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GENIUSA fuzzy computational approach that takes into account several molecular subtypes in order to provide more accurate breast cancer prognosis
Abstract
Early gene expression studies classified breast tumors into at least three clinically relevant subtypes. Although most 
current gene signatures are prognostic for estrogen receptor (ER) positive/human epidermal growth factor receptor 2 
(HER2) negative breast cancers, few are informative for ER negative/HER2 negative and HER2 positive subtypes. Here 
we present Gene Expression Prognostic Index Using Subtypes (GENIUS), a fuzzy approach for prognostication that 
takes into account the molecular heterogeneity of breast cancer. In systematic evaluations, GENIUS significantly 
outperformed current gene signatures and clinical indices in the global population of patients.

Background
Early gene expression studies [1-6] classify breast cancer
into at least three clinically relevant molecular subtypes:
basal-like (predominantly estrogen receptor (ER) negative
and human epidermal growth factor receptor 2 (HER2) neg-
ative), HER2-positive, and luminal-like (ER-positive)
tumors. Although this classification has changed the way
clinicians perceive the disease, it has been difficult to use
the initial microarray-based clustering models in clinical
practice. The reason is that these models suffer from the
drawbacks of the hierarchical clustering method itself,
namely its instability and the difficulty associated with
using it for new data [7]. To address these concerns, we
recently used model-based clustering to introduce an alter-
native model able to identify different molecular subtypes
[8,9]. We have shown that this model is capable of fuzzy
classification [10,11]: a patient's tumor belongs simultane-
ously to each molecular subtype with some probability
(degree of membership) in a way that is reproducible and
robust because clinically relevant molecular subtypes are
identified in several public datasets using different popula-
tions of breast cancer patients and different microarray
technologies. However, we observe that a significant pro-

portion of tumors are elusive with respect to subtype, their
phenotype lying between several molecular subtypes.

During recent years, several research groups have used
gene expression profiling technology to develop prognostic
signatures (reviewed in [12]). These signatures add prog-
nostic information to commonly used clinico-pathological
criteria and consequently may help to reduce the current
over-treatment of patients by better identifying those
patients who will most benefit from treatment. Given this
tremendous clinical potential, two of these signatures are
now being evaluated in large clinical trials to confirm their
prognostic value [13,14].

We demonstrated in a recent meta-analysis of publicly
available gene-expression and clinical data from almost
3,000 breast cancer patients that the majority of these prog-
nostic signatures showed similar performance despite the
limited overlap of genes [8,9]. Interestingly, we also
observed that the proliferation-related genes drove the per-
formance of these signatures, which were useful in classify-
ing ER+/HER2- patients as being at low or high risk for
recurrence, but were less informative for the ER-/HER2-
(often referred to as the 'triple-negative' subtype due to
absence of estrogen, progesterone and HER2 receptors) and
HER2+ subgroups of patients whose tumors are mostly
highly proliferative and considered, therefore, to be high
risk. In addition, clinico-pathological criteria revealed inde-
pendent prognostic information, suggesting that both
genomic and clinical variables could be combined in a com-
mon prognostic decision algorithm.
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In short, although these signatures provide prognostic
information that supplements the currently used clinico-
pathological criteria, there is still room for improvement,
since they add only minimal value to triple-negative and
HER2-positive disease. In this article, we propose a novel,
fuzzy computational approach for breast cancer prognosti-
cation that makes it possible to combine risk prediction
models specific to each molecular breast cancer subtype.
We refer to this approach as fuzzy since the risk prediction
for a patient is computed by considering their tumor to
belong simultaneously to each of the breast cancer molecu-
lar subtypes with some probability.

Results
Development of the risk prediction model GENIUS
The novel, fuzzy computational approach we designed for
breast cancer prognostication enabled us to build a new risk
prediction model, called GENIUS (Gene Expression prog-
Nostic Index Using Subtypes). This three-step model is
illustrated in Figure 1. Basically, the first step is fuzzy sub-
type identification by assessing the probability of a patient
belonging to each of the three breast cancer molecular sub-
types (ER-/HER2-, HER2+ and ER+/HER2-); the second
step identifies the prognostic gene signatures specific to
each subtype and/or uses existing signatures; and the third
step combines the probabilities with the corresponding sub-
type signature scores, which then results in the final
GENIUS risk prediction score. We focused our survival
analysis on untreated node-negative patients in order to
build a prognostic model for early stage breast cancer and
to avoid any confounding factors due to treatment effects
on survival (untreated).
Identification of the breast cancer molecular subtypes
To assess the probability of a patient belonging to each of
the three molecular subtypes, we used model-based cluster-
ing in a two-dimensional space [8,9]. These two dimensions
were defined by the ESR1 and ERBB2 module scores (rep-
resenting the ER and HER2 phenotypes, respectively),
since these genes were shown to be the main discriminators
for breast cancer subtyping as confirmed by Kapp et al. [2].
In a database of more than 3,300 primary breast tumors
retrieved from multiple public datasets (Figure S1 and
Table S1 in Additional file 1), we observed a high propor-
tion of well characterized ER+/HER2- subtype (48%) and
lower proportions of well characterized ER-/HER2- (20%)
and HER2+ (12%) subtypes (Figure 2), which concurs with
the literature [15-17]. However, we also found that the
tumor subtype for a significant proportion of patients is elu-
sive (Figure 2). For example, we observed that the tumor
phenotype lay between the ER+/HER2- and HER2+ molec-
ular subtypes for 13% of the population. The probabilities
of patients belonging to each of the breast cancer molecular
subtypes are provided in Table S2 in Additional file 1 and
Additional file 2.

Identification of the subtype prognostic signatures
We used VDX (a breast cancer microarray dataset intro-
duced by Wang, Minn et al. [18,19]) as a training set since
this population contained the largest sets of ER-/HER2-
(99), HER2+ (54) and ER+/HER2- (191) tumors from
node-negative patients who had not received any systemic
treatment (referred to as 'untreated/').

Many prognostic gene signatures have already been pub-
lished in the global breast cancer population, and it was
shown in a large comprehensive meta-analysis of publicly
available expression data that these signatures are informa-
tive in the ER+/HER2- subtype and that proliferation-
related genes are their common denominator [8]. Given the
considerable level of prognostic evidence in this subtype,
we did not generate a new prognostic signature for ER+/
HER2- tumors, but considered instead the proliferation
module (AURKA) [8] as the subtype signature. In contrast,
since the ER-/HER2- and HER2+ subtypes represent only
small proportions of breast tumors, very few prognostic sig-
natures have been reported thus far for these two subtypes
[8,19,20]. Therefore, here we developed a gene selection
approach taking into account the probability of a patient
belonging to these two subtypes in order to make full use of
the available microarray and survival data ('Identification of
prognostic genes' in Figure 1 and Additional file 1). We
were able to identify two stable signatures composed of 63
and 22 genes for the ER-/HER2- and HER2+ subtypes,
respectively (Figure S2 in Additional file 1). The two gene
lists selected for each subtype signature are reported in
Table S3 in Additional file 1 and in Additional file 3. Their
functional analysis is provided in section 4 of Additional
file 1.

Evaluation of the performance of GENIUS
To quantify the risk of relapse of an individual patient, we
computed the 'subtype risk scores' for each subtype sepa-
rately and combined them in a final GENIUS risk score
('Combination'; Figure 1). We then assessed the perfor-
mance of GENIUS in a validation set, which includes 745
node-negative untreated patients from five publicly avail-
able datasets (Table S1 in Additional file 1).

We evaluated the performance of GENIUS in the global
population and in the three molecular subtypes in our vali-
dation set, the molecular subtype of a patient's tumor being
defined by its maximum posterior probability.

Risk score predictions
To assess the performance of risk score predictions, we con-
sidered the predictions of GENIUS to be continuous scores.
We showed that GENIUS was significantly associated with
prognosis in the global breast cancer population, as well as
in each molecular subtype. In the global population,
GENIUS yielded a concordance index (C-index) of 0.71,
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which may be interpreted as saying that, for any time t, the
probability was at least 71% that a patient who relapsed at
time t had a risk score greater than a patient who had not
relapsed at time t. In the ER+/HER2-, ER-/HER2- and
HER2+ subtypes, GENIUS reached a C-index value of

0.70, 0.66 and 0.66, respectively (all P-values < 0.001;
detailed results are available in Table S4 in Additional file
1). Time-dependent receiver operating characteristic (ROC)
curve analysis confirmed these results (Figure 3b-e).

Figure 1 Risk prediction model design (GENIUS). Design of the fuzzy approach used to build the new risk prediction model, called GENIUS (Gene 
Expression progNostic Index Using Subtypes): (a) training phase to build GENIUS; (b) validation phase to test GENIUS in the independent dataset of 
untreated breast cancer patients. For the sake of clarity, we denoted P(ER-/HER2-), P(HER2+) and P(ER+/HER2-) by P(1), P(2) and P(3), respectively.
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Risk group predictions
Risk group predictions (binary variable representing the
low- and high-risk groups) were computed by applying a
cutoff to the continuous risk scores. Although the categori-
zation of individual risk scores into a small set of risk
groups may introduce a bias [21], this approach is intuitive,
which must be the case if the risk prediction model is to be
used in clinical practice.

The cutoff for the GENIUS risk score was selected so that
GENIUS yielded better prognostic performance than the
proliferation module (AURKA) in the training set (VDX)
using the time-dependent ROC curves (Figure 3a). This
choice was made since proliferation-related genes were
shown to drive the prognostic value of several prognostic
signatures [8,9].

The superiority of GENIUS with the selected cutoff was
confirmed in the validation set (Figure 3b-e). We observed
a significant difference between the survival curves of low-
and high-risk groups predicted by GENIUS for both the
global population (hazard ratio 3.7; 95% confidence inter-
val (CI) [2.7,5]; P = 1E-16) and all the subtypes: hazard
ratios of 3.7 (95% CI [2.5,5.5]; P = 1E-10), 2.7 (95% CI
[1.3,5.6]; P = 7E-3) and 3.9 (95% CI [1.8,8.8]; P = 8E-4) in
the ER+/HER2-, ER-/HER2- and HER2+ subtypes, respec-
tively (Figure 4). The probability of distant metastasis or
relapse free survival of the low-risk group at 5 years was
estimated at 91% in the global population, and 92%, 83%
and 89% in the ER+/HER2-, ER-/HER2- and HER2+ sub-
types, respectively.

As expected, the proportions of patients in the low-risk
group differed with respect to the subtypes (Table S5 in
Additional file 1). Indeed, we observed lower proportions
in the ER-/HER2- (40%) and HER2+ (47%) subtypes than
in the ER+/HER2- subtype (74%), these patients being gen-
erally at lower risk of relapse.

Benefit of the fuzzy approach
We sought to further investigate the benefit of the fuzzy
computational approach, which assumes that risk prediction
can be improved by considering that a patient's tumor
belongs simultaneously to each subtype with some proba-
bility. Therefore, we developed an alternative risk predic-
tion model - GENIUS CRISP - in order to emphasize this
benefit.

The design of GENIUS CRISP is identical to that of
GENIUS, except that the probabilities of a patient's belong-
ing to each subtype are not taken into account: a patient is
unequivocally assigned to the subtype having the maximum
posterior probability (section 7 of Additional file 1). In con-
trast to the fuzzy approach, this 'crisp' approach is charac-
terized by rough discontinuities at the subtype cluster
boundaries, which might introduce undesired effects
(increased variance) into the overall risk prediction perfor-
mance [22,23].

GENIUS CRISP was fitted using the same training set
(VDX) as GENIUS. We identified two subtype signatures
composed of 10 and 23 genes for the ER-/HER2- and
HER2+ subtypes, respectively. Although these subtype sig-
natures were very similar to those identified for GENIUS,
up to 15% of the prognostic genes were different in both
lists (data not shown). We then computed GENIUS CRSIP
risk predictions in our validation set. Although GENIUS
and GENIUS CRISP risk scores were highly correlated (0.9
in the global population), GENIUS yielded significantly
better performance than GENIUS CRISP, both in the global
patient population and in the ER-/HER2- subtype (Figure
5a). The superiority of GENIUS is even clearer for risk
group prediction (Figure 5b).

Comparison with current prognostic gene signatures
Furthermore, in order to determine whether GENIUS
would add prognostic information beyond what is provided
by already published gene expression signatures, we com-
pared its performance with several signatures shown to be
associated with prognosis in the global breast cancer popu-
lation or in a specific molecular subtype: GGI (gene expres-
sion grade index) [24] to represent the initially published
prognostic signatures for the global population of breast
cancer patients (that is, the GENE70 [25] and GENE76 [19]
signatures), since we had previously shown that they all
performed similarly [26]; IRMODULE (immune response
module) identified by Teschendorff et al. [20,27] in the ER-
negative breast cancers; SDPP (stroma derived prognostic

Figure 2 Proportion of subtypes in primary breast tumors. Venn 
diagram of proportions of the three molecular subtypes identified in a 
database of 3,537 breast cancer patients. We considered a threshold of 
1% for the uncertainty of a patient belonging to a specific subtype. 
Therefore, patients have a tumor of a unique subtype if the posterior 
probability of belonging to that subtype exceeds 99%.

ER-/HER2- HER2+

ER+/HER2-

48%

2%

1%20%

4%

12%

13%



Haibe-Kains et al. Genome Biology 2010, 11:R18
http://genomebiology.com/2010/11/2/R18

Page 5 of 18

Figure 3 Time-dependent ROC curves at 5 years for the risk score predictions computed by GENIUS and AURKA. Training set: in the (a) global 
population of breast cancer patients, to illustrate the cutoff selected for risk group prediction (green lines). Validation set: in the (b) global population, 
the (c) ER+/HER2-, (d) ER-/HER2- and (e) HER2+ subtypes. AUC, area under the curve.
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predictor) representing the stroma-derived prognostic pre-
dictor identified by Finak et al. [28] and shown to perform
well with ER+ and HER2+ tumors; and the in silico derived
PLAU and STAT1 modules, since our group [8] showed
that the immune response module (STAT1) was prognostic
in the ER-/HER2- and HER2+ subtypes, while the tumor
invasion module (PLAU) was prognostic in the HER2+
subtype only.

Risk score predictions
GENIUS performed significantly better than all the evalu-
ated gene signatures in the global population of patients
(Figure 6a; Table S4 in Additional file 1). However,
depending on the signature, the superiority of GENIUS was
not always significant in the subtypes in which a particular
signature was originally shown to be prognostic. For exam-
ple, STAT1 and IRMODULE were highly prognostic in the
ER-/HER2- and HER2+ subtypes, while SDPP was associ-
ated with prognosis in the ER+/HER2- and HER2+ sub-

Figure 4 Survival curves for GENIUS risk group predictions. Kaplan-Meier survival curves for GENIUS risk group predictions in the (a) global pop-
ulation, the (b) ER+/HER2-, (c) ER-/HER2- and (d) HER2+ subtypes of the validation set.
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Figure 6 Forest plot of the concordance indices for GENIUS and the state-of-the-art prognostic signatures. Forest plot of the concordance 
indices for GENIUS and the current prognostic signatures (AURKA, GGI, STAT1, PLAU, IRMODULE and SDPP) risk predictions, with respect to the sub-
types in the validation set: (a) risk score predictions; (b) risk group predictions. The P-values at the right-hand side of the forest plot were computed 
from the statistical test of superiority of GENIUS.
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types. We further computed the time-dependent ROC
curves at 5 years of the risk score predictions of GENIUS
and the existing gene signatures (Figure S5 in Additional
file 1) and observed results similar to that of the C-index.
The correlation between GENIUS risk score predictions
and the current gene signatures are provided in Figure S4
and section 6.1, respectively, in Additional file 1.

Risk group predictions
The risk group predictions for the other signatures were
computed by applying a cutoff such that the proportions of
patients in the low- and high-risk groups were respected as
defined by GENIUS. We then compared the performance of
GENIUS with the existing gene signatures and observed
results similar to that of the risk score predictions (Figure
6b and Table S6 in Additional file 1). Indeed, GENIUS per-
formed significantly better than the other evaluated signa-
tures in the global population of patients. In contrast, in the
ER-/HER2- and HER2+ subtypes, STAT1 and IRMODULE
were particularly competitive, as was SDPP in the HER2+
subtype only.

In addition to the comparison to individual gene signa-
tures, we sought to further compare GENIUS to SUB-
CLASSIF, a prognostic model that mimics the use of the
best current prognostic gene signatures according to molec-
ular subtype. This crisp risk prediction model is similar to
GENIUS CRISP, except that the gene signatures used to
compute the subtype risk scores are those already pub-
lished, that is, the IRMODULE, SDPP and AURKA signa-
tures for the ER-/HER2-, HER2+ and ER+/HER2-
subtypes, respectively. It is worth noting that we used dif-
ferent combinations of existing signatures in this frame-
work and obtained similar results (data not shown).

We assessed the performance of SUBCLASSIF in our
validation set and observed that it was outperformed by
GENIUS, this superiority being significant in the global
population of patients for risk score and group prediction
(Figures 7a and 7b, respectively). This result suggests that
combining novel subtype signatures that take into account
the probabilities of belonging to different subtypes yields a
better risk prediction model than the one using existing
prognostic gene signatures and crisp subtype identification.
The correlation between GENIUS and SUBCLASSIF risk
score predictions are provided in section 6.1 in Additional
file 1.

Comparison of GENIUS with clinical prognostic indices
In order to evaluate the potential complementarity of
GENIUS with the routinely used clinico-pathological
parameters, we compared the performance of GENIUS with
the Nottingham Prognostic Index (NPI) [29] and Adjuvant!
Online (AOL) [30]. We computed NPI risk scores from
clinical information, NPI being a simple linear combination
of nodal status, histological grade and tumor size. We used

the Adjuvant! Online website [31] to compute AOL risk
scores.

Risk score predictions
The comparison of GENIUS risk scores with those of AOL
and NPI yielded correlations of 0.27 and 0.39, respectively,
in the global population (Figure S3 in Additional file 1).
The correlations were even lower within the ER-/HER2-
and HER2+ subtypes. It is worth noting that NPI gave high
scores to the great majority of ER-/HER2- and HER2+
tumors.

We also computed the C-indices of AOL and NPI risk
score predictions (Table S4 in Additional file 1) and com-
pared them to GENIUS, as shown in Figure 8a. Although
GENIUS performed better in the global population, its
superiority did not reach significance in all molecular sub-
types. In the ER+/HER2- and HER2+ subtypes, for
instance, NPI appeared slightly better than GENIUS for
high sensitivities, as illustrated in the time-dependent ROC
curves at 5 years (Figure S5 in Additional file 1).

Risk group predictions
The risk group predictions for AOL and NPI were com-
puted by applying a cutoff that respected the proportions of
patients in the low- and high-risk groups as defined by
GENIUS. The difference in the survival curves of high- and
low-risk patients as defined by AOL and NPI was statisti-
cally significant only in the global population and the ER+/
HER2- subtype (Figure S6 in Additional file 1). GENIUS
significantly outperformed NPI and AOL in the global pop-
ulation of patients and in all subtypes, except for AOL in
the ER-/HER2- subtype and NPI in the ER+/HER2- sub-
type, where GENIUS was not significantly superior (P-val-
ues for GENIUS superiority of 0.052 and 0.23 respectively;
Figure 8b).

Combination of GENIUS and clinical prognostic indices
The low correlation of the risk score predictions of AOL
and NPI with GENIUS raised the question of whether the
gene expression and clinical classifiers have complemen-
tary value. We therefore drew the Kaplan-Meier survival
curves of GENIUS risk group predictions stratified by AOL
and NPI classifications (Figure 9). In the global population
of breast cancer patients, AOL and NPI seemed to provide
additional prognostic information to GENIUS. In the ER+/
HER2- subtype, this information seemed to be limited to
the patients classified as low-risk by GENIUS. Although
we did not observe clear improvement due to the smaller
sample sizes of the ER-/HER2- and HER2+ subtypes, AOL
and NPI were also correctly able to stratify the patients
identified as high-risk patients by GENIUS. Moreover, the
combination of GENIUS and NPI seems to be attractive for
identifying low-risk HER2+ patients (95% and 90% dis-
ease-free at 5 and 10 years, respectively). In order to assess
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Figure 8 Forest plot of the concordance indices for GENIUS and the clinical prognostic indices. Forest plot of the concordance indices for GE-
NIUS and the clinical prognostic indices (AOL and NPI) risk predictions with respect to the subtypes in the validation set: (a) risk score predictions; (b) 
risk group predictions. The P-values at the right-hand side of the forest plot were computed from the statistical test of superiority of GENIUS.
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the impact of the cutoff on the combination, we sought to
apply the standard cutoffs for NPI [32] and AOL that had
been suggested in the TRANSBIG validation studies
[33,34]. In these settings, AOL did not add significant
information to the ER+/HER2- subtype, whereas NPI
exhibited complementarity similar to that observed with the
cutoff used for the risk group predictions (Figure S7 in
Additional file 1).

Case studies
In previous sections, we showed that GENIUS significantly
outperformed current prognostic gene signatures and clini-
cal indices, especially in the global population of patients.
We used the TRANSBIG dataset [34] to illustrate the bene-
fit of using GENIUS when compared to clinical prognostic
indices (NPI and AOL) and three official gene signatures
(GGI, GENE70, and GENE76). Figures 10a-f and 11a,b

describe eight cases of breast cancer with corresponding
clinical information and outcome, subtype identification,
and official classification computed from prognostic clini-
cal models and gene signatures. Each figure represents a
specific case of interest. Figure 10a illustrates the case of a
high proliferative large ER+/HER2- tumor correctly classi-
fied as high risk by all the risk prediction models. In Figure
10b-f, we illustrate cases that highlight the benefit of using
GENIUS over clinical indices and existing gene signatures
to identify low-risk breast cancer patients. We observed that
GENIUS otperformed clinical indices when there was dis-
cordance between ER status assessed by immunohis-
tochemistry and subtype identification using gene
expression, especially with elusive tumor subtypes (Figure
10a,b,e10a,b,e). Moreover, for patients whose tumors
belonged to the ER-/HER2- and HER2+ subtypes,
GENIUS consistently outperformed the prognostic gene
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Figure 9 (See figure legend on next page.)
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signatures (Figure 10a,c,e) and clinical indices in most
cases (Figure 10a,c,f). Figures 11a,b represent cases where
GENIUS failed to predict clinical outcome. In Figure 11a,b
combination of GENIUS and clinical information such as
age and tumor size might lead to correct risk assessment for
this low proliferative ER+/HER2- tumor, relapsing after 4
years. In Figure 11b, the patient relapsed after 7.3 years
(late relapse), making her clinical outcome particularly dif-
ficult to predict. These two cases do highlight possible
drawbacks from using GENIUS, that is, the absence of age
and tumor size information in the model and the potentially
poor prediction for late relapses given the different biology
for these tumors [35]. Additional comments in Figures 10
and 11 further highlight the potential improvements and
drawbacks associated with GENIUS.

Discussion
In this paper, we introduce a new approach for breast cancer
prognostication using gene expression profiling data and
taking into account the molecular heterogeneity of breast
cancer. This fuzzy computational approach was developed
to respond to the major criticism raised with regard to the
great majority of gene signatures reported so far, namely
that these are only able to identify high- and low-risk
patients within ER-positive disease [8,9]. While it is clear
that patients with HER2+ and ER-/HER2- breast cancer
have an overall prognosis that is worse than that of patients
with ER+ disease, some of the former do have a better clin-
ical outcome. However, only few studies have so far
attempted to consider the molecular heterogeneity of
HER2+ and ER-/HER2- breast cancer and to derive a prog-
nostic predictor for these subtypes [8,20,28].

In 2005, Wang and colleagues [19] were the first to pro-
pose the development of a prognostic model by dividing the
global population of patients into subgroups based on their
ER status. Although the approach seemed appealing and
their GENE76 signature performed well, there was still
room for improvement. First, the authors considered only
two subgroups of patients (ER- and ER+) without taking
into account the heterogeneity of HER2+ tumors. Second,
the prognostic model specifically developed for ER- tumors
was trained on few samples (35) and performed poorly in
validation studies [34,36].

In the meta-analyses recently published by our group we
observed that the subtype for many breast tumors remains
elusive, their phenotype being intermediate between several
subtypes. Taking into account this observation, we devel-
oped a novel, fuzzy computational approach to build the

risk prediction model GENIUS, which is able to determine
the prognosis of individual breast cancer patients.

The first step of our approach, the fuzzy subtype identifi-
cation, consists in assessing the probability that a patient
belongs to each of the molecular subtypes (ER-/HER2-,
HER2+ or ER+/HER2-). We demonstrated that our two-
dimensional clustering model, which considered gene
expression modules representing the ER and HER2 pheno-
types more precisely than ER and HER2 mRNA levels, was
consistently able to identify the different molecular sub-
types across 20 publicly available data sets. Although
molecular subtype was clearly identified for the majority of
patients, one-fifth of patients have elusive tumor subtypes,
rendering their cases difficult for risk prediction.

The second step involves identifying prognostic genes
through a selection procedure that takes into account the
probabilities that a patient belongs to each molecular sub-
type, and/or uses current gene signatures. We used the pro-
liferation module AURKA for the ER+/HER2- subtype
since we had shown previously that this set of proliferation-
related genes was highly prognostic in this subtype [8] and
was the common denominator of most of published prog-
nostic gene signatures [8,9]. In contrast to the ER+/HER2-
subtype, the prognosis of the ER-/HER2- and HER2+ sub-
types has been the subject of only few studies, which is why
we developed new signatures for these subtypes. Interest-
ingly, our HER2+ subtype signature appeared to be strongly
correlated to the immune response modules developed by
Teschendorff et al. [20] and by our own group [8]. The
immune response information contained in this subtype sig-
nature was further confirmed by the functional analysis we
performed using Ingenuity Pathways. Our ER-/HER2- sub-
type signature also correlated with the immune response
modules [8,20], although to a lesser extent than the HER2+
signature did. These results suggest that studying the
immune response mechanisms in these particular subgroups
of patients might help us to better understand their tumors
and to develop efficient novel targeted therapies.

The third step to our approach consists in combining the
probabilities that a patient belongs to each molecular sub-
type with the corresponding subtype prognostic signature in
order to derive a final GENIUS risk prediction score. We
showed that GENIUS was highly prognostic in the global
population and in all breast cancer subtypes, both when
considering GENIUS as a continuous or binary variable.
GENIUS was able to identify a significant proportion of
low-risk patients within the high-risk breast cancer sub-
types ER-/HER2- and HER2+. When we compared
GENIUS with SUBCLASSIF, the risk prediction model

(See figure on previous page.)
Figure 9 Survival curves for the combination of GENIUS and the clinical prognostic indices risk group predictions. Kaplan-Meier survival 
curves for the combination of GENIUS and AOL/NPI predictions in the (a) AOL and (b) NPI global population, the (c) AOL and (d) NPI ER+/HER2-, the 
(e) AOL and (f) AOL ER-/HER2- and the (g) AOL and (h) NPI HER2+ subtypes of the validation set.
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Figure 10 (See figure legend on next page.)
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using the best existing gene signatures according to sub-
type, we observed that the fuzzy approach used for
GENIUS yielded significantly better performance. More-
over, we showed that GENIUS CRISP, the version of
GENIUS that is not fuzzy because it does not take into
account the probabilities of a patient belonging to each sub-
type, yielded poorer performance. All of these results
strongly support the benefits of our fuzzy approach for
breast cancer prognostication. However, although GENIUS
was validated in a large retrospective dataset of 745
untreated patients, a randomized clinical trial such as MIN-
DACT [37] would be required to properly evaluate the ben-
efit from using GENIUS in clinical practice.

A criticism raised in recent years with respect to the exist-
ing prognostic gene signatures is that they may add little
information beyond what is available when using the clas-
sic clinico-pathologic parameters according the optimal
clinical guidelines. To that end, we considered the NPI and
AOL as the references for assessing the risk of recurrence.
The prognostic information provided by AOL and NPI then
seemed to be limited to the ER+/HER2- subtype. Because

we could not compute AOL and NPI on the training set
(VDX) due to missing clinical information, we were unable
to develop a version of GENIUS fully integrating microar-
ray and clinical data, and to test it on the validation set.
However, we observed that the combination of the risk
group classification of GENIUS and the clinical guidelines
in the validation set might considerably improve the predic-
tion of clinical outcome. Indeed, both AOL and NPI were
able to further refine the GENIUS classification in the
global population of patients. For the ER+/HER2- subtype,
NPI provided a much clearer separation than AOL in the
low-risk group of patients, although it takes neither the
patient's age nor ER status into account. We might thus
hypothesize that within this subgroup of patients with low
proliferative tumors, tumor size is the relevant parameter to
further refine prognosis in the node-negative breast cancer
population. AOL and NPI exhibited only weak prognosis
improvement over the GENIUS classification for the ER-/
HER2- and HER2+ subtypes. Interestingly, when we did
consider the published cutoffs, AOL no longer added sig-
nificant information to the ER+/HER2- subtype, underlin-

Figure 11 Study of two breast cancer cases highlighting drawbacks of using GENIUS. (a,b) Two cases of breast cancer patients from the TBG 
dataset (breast cancer microarray dataset introduced by Desmedt et al. [34]) where prognostic clinical indices and gene signatures are compared to 
GENIUS. The boxes contain relevant comments highlighting the drawbacks of using GENIUS.
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Figure 10 Study of six breast cancer cases highlighting benefits of using GENIUS. (a-f) Six cases of breast cancer patients from TBG dataset 
(breast cancer microarray dataset introduced by Desmedt et al. [34]) where prognostic clinical indices and gene signatures are compared to GENIUS. 
The boxes contain relevant comments highlighting the benefits of using GENIUS
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ing the importance of the cutoff in evaluating a prognostic
indicator.

To further compare GENIUS with prognostic clinical
indices and current gene signatures, we illustrated eight
breast cancer cases retrieved from the TRANSBIG valida-
tion study along with the different classifications. We
observed that GENIUS was able to identify more low-risk
patients, especially when there was discordance between
subtypes identified by immunohistochemistry and by gene
expression.

Although the GENIUS methodology was used for prog-
nostication in this work, it might be particularly effective to
predict response/resistance to anticancer treatments as well.
New predictive models using our fuzzy computational
approach could be developed by adapting the fuzzy subtype
identification step to the biological processes underlying
the treatments of interest. Moreover, integrating different
sources such as genomic, epigenetic and proteomic data, in
addition to transcriptomics, might further improve the per-
formance of the current GENIUS model.

Conclusions
We report here a novel, fuzzy computational approach to
building a risk prediction model to assess breast cancer
prognosis that takes into account breast cancer heterogene-
ity. We have shown that the fuzziness of the approach
yielded better performance than a crisp integration of sub-
type identification and prognostic gene signatures.

Materials and methods
We developed a fuzzy computational approach to build a
new prognostic index for early breast cancer, called
GENIUS, which is illustrated in Figure 1. Our method to
derive this index is based on a 'divide-and-conquer' strat-
egy, dividing the original problem into simpler ones whose
solutions can be combined to obtain a global solution [23].
In this study, the global population of breast cancer patients
was divided into fuzzy molecular subtypes for which spe-
cific risk prediction models were used and finally combined
to get a global risk prediction model. GENIUS was imple-
mented in an R [38] package called genefu, available from
the Comprehensive R Archive Network [39].

Gene expression data
Gene expression datasets were retrieved from public data-
bases or authors' websites: the 20 datasets used in our anal-
ysis are described in Table S1 in Additional file 1 and
sketched in Figure S1 in Additional file 1. We used normal-
ized data (log2 intensity in single-channel platforms or log2
ratio in dual-channel platforms) as published by the original
studies. Hybridization probes were mapped to Entrez
GeneID as in Shi et al. [40], using RefSeq and Entrez data-
base version 2007.01.21. When multiple probes were
mapped to the same GeneID, the one with the highest vari-

ance in a particular dataset was selected to represent the
GeneID.

Survival data
For the survival analysis, we considered only node-negative
untreated patients (that is, having received neither chemo-
therapy nor hormone therapy after initial surgical resection
with or without radiotherapy). We used distant metastasis
free survival as the survival endpoint. However, when dis-
tant metastasis free survival was not available (for example,
UPP, a breast cancer microarray dataset introduced by
Miller et al. [41]), we used relapse free survival. We cen-
sored the survival data at 10 years in order to have compa-
rable follow-up across the different studies [26,34].

Fuzzy risk prediction model GENIUS
In this paper we illustrate the methodology employed to
develop the risk prediction model GENIUS, which inte-
grates the fuzzy identification of subtypes with novel or
existing gene signatures.

Fuzzy subtype identification
In order to identify the molecular subtypes of breast cancer,
we performed model-based clustering in a two-dimensional
space defined by the ESR1 and ERBB2 module scores, rep-
resenting the ER and HER2 phenotypes, respectively [8].
Once fitted to the training set, this clustering model returns
a set of probabilities of a patient belonging to each cluster
(called subtype). These probabilities are denoted by P(s)
where s e S = {ER-/HER2-,HER2+,ER+/HER2-} are the
subtypes. We applied this clustering model to several inde-
pendent datasets to assess its quality and robustness.

Identification of prognostic genes
In order to reduce the dimensionality of the gene expression
data, we filtered the probes as follows: because we used
Affymetrix and Agilent datasets in our survival analysis, we
kept only the common genes between these two platforms
(10,540 genes); we kept 10% of the genes for which the
variance was the largest in the training set.

In order to identify prognostic gene signatures, we used a
ranking-based gene selection procedure. The score given to
each gene is based on the significance of the concordance
index [42] computed by assuming asymptotical normality
[43]. We introduced a weighted version of the concordance
index in order to select genes relevant for a specific subtype
s. The weights were defined as the probability of a patient
belonging to the subtype s (section 3 of Additional file 1).

The only hyperparameter to tune was the signature size k,
that is, the number of selected genes in the signature. To do
so, we assessed the signature stability with respect to its
size by re-sampling the training set [44-46].
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Model building
For a subtype s, the subtype risk score, denoted by Rs, was
defined as the weighted combination of all the gene expres-
sions in the corresponding signature:

where Q is the set of genes in the signature, nQ is the num-
ber of genes in Q, xi is the expression of gene i, and wi is
either -1 or +1 depending on its concordance index (wi = 1
if concordance index <0.5, +1 otherwise). Each subtype
risk score was scaled such that quantiles 2.5% and 97.5%
equaled -1 and +1, respectively. This scaling was robust to
outliers and ensured that the risk score lay approximately in
[-1,+1], allowing for comparison between datasets using
different microarray technology and normalization.

Combination
The final risk score for a patient was defined as the
weighted combination of the subtype risk scores:

where P(s) is the probability of belonging to the subtype s
such that . As the sum of the probabilities

equals 1, the final risk score has the same scale as the sub-
type risk scores. This continuous value quantifies the risk of
a patient to relapse, with low and high values denoting low
risk and high risk, respectively. We used the final risk score
to derive risk groups on the basis of a cutoff defined on the
training set.

Crisp risk prediction model GENIUS CRISP
In order to assess whether the fuzziness of the GENIUS
approach improved the overall prognostic ability of the
model, we developed a crisp version of GENIUS, called
GENIUS CRISP (section 5 of Additional file 1). The design
of this risk prediction model is identical to GENIUS except
that the probabilities of belonging to each subtype are not
taken into account. Indeed, the subtype of each tumor is
univocally determined by the maximum posterior probabil-
ity estimated during the subtype identification step. For
instance, the probabilities {P(ER-/HER2-), P(HER2+),
P(ER+/HER2-)} = {0.1, 0.8, 0.2} are transformed into {0,
1, 0}.

Clinical prognostic indices
In order to compare our risk prediction model with the best
current clinical prognostic indices, we computed risk pre-
dictions using the NPI [32] and AOL version 8.0 [47]. NPI
takes into account tumor grade and size and nodal status
(the latter being negative for all patients in this study). AOL
calculates 10-year survival probability based on a patient's
age, tumor size and grade, tumor ER status and nodal sta-
tus.

Current prognostic gene signatures
In order to compare our risk prediction model with other
gene signatures shown to be prognostic in the global popu-
lation of breast cancer patients or in specific molecular sub-
types, we computed the risk predictions of these signatures
using the alternative computational method introduced in
Desmedt et al. [8]. Although this method may differ from
the algorithms used in the original publications, it is able to
yield similar performance [8]. Moreover, the strategy used
to build our new prediction model (Figure 1) makes it pos-
sible to plug these signatures into the subtype signatures in
order to assess their potential benefit at the level of the
whole model.

Crisp risk prediction model SUBCLASSIF
In order to mimic the use of the best current prognostic
gene signatures according to molecular subtype, we devel-
oped a crisp risk prediction model, similar to GENIUS
CRISP, except that the gene signatures used to compute the
subtype risk scores are those already published. This risk
prediction model, called SUBCLASSIF (section 6 of Addi-
tional file 1), used the IRMODULE, SDPP and AURKA
signatures for the ER-/HER2-, HER2+ and ER+/HER2-
subtypes, respectively.

Performance assessment and comparison
We assessed the performance of the risk score predictions
(continuous variable) using the concordance index (C-
index) [42], the time-dependent ROC curve [48] and its
corresponding area under the curve as implemented in the R
package survcomp [49]. The performance of the risk group
predictions (binary variable, low- and high-risk groups)
was assessed using the concordance index and the hazard
ratio estimated through Cox's model. All Cox's models
were stratified by dataset, allowing for different baseline
hazard functions between cohorts. We statistically com-
pared the performance of the risk score and risk group pre-
dictions through C-index by using a paired Student t-test
[26,50].

Gene ontology and functional analysis
Gene ontology analyses were performed using Ingenuity
Pathways Analysis tools [51], a web-delivered application
that enables researchers to discover, visualize, and explore
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molecular interaction networks in gene expression data. For
a more detailed description of the methods, see Additional
file 1.

Additional material
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