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Abstract

cERMIT is a computationally efficient motif discovery tool based on analyzing genome-wide quantitative regulatory
evidence. Instead of pre-selecting promising candidate sequences, it utilizes information across all sequence
regions to search for high-scoring motifs. We apply cERMIT on a range of direct binding and overexpression data-
sets; it substantially outperforms state-of-the-art approaches on curated ChIP-chip datasets, and easily scales to cur-
rent mammalian ChIP-seq experiments with data on thousands of non-coding regions.

Background
With the continuing growth and scale-up of genome and
transcriptome sequencing of a large number of eukaryotes,
there has been increasing interest in gaining a better
understanding of the functional connections between all
the genes within a complex organism. Regulatory factors
that control the activation or repression of a gene on the
transcriptional or post-transcriptional level often recognize
specific DNA or RNA sequence elements. One of the first
steps towards understanding the functional characteristics
of regulators such as transcription factors (TFs) is to
obtain accurate representations of their preferred binding
sites and the location of their occurrences, which can then
be utilized to identify candidate genes under direct regula-
tory influence of a TF. Regulatory elements tend to be
short (about 6 to 15 bp in eukaryotes) and often highly
degenerate, which makes it difficult to distinguish them
from the surrounding sequence, which is orders of magni-
tude larger in size [1-3]. The task to identify a representa-
tion for a functional sequence element is commonly
referred to as (de novo) motif finding.
The motif finding problem has been traditionally

phrased as the following: Given a set of putatively co-
regulated genes, find the optimal motif description and
the set of occurrence locations in the corresponding reg-
ulatory regions. Many popular approaches are based on
iterative updating of a position-specific scoring matrix
(PSSM) representation of the binding site, which reflects
the affinity of the protein to its functional sites. Stochas-
tic searches in the form of Gibbs sampling or expectation
maximization-based algorithms have been used

extensively to address this goal by means of iteratively
optimizing a suitable objective function [4-7]. The use of
additional information, such as sequences from related
species (for example, [8]), or priors on the TF binding
domain or nucleosome positions [9,10], has led to notice-
able improvements in the performance of these strate-
gies. As alternatives to PSSMs, motifs can be described as
consensus strings over a degenerate alphabet. This repre-
sentation has allowed for the exhaustive identification of
motifs that are over-represented compared to a genomic
background model [11-14], and frequently makes use of
efficient data structures such as suffix arrays to search for
overrepresented oligomers [15,16]. This strategy places
the focus directly on optimizing the motif description
without having to specify an explicit generative model for
the entire DNA sequence.
The detection of functional DNA motifs has been

greatly facilitated by the availability of high-throughput
functional genomics data that provide direct or indirect
evidence for gene regulation. For instance, the genome-
wide DNA occupancy by a particular TF can now com-
monly be measured through in vivo approaches such as
chromatin immunoprecipitation (ChIP) followed by
hybridization of fragments to microarrays (ChIP-chip)
[17,18] or deep sequencing (ChIP-seq) [19]. Such experi-
ments have been shown to regularly identify hundreds
or thousands of enriched regions for individual factors.
However, some of the most popular existing approaches
scale badly and are computationally infeasible when
applied to sets with thousands of candidate regulatory
sequences. For instance, the sampling step in PSSM-
based approaches is typically performed on the positions
of the regulatory sequences, and samples are then used
to update the motif model. Due to these limitations,
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existing approaches have often used genome-wide quan-
titative data only to reduce the search space. This is par-
ticularly the case for the runtime extensive sampling
based methods, which have thus been applied on a sub-
set of high-scoring or otherwise pre-filtered regions [20],
or have additionally used low-scoring sequences as ‘dis-
criminative’ evidence to direct the search [21].
Instead of modifying traditional approaches, the avail-

ability of qauntitative data suggests the possibility for an
alternative definition of the motif finding problem: iden-
tify enriched sequence motifs, given quantitative experi-
mental evidence for a genome-wide set of regulatory
regions. This formulation allows one to explicitly utilize
the total quantitative information from the experiment,
rather than to only use it to define a set of promising tar-
get sequences, and then proceed with motif finding as
usual. The motif finder REDUCE [22] was an early expo-
nent of this framework, and applied a linear regression
strategy to fit the log expression ratios from microarray
experiments to the sum of contributions from a set of
putative regulators. This promising approach was later
followed up with MatrixReduce [23], which is based on a
non-linear statistical mechanics model of TF-DNA inter-
actions fitted to ChIP-chip data. A common feature of
approaches in this category is that all the experimental
data are used in the model, avoiding the use of an explicit
significance threshold. In addition, the utilization of all
probes from the high-throughput experiment generally
does not require an explicit model for background
sequence. Falling between the strategy to integrate the
complete quantitative data, and the above-mentioned
approaches that use only the top sequences based on
pre-defined cutoffs, recent studies have also attempted to
explicitly infer optimal cutoffs that distinguish positive
from negative probes. Examples include DRIM [24] and
Amadeus [25], both of which are based on simple hyper-
geometric distribution-based criteria.
Here, we propose a new motif identification system,

the (conserved) evidence-ranked motif identification
tool, or cERMIT, which makes use of the complete data
without the need to pre-define or infer thresholds. It is
explicitly designed to be able to analyze current large
genomic regulatory datasets such as those from ChIP-
chip or ChIP-seq experiments, and we demonstrate its
superior performance on gold-standard high-throughput
ChIP-chip datasets. We have integrated cERMIT as the
final step in a pipeline for motif inference on ChIP-seq
datasets, which includes the alignment of high-through-
put sequencing reads [26] and peak calling of enriched
locations [27], and utilizes genome-wide information on
open chromatin as determined by DNaseI hypersensitive
assays. Finally, we demonstrate its wide applicability by
an analysis of miRNA overexpression experiments.

Results
Overview
In a nutshell, cERMIT takes putative regulatory regions
S and scores representing evidence of direct or indirect
regulation as input E and searches for an optimal motif
of flexible length, represented as a degenerate consensus
sequence over the IUPAC alphabet. A post-processing
step allows generation of PSSMs from high scoring
candidates.
The objective function we use to score motif candi-

dates is inspired by gene set enrichment analysis [28-30]
and encapsulates the aggregate evidence of regulation
for a set of sequence regions. More specifically, we sum-
marize the group evidence of binding by a centered and
scaled average relative to a random group of the same
size. It is used to search for the best partition of S into
candidate positive and negative sets, where the positive
set consists of regions that have at least one occurrence
of a candidate motif, while the negative set contains the
remaining sequence regions in S. We begin the search
from the comprehensive set of all possible non-degener-
ate five-mers, each of which defines an initial starting
partition of S. Each of the five-mers is then ‘evolved’ in
a greedy search by varying motif length or degeneracy
(Figure 1). cERMIT can take different data as evidence
for regulatory interactions, and can optionally utilize
orthologous sequences from related species to restrict
the search to co-occurring motifs.
For a controlled evaluation of a new motif discovery

approach, it is desirable to have reliable sets of positive
examples for which it is straightforward to compare the
success of different strategies. ChIP-chip or ChIP-seq data
on factors with known literature binding site consensus
sequences provide the most straightforward setting, as
they imply direct evidence of binding, presumably
mediated by a common sequence motif. To provide a
common ground with other recent algorithms, we focus
on the genome-wide yeast ChIP-chip dataset from the
Young lab, which is still the most comprehensive ChIP
dataset [31], but also demonstrate the application of cER-
MIT on a compendium of recent mammalian ChIP-seq
datasets. Finally, we consider microarray and mass spec-
trometry data collected from microRNA overexpression
experiments to show that the motif finder performs well
in cases where the influence of a factor is not determined
by a direct binding assay but rather by downstream
changes in mRNA or protein expression levels.

Elucidating regulatory sequence from ChIP-chip
experiments
The TF dataset from [31] consists of genome-wide loca-
tion data for 203 yeast TFs assayed in a total of 352 dif-
ferent experiments; 82 TFs were assayed in more than
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one condition. The input consists of an upstream
sequence for each gene, as well as an associated P-value
of binding of a specific TF to each upstream sequence.
Previous studies [31,32] have combined known literature
consensi with the results of different motif finders to
arrive at a comprehensive list of binding site representa-
tions. Knowing the literature consensus provides us with
a common basis to compare the performance of motif
finders, but different publications use different criteria
to define success. We here use the PSSM similarity
metric introduced by [31] (see Equation 6 in the Materi-
als and methods section). Varying the similarity thresh-
old cutoff will of course influence the absolute number
of successful predictions, but for any fixed cutoff, it pro-
vides a relatively fair assessment of different algorithms.
We chose cutoff values reported in previous evaluations
on the same dataset.
The yeast dataset has been used as a starting point for

many recent motif finder evaluations, of which we will
use two to assess our new approach. While yeast is
often regarded as ‘easy’ with respect to regulatory
sequence analysis, these assessments demonstrated that
there was still considerable room for possible improve-
ment. The first evaluation focused on a subset of 156

out of the 352 total experiments for which there was
strong evidence of more than 10 bound probes (P-value
< 0.001) [10]. This gold standard set for motif finders
covers 80 unique TFs for which there is a known litera-
ture consensus binding site [32]. With the idea that a
ChIP experiment should strongly enrich for sequences
sharing the binding site of the TF assayed, a motif was
only counted as successfully identified if the top predic-
tion matched the known consensus at a cutoff of 0.75.
Applying cERMIT on this data set leads to the results
summarized in Table 1, where we assess our results
with and without conservation in the context of a com-
prehensive recent comparison adapted from [21]. The
species related to Saccharomyces cerevisiae used here
were four yeast species in the sensu stricto clade, com-
monly used in other approaches relying on cross-species
conservation.
We observed a dramatic increase in terms of number

of recovered motifs as compared to AlignACE and
MEME, which make use of only S. cerevisiae genomic
sequence information and do not exploit quantitative
information on binding, or conservation across species.
MEME-c, the Kellis approach [33], and Converge [32]
are heavily based on conservation information across

Figure 1 cERMIT motif discovery algorithm. cERMIT starts with all possible 5-mer seeds and proceeds by independently ‘evolving’ each seed
by increasing the enrichment of target sequences in the top of the evidence ranked list.
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the four related yeast sensu stricto species, yet result in a
substantially lower number of successfully predicted
motifs even when we do not make use of conservation
(ERMIT). We also improve significantly on MD-scan,
which uses ChIP-chip information but no conservation.
The recently introduced PRIORITY algorithm is a state-
of-the-art Gibbs sampling approach that can utilize both
conservation (PRIORITY-C) and ChIP data (PRIORITY-
DC), the latter by calculating discriminative counts
obtained from bound versus unbound probes [21]. Even
P RIORITY-DC produces a smaller number of success-
ful predictions than cERMIT, and overall, the perfor-
mance improvement compared to other recent
approaches is significant. Another recent assessment of
motif finders also included results on this yeast ChIP
dataset. The assessment was part of the description of
Amadeus [25], a motif finding platform that introduces
multiple strategies for detecting enriched motifs, based
on ranking all genes by the evidence of binding. The
gold standard defined in this paper was highly similar to
the set in Table 1. We extracted the intersection set
between the two datasets [10,25], which contained 150
experiments (77 TFs). In contrast to the more stringent
evaluation in [10], this study defined a success if any of
four motifs (the top two predictions obtained by run-
ning the motif finder on fixed word lengths of eight and
ten nucleotides) matched the known consensus. As cER-
MIT identifies motifs of flexible length, we compared
the top four cERMIT predictions to the results reported
in this study in Table 2. We used the results provided
on the Amadeus website, which are based on the same
similarity metric and on a threshold of 0.76, similar to
the one used for the results in Table 1.
As can be seen in Table 2, results are consistently bet-

ter when allowing for more than just the top scoring
motif to be counted. Again, cERMIT showed a superior

performance, and not just at one particular cutoff: The
authors of Amadeus also reported their performance
based on a cutoff of 0.82, at which they successfully
recovered motifs for 78 conditions covering 53 TFs;
cERMIT (100 conditions covering 58 TFs) clearly
exceeds these numbers. We finally assessed cERMIT in
comparison to DRIM, a recent motif finer that is likely
the closest to our approach but was not part of the pre-
vious two comparisons [24]. While the DRIM manu-
script also contained results on yeast ChIP-chip data,
the authors considered a specific subset, not for all of
which a known literature consensus is available. The
subset of TFs with known consensus contains 44 condi-
tions out of the set of 156 from Table 1, corresponding
to 36 unique TFs. DRIM generally predicts more than
one motif, with an average of 2.5 motif predictions per
ChIP-chip dataset. For the purpose of a meaningful
comparison, we verified whether the cERMIT results
from Table 1 that relate to these TFs contained a suc-
cessful prediction among the top two and three motifs.
DRIM successfully predicts motifs for 26 conditions and
19 TFs (a 53% success rate on the level of TFs). cER-
MIT identifies the correct motif among the top two pre-
dictions in 30 out of the 44 conditions, and 30 of the 36
TFs (83%); for the top three motifs, these numbers
increase to 32 conditions and 31 TFs.
Performance aspects
In addition to the empirical benchmark, an additional
in-depth analysis of the performance of cERMIT teased
apart its individual components in the context of the
benchmark dataset. In particular, cERMIT was evaluated
with regard to the choice of scoring function (using a
range of pre-defined cutoffs on P-values instead of aver-
aging); the contribution of the search over motif space
compared to exhaustive enumeration of all 6-mers; and
adding the evolutionary conservation filter.

Table 1 Benchmark comparison on 156 yeast ChIP-chip
datasets

Motif finder Number of successes top 1

AlignACE 16

MEME 35

MEME-c 49

Kellis 50

Converge 56

PRIORITY-C 69

MD-scan 54

PRIORITY-DC 78

ERMIT 75

cERMIT 87

Comparison of cERMIT with other motif finders on the yeast dataset of 156
ChIP-chip experimental conditions corresponding to 80 unique transcription
factors (adapted after [21]).

Table 2 Benchmark comparison on 150 yeast ChIP-chip
datasets

Motif finder Number of successes top 4

Trawler 52 (43)

YMF 57 (38)

AlignACE 64 (44)

MEME 76 (47)

Weeder 78 (53)

Amadeus 90 (63)

ERMIT 92 (61)

cERMIT 114 (66)

Comparison of cERMIT with other motif finders on the yeast dataset of 150
ChIP-chip experimental conditions corresponding to 77 unique transcription
factors (adapted after [25]). In brackets are reported the number of unique
transcription factors corresponding to the number of conditions recovered by
each of the methods.
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In summary, these experiments show that averaging is
the more robust option for a scoring function, in com-
parison to thresholding (see Materials and methods),
which is more sensitive to noise and not consistent
across different cutoffs. This is especially noticeable in
the context of ChIP data without using conservation as
filter to reduce noise. The search strategy significantly
improves the performance relative to fixed length motif
search, while a transformation of the ChIP-chip P-values
into approximate Bayes factors (see Materials and meth-
ods) does not result in a significantly different
performance.
In a further analysis, we examined how cERMIT’s

successful predictions agree with the other motif fin-
ders in two particular cases: when there is consensus
among all other approaches on a successful prediction,
and when no other approach manages to find the
known literature consensus motif. As expected, cER-
MIT is able to find almost all known motifs of the
first category. However, cERMIT is able to identify a
substantial number of additional motifs (typically
around 25% of its motifs) in the second case, and this
is correlated with the use of conservation to increase
the signal to noise. The complete details are reported
in Additional file 1.
An assessment of false positives and false negatives
Through a permutation test, we can obtain significance
estimates for the scores of the top cERMIT prediction
(see Materials and methods section). This helps to
investigate cases in which the motif search appears to
fail, and to pinpoint experiments in which the scores for
even the best predicted motifs do not rise above back-
ground scores on randomized data. To check the consis-
tency of these estimates, we compared them with results
from the motif finder PRIORITY, which also included a
similar significance analysis [21]. In the following, we
applied a stringent P-value cutoff threshold of 10-4 to
the cERMIT results summarized in Table 1. Comparing
how estimated P-values agree with successful predic-
tions - that is, the cases in which the top motif corre-
sponded to the known literature consensus - we
observed 67 true positives (TPs), 21 false negatives
(FNs), 50 true negatives (TNs), and 18 false positives
(FPs), which corresponded to a FP rate of 26% and a TP
rate of 76%. On the FN side, where we fail to assign
high enough significance to predictions that match the
literature, we have 21 cases, and for 7 of these, PRIOR-
ITY also reported a non-significant match. This means
that even when the signal from the experiment does not
exceed random expectation, motif recovery may still be
successful.
As we saw, there are also many cases in which the lit-

erature motif is among the top three or four reported
motifs, but not at the top, and these cases somewhat

misleadingly count as FPs here. We further investigated
the top predicted motifs in these cases, where a signifi-
cant P-value did not match the literature consensus of
the factor assayed in the experiment. At least for eight
cases (involving the TFs DAL81, INO4, MET32, MSN2,
MSN4, and TEC1), there is convincing circumstantial
evidence explaining the predictions. These cases are
likely due to experimental conditions in which several
factors regulate a largely overlapping set of target genes,
and this effectively demonstrates cERMIT’s ability to
predict more than one functional motif in the same
experiment. Details are given in Additional file 1.
Looking at the overall results from a different angle,

there were only 34 conditions in which cERMIT (with
or without using evolutionary information from other
species) failed to recover the literature consensus motif
among the top three predictions. When using conserva-
tion, 25 of these had comparatively large P-values (> 10-
4), and may be cases in which the experimental noise
may have been too high to successfully recover a func-
tional site, or conditions in which the factor assayed
does in fact not directly bind DNA. Furthermore,
PRIORITY consistently did not assign a significant value
and/or predict a matching motif for any of these. In the
remaining nine cases with stringent P-values, three con-
cerned the experiments INO4_YPD, TEC1_Alpha, and
TEC1_YPD discussed in Additional file 1, which likely
corresponded to cases where another protein in a com-
plex is enriched, or in which the reported consensus is
similar to the prediction but not called at the predefined
threshold. We failed to report a high ranking matching
prediction under any condition for only six TFs. Overall,
this means that we are able to explain almost all ChIP-
chip experiments. Contrary to the reportedly low suc-
cess rates of various algorithms on the originally formu-
lated motif finding problem [2], this shows that motif
discovery on current genomic datasets has now become
a highly successful undertaking.
Novel predictions
Finally, we ran cERMIT on the complete set of 352
experiments described by Harbison et al. [31] for 51 of
the 196 datasets without known TF consensus, cERMIT
predictions had a P-value > 10-4. The recent PRIORITY
publication [21] reported predictions for a total of 82
out of the 196 experiments. Comparing our novel pre-
dictions to significant PRIORITY predictions provides
computational support for predicted motifs from two
highly different motif finding approaches. Out of the 82
PRIORITY predictions, 18 passed the stringent P-value
cutoff of 10-4, while cERMIT passed this cutoff for 25
motifs out of these 82. Significant predictions overlap
on 12 conditions, and the actual predicted top PSSMs
were similar to each other in 7 out of the 12 cases. This
shows a trend for the motif finders to agree on the top
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motifs if both are supported by stringent P-values. A
comprehensive set of predictions obtained for experi-
ments with and without available TF literature consen-
sus are included in Additional file 1 with their
corresponding significance.

Identification of motifs from deep sequencing ChIP-seq
experiments
ChIP-chip experiments are in the process of being
replaced by ChIP-seq experiments, in which ChIP is fol-
lowed by high-throughput sequencing of the bound
DNA fragments. This allows for a cheaper and poten-
tially less biased assay of the whole genome, but like
genomic ChIP-chip before it, poses new challenges for
motif finding, as the number of bound regions can be in
the hundreds or even thousands. Not all motif finders
are able to deal with input sets of such a large size effi-
ciently, and some are not applicable at all. cERMIT has
been specifically developed to make use of evidence for
a genome-wide set of regulatory regions. For the com-
pact yeast genome, ChIP experiments followed the com-
mon assumption that binding sites are found in close
proximity to the open reading frame. The definition of
an appropriate set of putative regulatory regions is a
more difficult task in multicellular eukaryotes with more
complex genomes. For instance, randomly selecting
intergenic regions in mammalian genomes will include a
large fraction of non-regulatory sequences such as
repeats. However, high-throughput sequencing technol-
ogy has already demonstrated its great promise for the
study of gene regulation in such organisms, and we can
resort to currently available experimental measurements
of salient features of gene regulation at a whole-genome
scale.
As our main focus is on condition-specific regulation,

we would ideally define the search space to be the com-
plete set of enhancer regions in the genome, or at least
those active within the specific condition. In a recent
paper [34], the authors mapped thousands of in vivo tar-
get sites of the enhancer-associated protein p300 using
ChIP-seq, which provides a large set of enhancer regions
conditional on interactions with p300. A perhaps even
more comprehensive strategy for defining potential
enhancer regions is to use regions known to fall within
open chromatin, which tend to be accessible to binding
by regulatory factors. This has been assayed, for exam-
ple, by DNaseI digestion, and DNaseI hypersensitive
sites (DHSs) have been determined by high-throughput
sequencing [27].
Starting from such data in their entirety, we can then

study the more nuanced transcription regulation signals
that control condition-specific gene-regulatory pro-
grams. Hence, we utilize high-throughput deep sequen-
cing information in two parallel ways: first from assays

defining our space of putative regulatory regions - for
example, those around DHS peaks; and second from
factor-specific binding evidence based on the corre-
sponding ChIP-seq data. A schematic pipeline that
intersects different sources of high-throughput regula-
tory evidence for motif prediction is shown in Figure 2.
Comprehensive ChIP-seq gold standard datasets like
that of yeast [32] are not yet available, and we therefore
applied cERMIT on a number of currently available
mammalian datasets from human and mouse. For all
experiments, we started from the deposited raw
sequence reads, which we realigned to the genome to
avoid dataset-specific biases; this allowed us to demon-
strate the success of cERMIT as part of a generic
pipeline.
We first analyzed six human ChIP-seq datasets on fac-

tors STAT1 [35], the insulator binding protein CTCF
[36], serum response factor (SRF), GA binding protein
(GABP) [37], FoxA1 [38], and neuron-restrictive silencer
factor (NRSF) [39]. Results from the cERMIT analysis
are reported in Figure 3. We defined the space S of
putative regulatory regions based on published human
DHS data [27]. This definition was contrasted with an
‘ensemble’ approach, in which we took the combined set
of high scoring peaks from a panel of ChIP-seq experi-
ments and, after merging overlapping regions, arrived at
one final set S used in common for the analysis of each
individual factor. The evidence E was then assigned in
factor-specific fashion, based on overlap of the com-
monly defined regions in S with the factor’s ChIP-seq
peak regions. The ensemble approach is an alternative
especially suitable for conditions or species for which
DHS data are not available: it is effectively an approxi-
mation to open chromatin regions, potentially under dif-
ferent experimental conditions depending on the
particular ChIP-seq panel used, and provides a reason-
able substitute for the DHS data as high scoring ChIP-
seq peaks are known to be enriched within DHSs. We
observed that the DNaseI approach worked extremely
well in all six datasets in human. The ensemble
approach resulted in similar performance, with the
exception of SRF, which has relatively low enrichment
of binding sites in ChIP-seq peak regions compared to
the other factors. This seemed to result in too weak a
signal to detect based on the whole ensemble of input
regions.
The largest single mammalian ChIP-seq panel has

been published as part of a study of TF binding in
mouse embryonic stem cells [40]. We applied cERMIT
to 12 datasets from this study: cMyc, nMyc, E2f1,
CTCF, Esrrb, Klf4, Nanog, Oct4, Sox2, STAT3,
Tcfcp2I1, and Zfx. As no DHS data have been published
for mouse so far, we use the ensemble approach to
define the set of putative regulatory regions. We
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included additional data for the non-sequence-specific
factor p300 to define the space of regulatory regions, as
its broad repertoire of binding partners should help to
define an appropriate target set. Results from the cER-
MIT analysis are shown in Figure 4, which also shows
the motifs identified in the original study, using the two
popular algorithms Weeder [14] and NestedMICA [41].
In all cases cERMIT recovered a good approximation to
the known literature binding specificity. For Zfx, there is
no known literature consensus, and in that case cER-
MIT’s prediction agrees with the results reported by the
other motif finders. The E2F dataset was reportedly
noisy, and no motif was reported by the other motif fin-
ders. While cERMIT successfully identifies a short GC-
rich sequence motif resembling part of the site, it fails
to expand to a longer motif matching the longer con-
sensus (for example, as reported in JASPAR [42,43]).
Finally, in the case of Sox2, cERMIT detected a more
precise definition of each binding site than both Weeder
and NestedMICA, whose prediction corresponded to
motifs spanning sites for both Sox2 and Oct4, which are
known to frequently co-occur as a module and co-regu-
late target genes. This demonstrates a strength of cER-
MIT as compared to Weeder and NestedMICA; it is
able to integrate the quantitative evidence for tens of
thousands of putative regulatory regions (35,500 regions
for the mouse ‘ensemble’ set), rather than running on a
small set of a few hundred highly scoring regions, in
which a co-occurring motif might dominate over the

true targets of the assayed factor. This makes the pro-
posed motif discovery pipeline naturally suited to take
full advantage of the state-of-the-art high-throughput
sequence data.

Application to microRNA transfection assays
ChIP is a direct assay of binding, and motif finders can
be expected to work best in such a setting, which should
deliver a good signal only for a set of direct true targets.
However, knockdown or over-expression of regulatory
factors followed by expression analysis is also common,
and a rich data source for motif discovery. While these
experiments also analyze the influence of a regulatory
factor, this is done indirectly on the level of expression
changes, and typically induce changes for direct targets
containing functional sites, as well for indirect targets as
a result of downstream effects.
As an example, we look at microarray expression data

assaying gene expression changes upon induction of spe-
cific microRNAs. In particular, we evaluate recent data in
which five microRNAs were considered: hsa-let-7b, hsa-
miR-1, hsa-miR-155, hsa-miR-16, and hsa-miR-30a [44].
In Table 3, we compare the score of the top cERMIT
motif with the best score of the same objective function,
restricted to the canonical miRNA ‘seed’ matches (that is,
the complementary sequence to positions 2-7, 1-7, 2-8,
or 1-8 of each miRNA). As can be seen, the cERMIT
results always delivered a motif with a higher score,
demonstrating the success of our search strategy. With

Figure 2 Motif discovery pipeline. Pipeline for motif discovery based on genome-wide evidence of regulation. Sequence reads are aligned to
the reference genome and peak calling is executed to produce a set of putative regulatory regions (for example, DNaseI peaks) and
corresponding evidence of regulation (for example, ChIP-seq peaks). As a final step in the pipeline, cERMIT is run on the preprocessed data to
produce motif predictions that are best supported by the observed experimental evidence E.
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the exception of the let-7b experiment, for which the
scores for canonical seeds were much lower than in the
other experiments, the predicted motifs were slight varia-
tions of the seed matches. We also applied the method to
the protein mass spectroscopy data for the same micro-
RNAs, which then successfully recovered all five micro-
RNA binding motifs. Thus, in agreement with the
conclusions from [44], changes in mRNA expression is
significantly linked to miRNA motifs in many cases, but
at least for some miRNAs, the effect appears to be more
pronounced on the protein level.

Discussion
In the classic motif finding framework the search aims
to identify overrepresented short patterns in a pre-
defined subset S’⊂S (with S being the genome-wide set
of regulatory regions), which is assumed to be enriched
in functional motif occurrences. We present here the
implementation and application of a new system for the
identification of functional non-coding sequence motifs,
which is applicable to the motif finding problem in an
alternative definition, where each regulatory sequence in
the whole set S is annotated with quantitative

Figure 3 Human ChIP-seq motif predictions. Motif predictions of cERMIT on six human ChIP-seq datasets: STAT1 [35], the insulator binding
protein CTCF [36], SRF, GABP [37], FoxA1 [38], and NRSF [39]. The ‘ensemble’ column includes results from using the ensemble of all six datasets
to define the space of regulatory regions (see text). The ‘DNaseI’ column includes cERMIT predictions when using open chromatin regions, as
defined by DNaseI peaks, to be the set of putative regulatory regions. Literature position-specific scoring matrices (PSSMs) were extracted from
TRANSFAC 2009.1. Asterisks indicate the optimal alignment of motif prediction to literature. CTCF, due to its ubiquitous binding, was recovered
using the top 25,000 DNase peaks as input to cERMIT. All other datasets consider the top 5,000 peaks from each factor (in the two different
scenarios).
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Figure 4 Mouse ChIP-seq mouse. Motif predictions of cERMIT on mouse ChIP-seq data from [40]. The predictions of cERMIT use the ‘ensemble’
approach to define the set of putative regulatory regions (see text for details). Literature position-specific scoring matrices (PSSMs) were
extracted from TRANSFAC 2009.1, except for CTCF [45], Klf4 [57], and Zfx (unknown). Asterisks are used to indicate the optimal alignment of
motif prediction to literature. Each individual factor contributes (the top scoring) 5,000 peaks to the ensemble set of putative regulatory regions.
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experimental evidence. This method circumvents the
problem of having to define a sequence set enriched in
cis-regulatory targets, and makes use of the additional
information provided by quantitative evidence from cur-
rent high-throughput experiments. Other recent
approaches on related problems have worked within this
rephrased definition; for instance, rank-based algorithms
have been described to generate canonical motif descrip-
tions for protein binding arrays [45,46]. The FIRE algo-
rithm [47] could also be mentioned in this context, as it
is based on the idea that the presence of an oligomer in
regulatory regions is statistically dependent on a relevant
phenotype of interest (for example, expression level or
expression cluster membership).
Compared to some other rank-order based

approaches, it is important to note that cERMIT incor-
porates the entire genome-wide evidence of regulation
into the motif search. This is achieved through a care-
fully chosen objective function that provides a simple,
yet effective quantitative measure for co-regulation of a
set of sequences, without the need to define any cutoffs.
The inspiration for this overall framework, and the par-
ticular function we used [29,30], draws from gene set
enrichment analysis [28,48], in which the aggregate evi-
dence of a predefined gene set, such as a functional
pathway, is used to increase the power to detect differ-
ential gene expression. Our approach can be seen as an
inverse to gene set enrichment analysis: instead of scor-
ing a pre-defined gene set, we are looking for new opti-
mal gene sets defined by a shared occurrence of a
hidden sequence motif. The gene set enrichment analy-
sis framework has attracted considerable attention, and
other objective functions have been proposed that can
be explored as potential alternatives for cERMIT.
Of key computational importance is the fact that our

objective function is efficiently computable, which
allows cERMIT to determine a putative motif enrich-
ment quickly, making the proposed direct motif search
strategy feasible. To score a given partition correspond-
ing to a given consensus motif, cERMIT operates on a
set of sequences via a fast search in a suffix array data
structure, which enables the detection of potentially

thousands of matches to a pre-specified k-mer in a
large set of DNA sequences highly efficiently [49,50].
Hence, the overall runtime of the algorithm on a stan-
dard single processor workstation is on the order of a
minute per typical run for the comprehensive set of
upstream sequences for a yeast TF of interest, and 2 to
5 minutes for the approximately 35,000 regions
(approximately 1 kb) from human ChIP-seq experi-
ments. Instead of directly searching for over-represented
short patterns in a pre-defined set of co-regulated
sequences, we update our candidate for optimal parti-
tion by updating the corresponding consensus motif.
Thus, we perform a search on the discrete space of
IUPAC motifs, which is independent of the number of
regulatory regions and scales logarithmically with the
total length of the sequences in S.
We have demonstrated that this strategy makes cER-

MIT easily scalable to genome-wide technologies such
as ChIP-seq, which provide data for the analysis of a
much larger sequence space for putative TF targets.
While cERMIT does not require an explicit background
model, it detects enriched motifs by virtue of analyzing
their occurrence patterns in the complete set of regula-
tory regions. In higher organisms with a complex non-
coding genome, the definition of regulatory regions is
non-trivial; however, recent high-throughput approaches
to map open chromatin, or factors such as p300 that
interact with a range of enhancers, provide a good
approximation. In fact, we could show that even a sim-
ple joint set of target regions from a panel of different
TFs can serve that purpose, but this will lead to differ-
ences in performance if the TFs have a wide range in
the number of biological targets. Data on open chroma-
tin under different conditions is expected to increase
through efforts of the ENCODE consortium [51]. As
our results show, the definition of putative regulatory
regions is already very good given the current limited
data, even though the conditions of DNaseI-chip and
ChIP-seq matched for only some experiments.
Our use of IUPAC consensus motifs occasionally

results in underestimating the motif degeneracy; the
PSSMs shown above are built in a post-processing step

Table 3 MicroRNA overexpression motif predictions

mRNA_32 hr Protein

Seed motif Score ERMIT Score Seed motif Score ERMIT Score

let-7b CTACCTc 5.4 GSCCCCS 15.2 CTACCTc 9.1 MTACCTcw 9.7

miR-1 ACATTCc 13.8 RCATTCc 14.5 ACATTCc 8.5 wnRCATTCc 9.9

miR-16 gCTGCTA 7.4 wwgCTGCT 10.2 gCTGCTA 10.3 tgCKGCTR 11.6

miR-155 AGCATTa 12.6 WGCRTTa 13.6 AGCATTa 13.4 GCATTaw 15.2

miR-30a gTTTACA 10.0 ygTTTACR 10.9 gTTTACA 7.5 wgTTTACAw 8.5

The letters in bold correspond to the canonical 6-mer microRNA seed (that is, the complementary sequence to positions 2 through 7). For each microRNA we
report the best of four canonical 6- to 8-mer seed match scores based on the ERMIT objective function, and the corresponding motif prediction resulting from
the motif search (data from [44]).
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based on the consensus sequence in the predicted set of
bound genes. Together with the objective function cur-
rently used by cERMIT, which searches for the oligomer
most strongly associated with the evidence provided,
this means that our results should not be considered as
quantitative models of actual binding affinity, but rather
as the core of a functional motif. In addition, similarly
to others before us [52], we base our motif search pro-
cedure on the assumption that the experimental setup
ensures sufficient concentration of the factor in order
for it not to be a limiting step in the sequence binding
reactions. This allows us to currently approximate the
inherently stochastic DNA-TF interaction by modeling
it as a binary event.
These items provide the scope for improvement, both

in terms of a more flexible motif description as well as on
the motif search strategy, by means of a stochastic search
in place of the greedy approach. We expect that this will
allow us to pick up more degenerate signals and to pro-
vide more quantitative models of the recovered func-
tional sites. Instead of merely defining genome partitions
by the presence of motifs, a probabilistic framework
based on a joint likelihood as well as a formal model of
uncertainty would also allow for the simultaneous infer-
ence of a motif model and the most probable set of target
genes. We can also incorporate different types of sam-
pling moves that will enhance our ability to explore the
motif search space. This may allow us to better capture
motifs with two half-sites separated by highly degenerate
spacer regions, or combinations of two or more motifs.
To that end we can consider defining partitions based on
high scoring motifs that co-occur in regulatory
sequences. Ultimately, our aim is to approach the harder
problem of detecting combinatorial interactions of differ-
ent factors that distinguish between biological states, be
it between different tissues, specific developmental stages,
or normal versus cancer conditions.

Conclusions
Motif finding with an objective function based on gen-
ome-wide evidence of regulation provides a flexible and
successful framework to integrate sequence data with
high-throughput binding or expression information. In
particular, we present a flexible and successful pipeline
to analyze regulatory information resulting from applica-
tions of next-generation sequencing technology. We also
demonstrated the usefulness of integrating high-level
information on the genome-wide set of regulatory
regions (such as defined by DHSs), with quantitative
data on the genome-wide affinity of individual regula-
tory factors.
Together with other recent approaches that utilize

available quantitative evidence of regulation, the results
reported here demonstrate convincingly that motif

finders that make intelligent use of this additional
information consistently outperform earlier motif fin-
ders. In contrast to the notoriously difficult motif find-
ing problem based on over-representation in sequence
alone, the scale-up in genomic experimental techni-
ques, combined with appropriate motif finders, has
allowed for great progress on the problem of efficiently
decoding the regulatory information in complex
genomes.

Materials and methods
In this section we provide a detailed description of the
motif finding strategy implemented by cERMIT. Given a
set of putative regulatory regions and a score represent-
ing evidence for regulation for each region, cERMIT
searches for an optimal partition of the input sequence
space into a positive and a negative set. The positive set
consists of regions that have at least one occurrence of
a candidate motif specified as IUPAC string. To search
for the best candidate partition, an optimality criterion
is used that reflects aggregate evidence of regulation for
a set of sequence regions. A key assumption in the pro-
posed procedure is that the evidence for regulation is
large in the positive set and small in the negative set for
only those partitions that are induced by functional
motifs. The algorithm outputs a set of predictions for
regulatory motifs that correspond to the optimal parti-
tions found by our search strategy.
A putative motif set Σ = {m1,..., mT} is defined as

k-mers over the alphabet of IUPAC symbols {A, C, G,
T, W, K, R, Y, S, M, N}, where T is the number of k-
mers in the set; typically, we consider k-mers of length
5-20. A sequence space of d putative regulatory regions
is defined as S = {s1,..., sd} and in each region we are
given an estimated evidence of regulation E = {e1,..., ed}.
Each putative motif mj induces a partition of S into two
sets: the positive set Sj contains those regulatory regions
in which mj is present and the negative set is the com-
plement. A motif is considered present in a sequence
region sk if an exact match to the IUPAC motif descrip-
tion occurs on either strand of a DNA sequence or on
the forward strand of an RNA sequence. We denote the
occurrence of motif mj in sk by mj Î sk.
There are two essential components of the algorithm:

an objective function to score evidence of regulation for
a given k-mer and a search procedure that explores the
motif space for high-scoring k-mers.

Evidence of regulation
The statistical scoring of evidence of regulation in a
sequence region will depend on the type of assay used
to infer the binding specificity of factors. However, all
the statistical scores we propose can be placed in the
framework of log-odds ratios:
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where ej is the evidence for regulatory region sj and f
denotes the likelihood of the experimental evidence for sj,
given that it is in the positive set (M1) or negative set (M0).
The types of experimental evidence provided by the

data discussed in this paper are P-values from ChIP-
chip experiments, counts of aligned short sequence
reads from ChIP-seq experiments, and expression
changes from microRNA overexpression assays.
P-values as evidence of regulation: ChIP-chip data
For ChIP-chip data, P-values {p1,..., pd} provide binding
evidence for d sequence regions in S. The P-value is an
indication of evidence against a null hypothesis, in this
case, that the sequence region is not bound. As such,
using the P-value as a measure of the odds ratio of
binding or as an error rate is a misinterpretation, often
termed the ‘P-value fallacy’. In this context, a P-value of
0.001 does not directly correspond to an odds ratio of
1/0.001 = 1,000 for binding evidence. In [53] a simple
calibration of P-values was introduced:
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This calibration can be interpreted as an upper bound
on the odds provided by the data for binding (M1) ver-
sus non-binding M0), the Bayes factor:
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where π(θ|Mi) are the prior distributions for the P-
values in the positive and negative set, respectively. In
general, the Bayes factor is the ratio of the marginal lik-
lihoods given the model-specific parameter priors of the
two models. Under a parametric approximation to the
distribution of P-values, π(θ|Mi) ~ Beta(θ,1), the P-
values in the negative set would be distributed uni-
formly, which corresponds to the value for θ = 1, while
the positive set P-values could be assumed exchangeable
with θ Î (0,1). The following upper bound on π, derived
in [53], is used to approximate the Bayes factor:

B p B pj j10 10( ) sup ( )




Returning to the example of a P-value of 0.001, the
Bayes factor under the proposed correction calculates as
1/0.0188 ≈ 50. In the ensuing analysis we use ej = log
[B10(pj)] as the evidence of regulation for region sj. A

natural question to ask is how different this measure of
evidence is from ej = -log[(pj)], and this is explored in
the context of cERMIT in Additional file 1.
ChIP-seq reads as evidence for regulation
The counts of aligned short sequence reads in ChIP-seq
experiments can be used to provide evidence of regula-
tion. In [54] a kernel density estimator is used to score
binding; this smoothes and normalizes the counts of
aligned reads. For each sequence region sj, the maxi-
mum of the kernel density estimate over all locations in
the sequence is considered as positive evidence (M1):

f s M k tj
t s j

( | ) max ( )1 


where t indexes positions in sj and k(t) is the kernel
density estimate at position t. We also specify a back-
ground binding score b, which in this paper is taken as
the 85th percentile, for all regions sj, of the strictly posi-
tive kernel density scores. The evidence of regulation for
region sj is a log odds ratio:

e
f s j M b

bj  log
max[ ( | ), ]1

microRNA over-expression assays as evidence for regulation
By microRNA over-expression, the change in expression
of putative target mRNAs in the presence of a micro-
RNA is quantified. Denote Xji as the expression mea-
sured for the j-th gene in condition i. The two
conditions in our setting are i = 0 before microRNA
over-expression and i = 1 after over-expression. A
sequence region sj is the 3’ UTR region for the j-th gene
in the expression assay. The evidence of regulation for
region sj is the log of expression fold-change:

e
X j
X j

j  log
1

0

Integration of evidence: definition of the objective
function
Given evidence E = {e1,..., ed} for a set of sequence
regions S, a motif mj partitions E into a positive set Ej

where the elements of Ej are the evidence for those
sequence regions that contain motif mj, E

j = ei: mj Î si
for i = 1,... d}, the negative set is the complement.
We assume that there exists a ‘true’ motif m* that

induces a partition of the evidence with a positive set
E*. This partition can be recovered by searching over
the discrete space of motifs using an appropriate objec-
tive function. This objective function should capture
high aggregate evidence for regulation in the positive set
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and low evidence in the negative set. The number of
candidate partitions over the set of sequences is very
large (at most 2d, where d is the total number of
sequence regions) so this objective function must be
efficiently computable.
A test statistic introduced in [29,30] has the above

properties and is used as the objective function for cER-
MIT. Given evidence Ej induced by a motif mj, we
define:
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where |E| = d and |Ej| are the cardinalities of the total
number of regulatory regions and those contained in the
positive set, respectively. The resulting optimization pro-
blem is:

ˆ arg max ( )m J E
m M

j

j


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where m is our best guess at the optimal binding
motif m*.
The variance in Equation 3 will be very large if the

cardinality of the positive or negative sets is large, and
the variance in estimates of the aggregate evidence will
be large. Thus, these k-mers result in unstable scores
and are considered implausible candidate k-mers. For
this reason, we constrain the set size to be in the range
[a, b × |E|], where a = 20, b = 0.15 for all ChIP-chip
and overexpression data and a = 100, b = 0.30 for the
ChIP-seq data. These bounds are effectively the only
user-defined cERMIT parameters, and were chosen to
reflect the complexity of the search problem (that is,
more regions are targeted in the mammalian ChIP-seq
experiments). This results in the following objective
function:
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Instead of averaging evidence over all genes, an alter-
native strategy is to select the top genes:
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where k is a threshold or selection parameter and 1x>k
is the indicator function of whether x > k. The advantage
of J over Jsel is that it does not require the extra selection
parameter k. When comparing both approaches within
cERMIT, the classic bias/variance trade-off in statistical
modeling is observed (see Additional file 1).

Search strategy
It is not computationally feasible to optimize the cER-
MIT objective function in an exhaustive search over the
space of all potential motifs. Instead, we adopt a direct
greedy search strategy that relies on local motif updates
to construct candidate motifs. The combined set of reg-
ulatory regions is maintained in a suffix array data struc-
ture [49,50], which, at minor pre-processing cost, allows
for virtually constant time search for all occurences of a
DNA k-mer of interest. We start from all possible 5-
mers as seed points (in the case of TFs, pooling reverse
complements, hence T = 512). Given a motif m, we con-
struct a candidate set of motifs by locally varying the
length and the degeneracy of m. The extension move
takes a k-mer as input and independently appends or
prepends A, G, C, or T generating eight new (k + 1)-
mers. When reducing the length of a motif we truncate
the motif by one letter on either side to produce two
new candidate motifs. Truncation is restricted to motifs
of length 6 or longer. The degeneracy move operates on
a single position in the k-mer at a time to produce a
new motif candidate. The following update rules are
applied to each position j in motif m:

1. m[j] = A then three new k-mers are constructed
with m[j] set to M, R, W respectively;
2. if m[j] = C then three k-mers are constructed with

m[j] set to M, S, Y respectively;
3. if m[j] = G then three k-mers are constructed with

m[j] set to K, R, S respectively;
4. if element m[j] = T then three k-mers are con-

structed with m[j] set to K, W, Y respectively;
5. if m[j] = R, Y, S, M, K, W then m[j] is set to N,

unless j = 1 or j = |m|;
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6. if m[j] = N then the k-mer is not updated.
For a k-mer with no degeneracies, these moves will

generate 3k candidate k-mers. For a k-mer with double
degeneracy in all positions, the move will generate k-2
candidate k-mers with the same double degeneracy in
all but one, non-terminal position, which is set to N.
For each seed motif m the search algorithm applies

the update rules and examines if they result in a higher
motif score, in which case the highest scoring candidate
is used in the following iteration. This procedure is
repeated until the update rules cannot improve the
motif score, resulting in a candidate for the best scoring
motif evolved from the particular seed.
The result of the search is a set of motifs
  M m mT { ,...., }1 and their corresponding scores
  J j jT { ,..., }1 . For each motif we construct a PSSM
based on the empirical counts of occurrences of each of
the exact instantiations in the set of predicted target
regions.

Post-processing
Many of the top scoring motifs will be very similar,
varying by a few letters. For this reason we add a post-
processing step that clusters similar motifs around ‘clus-
ter centers’ defined to be distinct individual k-mers with
maximum objective function score J*.
In the clustering procedure we use the Harbison

metric (at 0.75 cutoff) [31] to compute similarity
between two motifs. For motifs a, b of equal length w
the distance D(a, b) is:

D a b
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2
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where ai, L and bi, L are the relative frequencies of
base L at position i for the PSSM motif descriptions of
a and b, respectively. For motifs of differing lengths we
define the following ‘Harbison similarity score’:

sim ( , ) max [ ( , )],a b D a ba b     1

where a’, b’ correspond to all possible overlaps of
between motifs a, b induced by shifts such that the
minimum overlap length is six, unless the motif itself is
only five nucleotides long. This metric is also used in
[10].
Two motifs m1 and m2 are considered similar if:
1. The PSSMs of m1 and m2 have Harbison similarity

score ≥ 0.75;
2. The motifs m1 and m2 co-occur in the same

sequences significantly more frequently than expected
by chance, as measured by the following P-value thresh-
old:

Hyp (| |; ,| |,| |) ,S d S Sco occur 1 2
2010

where S1 and S2 are the positive sets for motifs m1

and m2. The set of co-occurring regions Sco-occur are
those regions where the motifs m1 and m2 are both pre-
sent and separated by at most τ nucleotides; we set

  min(| |,| |)m m1 2
2

.

Then, given the set of redundant output motifs
  M m mT { ,..., }1 , the following procedure outputs a set
of motif clusters {Ri} and smaller indices corresponding
to higher motif scores:
1. Initialize the cluster count: n = 1;
2. Find the top motif in the set C

m J m
i k

i
*

,...,

*arg max ( )
1

3. Add m* and all other motifs in C similar to m* to
Rn;
4. Remove the set Rn from C;
5. Update cluster count n = n + 1;
6. Repeat steps 3 to 5 until C is empty.
Given a motif cluster Ri we can compute a cluster

PSSM by averaging the PSSMs of each cluster member
weighted by its motif score. We use this cluster sum-
mary in Figures 3 and 4.

Integrating conservation
Sequence conservation between related species can be
used to help guide the motif search: Defining the positive
set based on the motif presence across a set of species
can help to increase the signal-to-noise ratio by eliminat-
ing false positive matches that occur in individual gen-
omes. We followed the example of previous approaches
that utilized pattern co-occurrence without relying on
alignments [21,55]. In our case, we incorporated conser-
vation by refining the positive set Sj of regulatory regions
in which mj is present. If orthologous regions are avail-
able for a given region in one or more of the other spe-
cies, we remove from Sj those regions where mj is not
found in all orthologous regions. That is, rather than
restricting the analysis to the subset of genes with clearly
defined orthologs, we simply require that patterns must
co-occur in available orthologs; in cases where no ortho-
log is defined, set membership is based on the occur-
rences in the species with experimental evidence of
regulation. This strategy allows us to make use of the full
dataset, and we otherwise follow the same motif search
procedure, applied to the refined set Sj.

Significance evaluation
For the top representative motif predictions {mk} we
provide a P-value using a permutation procedure.
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Instead of an explicit representation of the empirical
null distribution as a histogram, a parametric Gamma
approximation was used instead to accommodate out-
liers in the tail area of the distribution. For a motif mℓ

with score Jℓ the following procedure is used to compute
its P-value:
1. Generate 1,..., Π permutations of the evidence E,

{ }( )E   1
 .

2. For each π = 1,..., Π compute

J J E
m M

l

l
 


max ( )( )

3. From { }J  1
 fit a Gamma distribution using the

Maximum Likelihood criterion,

  F J J( ) ( ; , ). Gamma  

4. The P-value is 1 - F (Jl).

Data
Yeast ChIP-chip compendium
The 352 ChIP-chip S. cerevisiae datasets and the corre-
sponding orthologous probe sequences were extracted
as described in [10].
microRNA overexpression
All mRNA and protein expression datasets were used as
provided by [44]. Log-fold changes of the mRNA or
protein expression values were assigned as evidence of
down-regulation to the 3’ UTR regulatory regions. In
the case of mRNA expression, changes were assayed at
two different time points, and we chose the later point
at 32 h and compared it to 0 h as reference timepoint.
The 3’ UTR sequence set contains sequences of genes
with RefSeq IDs (version 26) and a confirmed stop
codon. This set was further filtered to exclude regions
that are too short (<30 bp) or too long (>10,000 bp).
Human and mouse ChIP-seq experiments
The six human TF ChIP-seq datasets were used as pro-
vided in the following papers: STAT1 [35], the insulator
binding protein CTCF [36], SRF, GABP [37], FoxA1
[38], and NRSF [39]. The 12 ChIP-seq datasets analyzed
by cERMIT, cMyc, nMyc, E2f1, CTCF, Esrrb, Klf4,
Nanog, Oct4, Sox2, STAT3, Tcfcp2I1, and Zfx, were
used as provided by [40]. The embryonic stem cell panel
additionally included datasets for the factors Suz12 and
Smad1, which we did not consider in our analysis. The
former factor does not interact directly with DNA; the
dataset for the latter contained reads of length 36 bp
instead of the reported 26 bp, and successful alignment
to the mouse genome was significantly impacted. Unfor-
tunately, we were unable to resolve the issue with the
authors.

Processing of deep sequencing reads
Alignment of reads to the human and mouse genomes
Sequences from ChIP-seq experiments were aligned to
the human genome (hg18) and mouse genome (mm9)
using MAQ [26]. The reads aligned to four or less loca-
tions were retained. Additional filtering was performed
to remove single base pile-ups of sequences by removing
all sequence locations where, within a 30-bp window,
there are more than 10 sequences of which 70% map to
a single base location. Finally, at locations with more
than five tags, tag counts were trimmed to a maximum
of five.
Peak calling Discrete ChIP peak calls were identified
from ChIP-seq data using the non-parametric kernel
density estimation procedure implemented in F-seq [54]
with the threshold parameter t set to 10. Based on the
Fseq base-pair scores we assign to each peak the maxi-
mum kernel density estimation value across all locations
within the peak. In lieu of providing a predefined list of
regions that are generally over-represented in ChIP-seq
data (mitochondrial DNA, ribosomal genes, repetitive
regions) we discard all regions with extremely large F-
seq scores (≥ 10). Short peaks are extended to be at
least 100 bp in length and long peaks are trimmed to be
at most 1,000 bp. The extension/trimming is propor-
tional to the distance of the end of a called peak region
from its exact maximum location. The DHS peak
regions were called as described in [27].
Definition of putative regulatory regions and assign-
ment of evidence A main goal in defining the set of
putative regulatory regions is to be enriched in func-
tional binding sites for the factor of interest. Recent
high-throughput sequencing technologies coupled with
a DNaseI assay have clearly demonstrated that regions
of open chromatin are highly enriched in functional
DNA elements [27]. Hence, we define our putative regu-
latory region set to consist of the DHS and call this the
‘DNaseI’ approach to defining putative regulatory
regions. Ideally, we would use DHS data combined with
the factor-specific ChIP-seq data from the same cell
type. The only published DNaseI dataset in human is
for CD4+ cells [27], which matches only the CTCF
ChIP-seq cell type. The human SRF, GABP, and NRSF
ChIP-seq data are derived from a lineage-related cell
line (Jurkat human T lymphoblast cell line), which can
be expected to share many open chromatin regions with
the CD4+ cells. The remaining human ChIP-seq data-
sets were derived from cell lines unrelated to CD4+ -
human HeLa S3 for STAT1, and MCF7 cells (human
breast adenocarcinoma cell line) for FoxA1.
For mouse, no published high-throughput DHS data

are available at this time. Hence, we adopt a different,
yet closely related, strategy to define the putative
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regulatory regions, which relies on the assumption that
ChIP-seq peaks tend to fall within open chromatin
regions. The top ChIP-seq peaks across all mouse data-
sets provide a set of open chromatin genomic regions,
which (after merging of overlaps) is assigned ChIP-seq
scores from each individual dataset. In addition to the
data for each factor for which we run motif finding, we
include data for the non-specific factor p300. We call
this the ‘ensemble’ approach to defining putative regula-
tory regions.

Additional file 1: Supplementary information. Tables with
comprehensive prediction results on the yeast ChIP-chip datasets with
known literature binding motifs as well as novel predictions. Further
information, including an implementation of the proposed algorithm and
a detailed description of the ChIP-seq pipeline, is accessible online [58].
Click here for file
[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-2-
r19-S1.pdf ]
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