnor-
mal behavior of colon cancer cell growth and cell mobi-
lity is linked to the MAPK signaling pathway.

We used KEGG to visualize the flow of physiological
alterations associated with early stage adenoma. As indi-
cated in Figure 2, most of the high TIF genes in the
associated table are clustered in the upstream region of
the MAPK signaling pathway in an apoptosis cluster
(circled in red), and in a set of cell cycle genes (circled
in blue). No gene with a high TIF score occurs in the
late stage of the disease. This observation follows the

Figure 1 Pathways adapted from KEGG. (a) Renal cell carcinoma. (b) MAPK signaling pathway. (c) Axon guidance. (d) Amyotrophic lateral
sclerosis. (e) Fcε RI signaling pathway. (f) Gonadotropin-releasing hormone signaling pathway. (g) Jak-STAT signaling pathway. (h) Basal cell
carcinoma. Red indicates an abnormality.
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expected behavior of genes from the samples, since they
were collected from colonic mucosa at an early stage
(Dukes A/B) [16]. These physiologically important clus-
ters would not be identifiable by gene expression with-
out the information provided by TIF.
The non-obvious associations of long-term depression

and amyotrophic lateral sclerosis (ALS) with colorectal
cancer are consistent with the idea that a particular
aberrant gene or gene set can be implicated in distinctly
different phenotypes [33]. Thus, superoxide dismutase
(SOD1;TIF = 1.13, t-score = 5.04), which converts harm-
ful superoxide radicals to hydrogen peroxide and oxy-
gen, helps prevent DNA damage and is a possible
cancer therapeutic target [34], and also impinges on the
ALS pathway (Figure 1d). Genes related to MAPK sig-
naling, particularly p38 kinase, which regulates neurofi-
lament damage, have elevated TIF scores. It may be that

the underlying mechanisms of ALS and early stage col-
orectal carcinoma are similar.
The results also suggest an association between colon

cancer and renal cell carcinoma. PWEA and GSEA both
report significant P-values for the KEGG renal cell carci-
noma pathway; however, PWEA provides additional and
more specific information. Genes with high TIF scores
tend to cluster around the paths shown in Figure 1a.
One of the paths influencing proliferation starts at the
well-known oncogene MET (which encodes a Met tyro-
sine kinase and is present in both colorectal and renal
cancer), and includes a sequence of genes that all have
significant TIF scores: GAB1, SHP2, ERK, AP1 (TIF =
1.14, 1.23, 1.15, and 1.16, respectively). Similarly,
another path from MET (dashed lines in Figure 1a) that
influences survival, migration, and invasion includes
GAB1, PIK3, and AKT, each of which has a significantly

Figure 2 TIF scores for genes in the KEGG colorectal cancer pathway. The regions circled in red and blue are clustered around the early
stages of carcinoma, in accordance with the tissue origin being early stage.
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high TIF score (1.14, 1.25, and 1.17, respectively). The
high TIF scores of these genes in these pathways, which
are common to colon and renal cancer, indicate a pre-
viously unreported overlap in the genes underlying
changes in proliferation, invasion, and migration for
these two cancers.

Case study II: small cell lung cancer dataset
The small cell lung cancer dataset consists of 19 normal
and 15 primary small cell lung cancer samples collected
from [GEO:GSE1037] [35]. The ten genes with highest
TIF scores among 201 pathways are listed in Table 3.
These genes are associated with cell cycle (growth and
division), apoptosis, immune response and metabolic
pathways. The average TIF score of all genes is 1.07 ±
0.008. For two of the ten genes, SPCS1 and BTD, both
from the biotine metabolism pathway, we found no direct
evidence for association with lung cancer, nor is the bio-
tine metabolism pathway discovered by PWEA (FDR >
0.01). These high TIF scores could be the result of a
small number of neighbors passing the filtering process,
which would make the result unreliable (see Materials
and methods). Such an apparently local, false signal is
unlikely to lead to false positive pathways since a signifi-
cant pathway requires consistent global evidence in order
to be observed with WKS (see Materials and methods).
PWEA reports 33 pathways; GSEA reports 19, all of

which are among those found by PWEA (Table S1 in
Additional file 1). As discussed by Subramanian and col-
leagues [6], the independent evidence that the 19 path-
ways are involved in small cell lung carcinomas is
strong. The additional pathways uniquely discovered by
PWEA are listed in Table 4 accompanied by evidence
from the literature. From among the pathways listed in
Table 4, we discuss three pathways that are especially
intriguing.
FcεRI signaling pathway
The FcεRI signaling pathway triggers signaling cascades
of various effector and immunomodulatory functions
related to inflammation in mast cells [36]. FcεRI responds
to immunoglobulin E (IgE) activation and signals mast
cells to work as effectors (by releasing histamine, pro-
teases, and proteoglycans) and immunomodulators (by
releasing proinflammatory and immunomodulatory cyto-
kines, such as TNFa, IL1, IL2, IL3, IL4, IL6, and IL13
[37]. These cytokines recruit additional leukocytes -
including T cells, B cells, macrophages and granulocytes
- thereby promoting immune protection, whether against
foreign or transformed self antigens [38]. Recent evidence
suggests that cancer-related inflammation is among the
key physiological changes associated with cancer, pro-
moting proliferation, angiogenesis and metastasis [39].
The intrinsic inflammation pathway of tumor cells

activated by genetic alterations releases chemokines and

cytokines to create an inflammatory microenvironment,
which stimulates leukocyte recruitment [40]. Although
the Fcε RI signaling pathway in KEGG is constructed
based on the immune responses of mast cells, it may be
that this pathway is utilized by tumor cells to promote
inflammation. Genes with high TIF values include the
tyrosine kinases Lyn, Syk, PI3K, PDK1, and AKT, several
of which tend to be specific to hematopoietic cells, and
are components of signaling cascades leading from the
plasma membrane to the nucleus, ultimately regulating
the transcription of various cytokines, including TNFa
(Figure 1e). Genes along another signaling route, includ-
ing Lyn, Syk, LAT, Grb2, Sos, Ras, Raf, MEK and ERK,
also show high TIF scores. Indeed, this Ras-Raf signaling
path has been suggested to be the trigger for the pro-
duction of inflammatory chemokines and cytokines in
cancer cells [41,42], although our TIF scores also impli-
cates the first route.
Gonadotropin-releasing hormone signaling pathway
Gonadotropin-releasing hormones (GnRHs) are develop-
ment and growth related, and the GnRH signaling path-
way has been implicated in several types of cancer [43].
Genes encoding proteins of the signal transduction path
originating at the GnRH receptor and proceeding
through LH, FSH, Gq/11, PLCb, PKC, Src, CDC42,
MEKK, MEK4/7, JNK, c-Jun, and other nodes in the
JNK/MAPK signaling pathway (Figure 1f) all have rela-
tively high TIF scores. The same is true of transduction
through Gs, AC, PKA, and CREB toward LHb and
FSHb, suggesting that both routes play a role in small
cell carcinoma. Interestingly, although small cell lung
cancer cells are known to secrete peptide hormones
[44], mainly adrenocorticotropic hormone, there are
only a few reports of ectopic production of gonadotro-
pin by lung cancer cells [45,46]. The role of the GnRH
pathway in controlling the production of gonadotropin
in tumor cells remains poorly understood; our results
suggest the possibility that small cell lung cancer cells
hijack this pathway to help achieve autocrine modula-
tion of their own proliferation.
Jak-STAT signaling pathway
The Jak-STAT signaling pathway is related to cell
growth; it has been implicated in several kinds of can-
cers, so its identification is not surprising. This pathway
is noted here primarily to contrast PWEA’s sensitivity
with that of the WKS test. Signaling proceeds from the
plasma membrane through most of the genes with high
TIF scores, prior to reaching the apoptosis pathway (Fig-
ure 1d), which is also found by PWEA (Table 4). Indeed,
it has been shown that the STAT3-dependant growth
arrest signal is inactivated in small cell lung cancer cells,
resulting in growth promotion [47-49]. The fact that
multiple perturbed pathways are related to cell growth
is precisely what is expected for transformed cells.
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Table 3 Ten highest TIF genes in the small cell lung cancer dataset

Gene TIF t-score (P-
value)

KEGG annotation GO annotation (evidence codea)

SPCS1 1.33 3.87 (0.0001) Lysine degradation
Biotin metabolism

Function:
Molecular_function (ND)
Process:
Proteolysis (TAS)

BTD 1.33 5.60 (2e-8) Biotin metabolism Function:
Biotin carboxylase activity (TAS)
Process:
Central nervous system development (TAS)
Epidermis development (TAS)

SKP2 1.33 10.60 (3e-26) Cell cycle
Ubiquitin mediated proteolysis
Pathways in cancer
Small cell lung cancer

Function:
Protein binding (IPI)
Process:
G1/S transition of mitotic cell cycle (TAS)
Cell proliferation (TAS)

CKS1B 1.33 5.31 (1e-7) Pathways in cancer
Small cell lung cancer

Process:
Cell adhesion (NAS)

NFKB1 1.29 5.69 (1e-8) MAPK signaling pathway
Apoptosis
Toll-like receptor signaling pathway
T cell receptor signaling pathway
B cell receptor signaling pathway
Adipocytokine signaling pathway
Epithelial cell signaling in Helicobacter pylori
infection
Pathways in cancer
Pancreatic cancer
Prostate cancer
Chronic myeloid leukemia
Acute myeloid leukemia
Small cell lung cancer

Function:
Promoter binding (IDA)
Protein binding (IPI)
Transcription factor activity (TAS)
Process:
Anti-apoptosis (TAS)
Apoptosis (IEA)
Inflammatory response (TAS)
Negative regulation of cellular protein metabolic process (IC)
Negative regulation of cholesterol transport (IC)
Negative regulation of IL-12 biosynthetic process (IEA)
Negative regulation of specific transcription from RNA polymerase II
promoter (IC)
Negative regulation of transcription, DNA-dependent (IEA)
Positive regulation of foam cell differentiation (IC)
Positive regulation of lipid metabolic process (IC)
Positive regulation of transcription (NAS)

IL1R1 1.29 11.07 (2e-28) MAPK signaling pathway
Cytokine-cytokine receptor interaction
Apoptosis
Hematopoietic cell lineage

Function:
Interleukin-1, Type I, activating receptor activity (TAS)
Platelet-derived growth factor receptor binding (IPI)
Protein binding (IPI)
Transmembrane receptor activity (TAS)
Process:
Cell surface receptor linked signal transduction (TAS)

FCGR2B 1.29 7.36 (2e-13) B cell receptor signaling pathway
Systemic lupus erythematosus

Function:
Protein binding (IPI)
Process:
Immune response (TAS)
Signal transduction (TAS)

INPP5D 1.29 12.69 (7e-37) Phosphatidylinositol signaling system
B cell receptor signaling pathway
Fc epsilon RI signaling pathway
Insulin signaling pathway

Function:
Inositol-polyphosphate 5-phosphatase activity (TAS)
Protein binding (IPI)
Process:
Phosphate metabolic process (TAS)
Signal transduction (TAS)

ST3GAL4 1.29 5.07 (4e-7) Glycosphingolipid biosynthesis - lacto and
neolacto series

Function:
Beta-galactoside alpha-2,3-sialyltransferase activity (TAS)

BAAT 1.29 0.52 (0.60) Bile acid biosynthesis
Taurine and hypotaurine metabolism
Biosynthesis of unsaturated fatty acids

Process:
Bile acid metabolic process (TAS)
Digestion (TAS)
Glycine metabolic process (TAS)

aEvidence codes defined by GO: ND (No biological Data available), EXP (Inferred from Experiment), IC (Inferred by Curator), IDA (Inferred from Direct Assay), IEA
(Inferred from Electronic Annotation), IEP (Inferred from Expression Pattern), IPI (Inferred from Physical Interaction), NAS (Non-traceable Author Statement), and
TAS (Traceable Author Statement).
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Our results also show enrichment of differentially
expressed genes in the basal cell carcinoma pathway,
suggesting possible co-morbidity of basal cells and lung
cancer. As this connection is not an intuitive one, we
examined the genes with high TIF scores, and found
that they were clustered in the Hedgehog and Wnt sig-
naling pathways – both developmental pathways that,
when inappropriately activated, contribute to tumor pro-
gression. Several of the key inducers of the Hedgehog
signaling pathway, GLI1, GLI2 and GLI3, have elevated
TIF scores (1.12, 1.12, and 1.14, respectively). This path-
way is important in proliferation and growth (Figure 1h)
and GLI1 has been implicated in basal cell carcinoma in
mice [50]; more generally, abnormal activity of hedge-
hog-GLI is associated with a variety of tumor types [51].
The coexistence of basal cell carcinoma and metastatic
small cell lung cancer has been reported [52], although
without a pathway level connection (Figure 1h).
Although the small cell lung cancer pathway can be

identified by either PWEA or the WKS test, the distri-
bution of high TIF genes provides additional informa-
tion. While the samples were primary small cell lung
cancer, the genes with high TIF scores cluster mainly
between the primary and metastatic stages (Figure 3).
Since lung cancer often metastasizes, the possible pre-
sence of tissue suggesting metastasis is not surprising,
and illustrates the information content in TIF scores.

Application to other datasets
In order to demonstrate the general utility of the
method, we applied PWEA to four additional data sets
that represent diverse biological processes: ovarian
endometriosis [53], rheumatoid arthritis [54], Parkin-
son’s disease [55], and sex [6]. The pathways discov-
ered by PWEA on these additional data sets are listed
in Tables S1 and S3 in Additional file 1. For the ovar-
ian endometriosis dataset, PWEA reported all 33 path-
ways found by GSEA and 9 additional pathways.
Published literature supports some of the newly identi-
fied pathways, including complement and coagulation
cascades [56], purine metabolism [57] and sphingolipid
metabolism [58]. For the rheumatoid arthritis dataset,
GSEA found no pathways, while PWEA found the
antigen processing and presentation pathway, reflecting
the autoimmune nature of rheumatoid arthritis [59].
For the Parkinson’s disease dataset, both PWEA and
GSEA found only the vascular endothelial growth fac-
tor signaling pathway [60], which has been suggested
to mediate mechanisms related to neuroprotection in
rats with Parkinson ’s disease. In the sex dataset,
PWEA and GSEA correctly report no pathways, indi-
cating no significant difference between males and
females. In general, PWEA discovered all pathways
found by GSEA and uncovered additional biologically
relevant pathways.

Table 4 Pathways from the small cell lung cancer dataset found exclusively by PWEA

Pathway Size DE
fractiona

Type Possible relation to the cancer Reference

GnRH signaling pathway 78 37% Endocrine system Negative autocrine regulator [43,79]

Complement and coagulation
cascades

56 54% Immune system Inflammation
Metastatic and invasive properties

[80]

MAPK signaling pathway 199 38% Signal transduction Cell growth -

Fc epsilon RI signaling pathway 63 44% Immune system Angiogenesis
Inflammation

[37,41,42]

Apoptosis 67 34% Cell growth and death Apoptosis -

ABC transporters 34 24% Membrane transport Drug resistance [81]

Jak-STAT signaling pathway 93 37% Signal transduction Cell growth [47-49]

Drug metabolism - cytochrome
P450

41 51% Xenobiotics biodegradation and
metabolism

Anticancer drugs topotecan and etoposide [75]

Drug metabolism - other
enzymes

28 46% Xenobiotics biodegradation and
metabolism

Anticancer drug irinotecan [75]

Histidine metabolism 24 42% Amino acid metabolism Nutrition intake.
Small cell lung cancer marker, DDC involved.

[82,83]

Tryptophan metabolism 36 39% Amino acid metabolism As above [82,83]

Phenylalanine metabolism 13 54% Amino acid metabolism As above [82,83]

Fatty acid metabolism 37 38% Lipid metabolism Apoptosis.
Therapeutic target

[84,85]

Basal cell carcinoma 36 17% Disease Proliferation invasion through hedgehog
signaling pathway

-

aDE fraction is the fraction of genes that show differential expression with P < 0.05 using a two-tailed t-test. DDC: enzymatic neuroendocrine markers L-DOPA
decarboxylase.
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Discussion and conclusions
Pathway enrichment analysis has been introduced as a
method to interpret differential expression using not only
a priori defined gene sets, but also the topological proper-
ties of the surrounding network. PWEA uses gene sets
from the KEGG database to compute a TIF that describes
the average mutual influence of neighboring genes within
a pathway, including the effects of genetic buffering.
Because the TIF is computed for one pathway at a time,
PWEA cannot detect genetic buffering exerted by genes
from outside a given pathway [61]; nor can any existing
gene set analysis method. The calculation of TIF largely
depends on the correlation of the expression levels of
neighboring genes, which can be affected by small sample
size. Moreover, if genes, or topological relationships
between genes, are missing from the a priori defined gene
sets used with PWEA, the method may fail to accurately
assign statistical significance to some pathways. Any
method attempting to interpret microarray data using a
priori defined gene sets, however, faces a similar challenge.

Although genetic buffering relationships are not expli-
citly annotated in KEGG gene set topology, as they are
in Figure S1b in Additional file 1, PWEA uses TIF to
approximate their effects. Genes with low TIF values
may have their influence in the network reduced by
genetic buffering effects or by the incompleteness of the
topology. TIF measures the effects of pathway topology
on the biological function of individual genes. Genes
receive a higher TIF if they are connected to other cor-
related differentially expressed genes nearby, regardless
of the direction of those connections. PWEA does not,
at present, take account of directionality. In principal,
PWEA may be applied in a variety of contexts: given as
input a score (r) for each gene with signature (pheno-
type), and the corresponding networks (pathways),
PWEA can determine a significance value. Finally, by
using the WKS framework, PWEA reduces to GSEA
when topological information is absent, which means
that PWEA is also applicable to GO enrichment analysis
or any other predefined gene sets.

Figure 3 TIF scores for genes in the KEGG small cell lung cancer pathway. The identification of genes associated with primary and
metastatic stages is consistent with the tissue of origin being stage heterogeneous, and not purely primary.
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When applied to two cancer datasets, PWEA has
shown a high specificity and ability to discover per-
turbed pathways. Examination of the pathways discov-
ered by PWEA reveals that most are consistent with
previously reported experimental findings. As would be
expected of any method designed to aid in the interpre-
tation of expression data, the pathways reported in
PWEA give insights into the nature of the different
types of cancer that were examined.
One of the potential problems with the method pre-

sented here is the requirement for accurate topology to
calculate TIF scores. Pathways with missing genes or
incomplete gene topology can lead to dramatically
reduced TIF scores; gene set incompleteness can
account for this behavior. Indeed, this feature of PWEA
might be used in the future to aid in the refinement of
existing pathway topologies.
It has become clear that pathways rather than indivi-

dual genes are essential in understanding carcinoma
[62,63]. PWEA has been shown to be effective at disco-
vering biologically relevant pathways in cancers, making
it a useful addition to the growing library of techniques
for interpreting molecular profiling data.

Materials and methods
PWEA requires three inputs: the expression profiles of
two phenotypes, a list of gene sets, and their topology.
In this study, the gene sets are taken from the KEGG
database [64] as of April 2009: the gene files specify
genes in a pathway and the map files encode topology,
which in this case comprises the molecular interactions
dictated by the pathway. In total, 201 KEGG pathways
were included. Although we use KEGG pathways for
convenient illustration, pathway data from other sources
may also be annotated in the KEGG markup language
(KGML) [65].
We denote the genes in pathway K by ‘PK’, and all

genes not in pathway K by ‘Not PK’.
The procedure consists of six steps (Figure 4).

Step 1
Transform normalized expression levels into an expres-
sion matrix, and phenotypes into a signature vector,
with genes corresponding to the rows and phenotypes
corresponding to the columns of the expression matrix.
Parse gene-set and map-files of KEGG pathways. Some
nodes of KEGG pathways denote protein complexes or
families. The corresponding genes are parsed separately
and each is assigned the same connectivity and topologi-
cal location as the parent node.

Step 2
For a pathway K, compute a TIF score for each gene in
PK. TIF is defined as the average of the mutual

influence, Ψ, with all other reachable genes in the path-
way. Ψij is used to evaluate the influence between the
ith gene and the jth gene in PK, according to both the
absolute value of the correlation of their expression pat-
terns and their topological distances. Ψij is defined as:

 ij
f

e ij 

where fij = dij/|cij|, dij is the shortest distance between
gene i and gene j calculated using the Floyd-Warshall
algorithm [66] (with dii = 0), and cij is the Pearson cor-
relation coefficient between gene i and gene j based on
their expression profiles over both normal and diseased
tissues (also see the Results section). The TIF for a gene
i is defined by the geometric mean of all influence func-
tions Ψij in a given pathway that involve gene i and
satisfy Ψij > a:
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The significance threshold, a, is used to control the
contribution that gene j makes to TIFi. Note that
shorter distances make an exponentially greater contri-
bution to the mutual influence (and TIF) than do longer
distances. The parameter a is used to control the sensi-
tivity and selectivity of the TIF. After experimenting
using the datasets studied in this report, the choice of a
= 0.05 was found to represent a good apparent balance
between sensitivity and selectivity. This parameter
remains adjustable for future applications, however.

Step 3
For all other genes from the ‘Not PK’ set, their TIF score
is computed. Since topological information of genes from
the ‘Not Pk’ set is not available in pathway k, we use the
central limit theorem to impute Ψ and TIF for each gene
i. This procedure is theoretically sound, since the index
of TIF score is actually an average of Ψ, which should fol-
low the theory. (In practice, the imputations are done
after all TIFs from all pathways are computed; that is,
using the mean and variance from all pathways as the
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parameters for the background distribution of Ψ and TIF,
not imputed just from one pathway. This sampling miti-
gates the bias of imputation when the size of the gene set
is too small.) PWEA also measures the possibility of pas-
sing θ (i.e. having fij ≤ -ln a in the step function θ defined
in Equation 4), and applies imputation only when a pass
event happens. This is to maintain the distribution of all
genes from being artificially altered after applying TIF,
which is very likely to occur when it is applied only to
genes in PK having topology. TIF scores for genes from
the ‘Not PK’ set is important for fair ranking to avoid arti-
ficial bias toward genes in PK.

Step 4
Calculate the statistical significance according to the
WKS test. First, rank all genes by rj

1 + TIF, where rj is
the absolute value of the t-score (by t-test) of gene j.

The t-test is performed on each gene to compare the
expression levels between normal and disease samples.
The cumulative distribution functions (CDFs) of Pk and
Not Pk at position i in the rank can be written as:

CDF i
Nk

rP j
TIF

j i
k

j( )  


1 1

  

and:

CDF i
N Not ku

Not P

k i
k 

 P
( ) 


 1

where N rk j
TIF

j

j  1
and j is the index of all genes

belonging to Pk. N Not Pk is the number of genes belong-
ing to Not Pk and k is the index of all genes belonging
to Not Pk. The statistical significance for rejection of the

Figure 4 Algorithmic scheme of PWEA. In step 1, two different colors (yellow and orange) in the signature vector indicate two phenotypes
(for example, normal and cancer). Blue rectangles in the gene list vector indicate genes in a particular pathway Pk. For a pathway k, the
expression profiles are categorized into two groups: Pk (blue) and its complement, ‘Not Pk’ (cyan). In step 2 the TIF scores for genes in Pk are
calculated. In step 3, TIF scores of the genes in ‘Not Pk’ set is computed. In step 4, the maximum deviation (MD) between two cumulative
distribution functions is computed. After calculating MD for each of n iterations of phenotype shuffling, the fraction of occurrences of shuffled
MDs ≥ the original MD is the P-value of Pk. In step 5, after all pathways have been tested, FDR is used to correct for multiple testing. In step 6,
results and a KEGG markup language topology file for visualization in visANT [68] are the final output. CDF, cumulative distribution function.
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null hypothesis is determined by comparing the maxi-
mum deviation (MD) of two cumulative distribution
functions following n iterations of phenotype shuffling.
Each randomly generated gene set for which the maxi-
mum deviation is higher than the original data will be
counted, and after n iterations, the P-value is computed.
In this work, n is set at 5,000 times.

Step 5
After the P-values for all pathways are computed and
the pathways have been ranked in ascending order,
PWEA computes the FDR to correct for multiple testing
[67]. Specifically, FDR = P × m/k, where m is the total
number of pathways and k is the rank of the pathway
under consideration.

Step 6
A plain text file and a map file in KEGG markup lan-
guage are produced. The map file represents the score
of each gene in a color heatmap using the visANT soft-
ware [68] (Figure S4 in Additional file 1).
The number of iterations, n, in step 4 must be suffi-

ciently large, since PWEA simulates the background by
random shuffling and the results may be biased if the
sampling is insufficient. PWEA uses the absolute (that
is, unsigned) metric when ranking genes. Use of an
unsigned metric is important in many cases, especially
KEGG pathways, which consist of multiple regulatory
interactions. The signed metric used in the WKS test is
designed for gene sets, such as chromosome segments
that are expected to be up- or down-regulated under a
given condition. Using an absolute metric can improve
the clustering of high scoring genes and increase sensi-
tivity. The parameter a, which appears in the TIF, can
be adjusted by the user. Figure S6 in Additional file 1
demonstrates how the number of exclusively found
pathways - which implies that the sensitivity changes -
depends upon a. It can be seen that when a is large
enough, PWEA reduces to GSEA, since TIF becomes
zero and no weighting is applied.
PWEA has been implemented in a portable C++ pack-

age, and is freely available for download at [69]. The
computing time is linear in the number of pathways,
genes, and iterations of the permutation test. In this
study, it took approximately 3 hours on one Sun Micro-
systems AMD 64 Opteron processor with 1 GB RAM
for 201 pathways and 1,000 iterations for a dataset with
about 10,000 genes. When a very large number of path-
ways and/or iterations must be carried out, a parallel
version of PWEA, written with MPI [70], is available on
the website above. The CPU time scales approximately
linearly with the number of processors used. The output
from PWEA can be visualized using visANT [71], which

can give additional insight into the distribution of the
high scoring genes.

Additional file 1: A Word document containing supplementary
materials. Background knowledge of genetic buffering effect; comparison
between different enrichment approaches; supplementary tables and
figures.

Additional file 2: A zip file containing the simulation output files of six
test sets.
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