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Abstract

We introduce Quake, a program to detect and correct errors in DNA sequencing reads. Using a maximum likeli-
hood approach incorporating quality values and nucleotide specific miscall rates, Quake achieves the highest accu-
racy on realistically simulated reads. We further demonstrate substantial improvements in de novo assembly and
SNP detection after using Quake. Quake can be used for any size project, including more than one billion human
reads, and is freely available as open source software from http://www.cbcb.umd.edu/software/quake.

Rationale

Massively parallel DNA sequencing has become a promi-
nent tool in biological research [1,2]. The high-through-
put and low cost of second-generation sequencing
technologies has allowed researchers to address an ever-
larger set of biological and biomedical problems. For
example, the 1000 Genomes Project is using sequencing
to discover all common variations in the human genome
[3]. The Genome 10K Project plans to sequence and
assemble the genomes of 10,000 vertebrate species [4].
Sequencing is now being applied to a wide variety of
tumor samples in an effort to identify mutations asso-
ciated with cancer [5,6]. Common to all of these projects
is the paramount need to accurately sequence the sample
DNA.

DNA sequence reads from Illumina sequencers, one of
the most successful of the second-generation technolo-
gies, range from 35 to 125 bp in length. Although
sequence fidelity is high, the primary errors are substitu-
tion errors, at rates of 0.5-2.5% (as we show in our
experiments), with errors rising in frequency at the 3’
ends of reads. Sequencing errors complicate analysis,
which normally requires that reads be aligned to each
other (for genome assembly) or to a reference genome
(for detection of mutations). Mistakes during the overlap
computation in genome assembly are costly: missed over-
laps may leave gaps in the assembly, while false overlaps
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may create ambiguous paths or improperly connect
remote regions of the genome [7]. In genome re-sequen-
cing projects, reads are aligned to a reference genome,
usually allowing for a fixed number of mismatches due
to either SNPs or sequencing errors [8]. In most cases,
the reference genome and the genome being newly
sequenced will differ, sometimes substantially. Variable
regions are more difficult to align because mismatches
from both polymorphisms and sequencing errors occur,
but if errors can be eliminated, more reads will align and
the sensitivity for variant detection will improve.
Fortunately, the low cost of second-generation sequen-
cing makes it possible to obtain highly redundant coverage
of a genome, which can be used to correct sequencing
errors in the reads before assembly or alignment. Various
methods have been proposed to use this redundancy for
error correction; for example, the EULER assembler [9]
counts the number of appearances of each oligonucleotide
of size k (hereafter referred to as k-mers) in the reads. For
sufficiently large k, almost all single-base errors alter
k-mers overlapping the error to versions that do not exist
in the genome. Therefore, k-mers with low coverage, parti-
cularly those occurring just once or twice, usually repre-
sent sequencing errors. For the purpose of our discussion,
we will refer to high coverage k-mers as trusted, because
they are highly likely to occur in the genome, and low cov-
erage k-mers as untrusted. Based on this principle, we can
identify reads containing untrusted k-mers and either cor-
rect them so that all k-mers are trusted or simply discard
them. The latest instance of EULER determines a coverage
cutoff to separate low and high coverage k-mers using a
mixture model of Poisson (low) and Gaussian (high)
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distributions, and corrects reads with low coverage k-mers
by making nucleotide edits to the read that reduce the
number of low coverage k-mers until all k-mers in the
read have high coverage [10]. A number of related meth-
ods have been proposed to perform this error correction
step, all guided by the goal of finding the minimum num-
ber of single base edits (edit distance) to the read that
make all k-mers trusted [11-14].

In addition, a few alternative approaches to error correc-
tion should be mentioned. Past methods intended for San-
ger sequencing involve multiple sequence alignments of
reads rendering them infeasible for short read datasets
[15-17]. More recently, a generalized suffix tree of the
reads was shown to be an effective data structure for
detecting and correcting errors in short reads [18,19]. De
Bruijn graph-based short read assemblers [10,11,13,20,21]
perform substantial error correction of reads in the de
Bruijn graph. For example, short dead end paths are indi-
cative of a sequencing error at the end of a read and can
be removed, and ‘bubbles’ where a low coverage path
briefly diverges from and then reconnects to high coverage
nodes are indicative of sequencing errors at the middle of
a read and can be merged. Finally, a number of methods
have been proposed to cluster reads and implicitly correct
sequencing errors in data where the targets vary in abun-
dance such as sequencing of small RNAs or 16 s rIRNA
[22-25].

Although methods that search for the correct read
based on minimizing edit distance will mostly make the
proper corrections, edit distance is an incomplete mea-
sure of relatedness. First, each position in a sequencing
read is assigned a quality value, which defines the prob-
ability that the basecall represents the true base. Though
questions have been raised about the degree to which
quality values exactly define the probability of error [26],
newer methods for assigning them to base calls demon-
strate substantial improvements [27-31], and for our pur-
pose of error correction, the quality values can be useful
even if they only rank one base as more likely to be an
error as another. We should prefer to edit a read at these
lower quality bases where errors are more likely, but edit
distance treats all bases the same regardless of quality.
Furthermore, specifics of the Illumina technology cause
certain miscalls to be more likely than others. For exam-
ple, bases are called by analysis of fluorescent output
from base-incorporating chemical reactions, and A and C
share a red detection laser while G and T share a green
detection laser. Thus, A and C are more likely to be mis-
taken for each other than for G or T [26]. Edit distance
treats all error substitutions as equally likely.

In this paper, we introduce a new algorithm called
Quake to correct substitution errors in sets of DNA
sequencing reads produced as part of >15x coverage
sequencing projects, which has become commonplace
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thanks to the efficiency of second-generation sequencing
technologies. Quake uses the k-mer coverage framework,
but incorporates quality values and rates of specific mis-
calls computed from each sequencing project. In addi-
tion, Quake incorporates a new method to choose an
appropriate coverage cutoff between trusted k-mers
(those that are truly part of the genome) and erroneous
k-mers based on weighting k-mer counts in the reads
using the quality values assigned to each base. On simu-
lated data using quality values from real reads, Quake is
more accurate than previous methods, especially with
relatively long Illumina reads. Correcting reads guided
by edit distance alone, without the use of quality values,
results in many more improperly corrected reads. These
reads are then chimeric, containing sequence from two
distinct areas of the genome, which can be a major pro-
blem for assembly software.

Finally, we explore the impact of error correction with
Quake on two important bioinformatics applications - de
novo assembly and detection of variations with respect to
a reference genome. Even a sophisticated assembler such
as Velvet [20], which performs its own error correction
using the assembly graph, benefits from pre-processing
the reads with Quake. SOAPdenovo [13], a parallel
assembler capable of assembling mammalian-size data-
sets, also produces better assemblies after error correc-
tion. For variant detection, correcting errors before
mapping reads to a reference genome results in more
reads aligned to SNP locations and more SNPs discov-
ered. Note that Quake and other correction methods that
rely on coverage of k-mers are inappropriate for applica-
tions where low coverage does not necessary implicate a
sequencing error such as metagenomics, RNA-Seq, and
ChIP-Seq.

Quake is freely available as open source software from
our website [32] under the Perl Artistic License [33].

Results and discussion

Accuracy

The two goals of error correction are to cleanly separate
reads with errors from reads without errors and to prop-
erly correct the reads with errors. To assess Quake’s abil-
ity to accurately complete these tasks, we simulated
sequencing reads with errors from finished genomes
(using an approach comparable to the ‘Maq simulate’
program [34]) and compared Quake’s corrections to the
true reference. For each dataset, we categorized reads
and their corrections into four outcomes. As positive out-
comes, we counted the number of reads that were prop-
erly corrected to their original state or trimmed such that
no errors remained. As negative outcomes, we counted
the number of reads mis-corrected producing a false
sequence or left uncorrected even though they contained
errors. Reads were simulated by choosing a position in
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the reference genome, using the quality values from an
actual Illumina sequencing read, and changing the
nucleotides according to the probabilities defined by
those quality values. Dohm et al. measured the bias in
Illumina specific nucleotide to nucleotide miscall rates by
sequencing reads from Helicobacter acinonychis and Beta
vulgaris, aligning them to high quality reference gen-
omes, and counting the number of each type of mis-
match in the alignments [26]. At simulated errors, we
changed the nucleotide according to these frequencies.

To compare Quake’s accuracy to that of previous
error correction programs, we corrected the reads using
EULER [10], Shrec [18], and SOAPdenovo [13] on a
four core 2.4 GHz AMD Opteron machine. Quake and
the other k-mer based correction tools used k = 15.
SOAPdenovo’s error correction module does not con-
tain a method to choose the cutoff between trusted and
untrusted k-mers, so we tried a few appropriate values
and report the best results. We similarly tried multiple
values for Shrec’s strictness parameter that is used to
help differentiate true and error reads via coverage.
These are very sensitive parameters, and leaving them to
the user is a critical limitation of these programs. Alter-
natively, EULER and Quake determine their parameters
automatically using the data.

Table 1 displays the average of the accuracy statistics
after five iterations of simulated 36 bp reads to 40x cov-
erage (5.5 M reads) from E. coli 536 [GenBank:
NC_008253]. Quality value templates were taken from
the sequencing of E. coli K12 substrain MG1655 [SRA:
SRX000429]. The datasets contained an average of 1.17
M reads with errors. Of the reads that Quake tried to
correct, 99.83% were corrected accurately to the true
sequence. Quake properly corrected 88.3% (90.5%
including trims) of error reads, which was 6.9% more
reads than the second best program SOAPdenovo, made
2.3x fewer mis-corrections than SOAPdenovo, and
allowed 1.8x fewer reads with errors. The 5265.4 error
reads that Quake keeps have errors that only affect a
few k-mers (at the end of the read), and these k-mers
happen to exist elsewhere in the genome. We could not
successfully run EULER on these short reads.

We performed the same test using five iterations on
40x coverage (1.6 M reads) of 124 bp reads from E. coli
536. Most of these reads had very low quality suffixes

Table 1 Simulated 36 bp E. coli
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expected to contain many errors. Quake handled these
reads seamlessly, but the other programs produced very
poor results. Thus, we first trimmed every read r to the
length

Ir]

l = arg max
X

t-q; (1)

i=x

By setting ¢ = 3, we mainly trim nucleotides with qual-
ity value 2 off the ends of the reads, but will trim past a
higher quality base call if there are a sufficient number
of nucleotides with quality <2 preceding it. On this data
(where full results are displayed in Table 2), Quake is
99.9% accurate on reads that it tries to correct. Of the
297 K error reads, Quake corrected 95.6% (97.9%
including trims), 2.5% more than SOAPdenovo, the sec-
ond most effective program. However, SOAPdenovo
makes many more mistakes on the longer reads by mis-
correcting 28.9x more reads and keeping 11.9x more
reads with errors in the set. Shrec and EULER correct
far fewer reads and mis-correct more reads than Quake.

To demonstrate Quake’s ability to scale to larger gen-
omes, we simulated 325 million 124 bp reads from the
249 Mbp human chromosome 1 (version hgl9), which
provided 34x coverage after trimming. Due to the larger
size of the sequencing target, we counted and corrected
18-mers in the reads. Of the 15.23 M reads containing
errors, Quake corrected 12.83 M (84.2%) and trimmed
to a correct prefix another 0.82 M (5.4%). Because we
could not successfully run SOAPdenovo using 18-mers,
we corrected using 17-mers, a reasonable choice given
that the authors of that software chose to correct reads
using 17-mers for the entire human genome [13].
Quake corrected 11% more reads than SOAPdenovo,
reduced mis-corrections by 64%, and kept 15% fewer
error reads. EULER produced very poor correction
results, for example, correcting less than half as many
reads as Quake with more mis-corrections and error
reads kept. On a dataset this large, Shrec required more
memory than our largest computer (256 GB).

Relative to the 124 bp simulated reads from E. coli,
Quake’s attempted corrections were accurate at a lower
rate (99.02%) and Quake kept more error reads in the
dataset (1.11 M, 7.27%). This is caused by the fact that

Corrections Trim corrections Mis-corrections Error reads kept Time (min)
Quake 10357094 26337.0 1744.0 5537.0 14.2
SOAPdenovo 969666.4 120529.0 39128 92884 124
Shrec 964431.8 0.0 165422.0 417336 876

Simulated E. coli 36 bp reads at 40x coverage averaged over five runs. For each method, we counted the number of reads that were properly corrected to their
original state (Corrections), trimmed such that no errors remained (Trim corrections), mis-corrected to false sequence (Mis-corrections), and contained errors but
were kept in the set (Error reads kept). Quake corrects more reads while mis-correcting fewer reads and keeping fewer reads with errors than all programs.
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Table 2 Simulated 124 bp E. coli
Corrections Trim corrections Mis-corrections Error reads kept Time (min)
Quake 2837694 6581.2 243.0 3936 118
SOAPdenovo 2767704 29426 70194 5490.2 169
Shrec 165942.7 0.0 331403 96626.7 97.1
EULER 2283164 165774 3763.0 414.8 6.9

Simulated E. coli 124 bp reads at 40x coverage averaged over five runs. Column descriptions are the same as Table 1. Quake corrects more reads while mis-

correcting far fewer reads and keeping fewer reads with errors than all programs.

the human genome contains far more repetitive ele-
ments than E. coli, such as the LINE and SINE retro-
transposon families [35]. The more repetitive the
genome is, the greater the chance is that a sequencing
error will merely change one trusted k-mer to another
trusted k-mer, hiding the error. To quantify this prop-
erty of the two genomes, we computed the percentage
of all possible single base mutations to k-mers in each
genome which create k-mers that also exist in the gen-
ome. In E. coli 536, this is true for 2.25% of 15-mer
mutations, and in chromosome 1 of the human genome,
it is true for 13.8% of 18-mer mutations. Increasing the
k-mer size does little to alleviate the problem as still
11.1% of 19-mer mutations are problematic. Neverthe-
less, allowing a small percentage of error reads may not
be terribly problematic for most applications. For exam-
ple, genome assemblers will notice the lower coverage
on the paths created by these reads and clean them out
of the assembly graph.

Genome assembly
In de novo genome assembly, the goal is to build contig-
uous and unambiguous sequences called contigs from
overlapping reads. The traditional formulation of the
assembly problem involves first finding all overlaps
between reads [36], taking care to find all true overlaps
between reads sequenced from the same genome loca-
tion and avoid false overlaps between reads sequenced
from remote regions [7]. Because of sequencing errors,
we must allow mismatches in the overlap alignments to
find all true overlaps, but we cannot allow too many or
false overlaps will be found and fragment the assembly.
With short reads, we must allow a short minimum over-
lap length, but in the presence of sequencing errors,
particularly when these errors tend to occur at the ends
of the reads, we may frequently overlook true overlaps
(see Figure 1). A de Bruijn graph formulation of the
assembly problem has become very popular for short
reads [10,11,13,20], but is very sensitive to sequencing
errors. A substantial portion of the work performed by
these programs goes towards recognizing and correcting
errors in the graph.

Having established the accuracy of Quake for error
correction on simulated data, we measured the impact
of Quake on genome assembly by assembling the reads

before and after error correction. One assembly is better
than another if it is more connected and more accu-
rately represents the sequenced genome. To measure
connectedness, we counted the number of contigs and
scaffolds in the assembly larger than 50 bp as well as
the N50 and N90 for each, which is the contig/scaffold
size for which 50% (90%) of the genome is contained in
contigs/scaffolds of equal or larger size. Fewer contigs/
scaffolds and larger N50 and N90 values signify that the
reads have been more effectively merged into large
genomic sequences. In addition, we counted the number
of reads included in the assembly because greater cover-
age generally leads to better accuracy in consensus call-
ing. When a reference genome was available, we used it
to validate the correctness of the assembly. We aligned
all scaffolds to the reference using MUMmer [37] and
considered scaffolds that did not align for their entire
length (ignoring 35 bp on each end) at >95% identity to
be mis-assembled. We also counted the number of sin-
gle base differences between the reference and otherwise
properly assembled scaffolds. Finally, we computed the
percentage of reference nucleotides covered by some
aligning scaffold.

Velvet is a widely used de Bruijn graph-based assem-
bler that performs error correction by identifying graph
motifs that signify sequencing errors [20], but does not
use a stand-alone error correction module like EULER
[10] or SOAPdenovo [13]. Thus, we hypothesized that
Quake would help Velvet produce better assemblies. To
test this hypothesis, we corrected and assembled 152x

(a)

(b)

2 3
o) 7%

Figure 1 Alignment difficulty. Detecting alignments of short reads
is more difficult in the presence of sequencing errors (represented
as X's). (@) In the case of genome assembly, we may miss short
overlaps between reads containing sequencing errors, particularly
because the errors tend to occur at the ends of the reads. (b) To
find variations between the sequenced genome and a reference
genome, we typically first map the reads to the reference. However,
reads containing variants (represented as stars) and sequencing
errors will have too many mismatches and not align to their true
genomic location.
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Table 3 Velvet E. coli assembly
Contigs N50 N9o Scaffolds N50 N9o Breaks Miscalls Cov
Uncorrected 398 94,827 17,503 380 95,365 23,869 5 456 0.9990
Corrected 345 94,831 25,757 332 95,369 26,561 4 315 0.9992

Velvet assemblies of E. coli 36 bp paired end reads at 152x coverage. After correcting the reads, more reads are included in the assembly into fewer contigs and
scaffolds. N50 and N90 values were computed using the genome size 4,639,675 bp. The N50 value was similar for both assemblies, but N90 grew significantly
with corrected reads. Correcting the reads also improved the correctness of the assembly producing fewer mis-assembled scaffolds (Breaks) and miscalled bases

(Miscalls) and covering a greater percentage of the reference genome (Cov).

(20.8 M reads) coverage of 36 bp reads from E. coli K12
substrain MG1655 [SRA:SRX000429]. We used Velvet’s
option for automatic computation of expected coverage
and chose the de Bruijn graph k-mer size that resulted
in the best assembly based on the connectedness and
correctness statistics discussed above.

Table 3 displays the assembly statistics for E. coli with
Velvet. Quake corrected 2.44 M (11.7%) and removed
0.57 M (2.8%) reads from the dataset. After correction,
0.75 M (3.8%) more reads were included in the assem-
bly, which contained 13% fewer contigs and 13% fewer
scaffolds. Though this significant increase in connected-
ness of the assembly does not manifest in the N50
values, which are similar for both assemblies, the contig
NO90 increases by 47% and the scaffold N90 increases by
11%. With respect to correctness, the corrected read
assembly contained one fewer mis-assembled scaffold
and 31% fewer mis-called bases, and still covered slightly
more of the reference genome. This improvement was
consistent in experiments holding out reads for lesser
coverage of the genome (data not shown). As the cover-
age decreases, the distributions of error and true k-mers
blend together and the choice of cutoff must carefully
balance making corrections and removing useful reads
from low coverage regions. On this dataset, the mini-
mum coverage at which the assembly improved after
correction using Quake was 16x.

We also measured Quake’s impact on a larger assembly
with longer reads by assembling 353.7 M Illumina reads,
all of them 124 bp in length, from the alfalfa leafcutting
bee Megachile rotundata, with an estimated genome size
of 300 Mbp. (Contact the corresponding author for
details on data access.) Assembly was performed with
SOAPdenovo [13] using a de Bruijn graph k-mer size of
31 and the ‘-R’ option to resolve small repeats. Assembly

Table 4 SOAPdenovo bee assembly

of the raw uncorrected reads was quite poor because of
the very low quality suffixes of many of the 124 bp reads.
Thus, we compare assembly of quality trimmed reads
(performed as described above), reads corrected using
Quake, and trimmed reads corrected with SOAPdenovo’s
own error correction module. Quake and SOAPdenovo
corrected using 18-mers and a coverage cutoff of 1.0.
Correcting errors in the reads had a significant affect
on the quality of the assembly as seen in Table 4. In the
Quake assembly, >123 K fewer contigs were returned as
contig N50 grew by 71% and contig N90 more than
doubled compared to the standard approach of only
trimming the reads before assembly. Similarly to the
simulated reads, Quake is able to correct more reads
than SOAPdenovo, which leads to 1.5% more reads
included in the assembly than SOAPdenovo and slightly
more than the assembly of uncorrected reads. Improve-
ments to the connectedness statistics compared to
SOAPdenovo were modest. Surprisingly, although nearly
2.5x fewer scaffolds were returned after error correction
with Quake, scaffold N50 remained virtually the same
and N90 slightly decreased. We investigated a few possi-
ble explanations for this with inconclusive results; for
example, scaffold sizes did not improve substantially
after adding back mate pairs 8 excluded due to uncor-
rectable errors. Because N50 and N90 can be somewhat
volatile and the scaffolds in the E. coli assembly above
did improve after error correction, this is potentially an
artifact of this particular dataset, that is the library sizes
used with respect to the repeat structure of the genome.

SNP detection

A second application of short reads that benefits from
error correction is detection of variations, such as single
nucleotide polymorphisms (SNPs). In such experiments,

Assembly Trimmed Only  Corrected Removed  Contigs N50 N90  Scaffolds N50 N9o Reads
Uncorrected Corrected 1460 M - 129 M 312414 2,383 198 90,201 37,138 9,960 1673 M
SOAPdenovo Corrected 1344 M 157 M 156 M 188,480 4,051 515 36,525 36,525 9,162 164.8 M

Quake 1469 M 165 M 130 M 189,621 4,076 514 37,279 37014 9255 1673 M

SOAPdenovo assemblies of Megachile rotundata 124 bp paired end reads. We trimmed the reads before correcting with SOAPdenovo, which greatly improved its
performance on our experiments with simulated data. The ‘Trimmed only’ column includes reads trimmed before and during SOAPdenovo correction. Quake
trims reads automatically during correction. Correcting the reads reduces the number of contigs and scaffolds, increases the contig sizes, and allows the
assembler to include more reads. Quake corrects more reads than SOAPdenovo which results in a slightly better assembly.
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the genome from which the reads are sequenced differs
from a reference genome to which the reads are com-
pared. The first step is to align the reads to the refer-
ence genome using specialized methods [8] that will
only allow a few mismatches between the read and
reference, such as up to two mismatches in a recent
study [38]. A read containing a SNP will start with one
mismatch already, and any additional differences from
the reference due to sequencing errors will make align-
ment difficult (see Figure 1). Furthermore, the distribu-
tion of SNPs in a genome is not uniform and clusters of
SNPs tend to appear [39]. Reads from such regions may
contain multiple SNPs. If these reads contain any
sequencing errors, they will not align causing the highly
polymorphic region to be overlooked.

To explore the benefit that error correction with Quake
may have on SNP detection, we randomly sampled reads
representing 35x from the E. coli K12 reads used above.
To call SNPs, we aligned the reads to a related reference
genome (E. coli 536 [GenBank: NC_008253]) with Bowtie
[40] using two different modes. We first mapped reads
allowing up to two mismatches to resemble the SNP call-
ing pipeline in a recent, large study [38]. We also mapped
reads using Bowtie’s default mode, which allows mis-
matches between the reference and read until the sum of
the quality values at those mismatches exceeds 70 [40].
We called SNPs using the SAMtools pileup program
[41], requiring a Phred-style base call quality >40 and a
coverage of >3 aligned reads. Having a reliable reference
genome for both strains of E. coli allowed us to compare
the SNPs detected using the reads to SNPs detected by
performing a whole genome alignment. To call SNPs
using the reference genomes, we used the MUMmer uti-
lity dnadiff which aligns the genomes with MUMmer,
identifies the optimal alignment for each region, and enu-
merates SNPs in aligning regions [37]. We treat these
SNPs as the gold standard (though there may be some
false positives in improperly aligned regions) in order to
compute recall and precision statistics for the read-based
SNP calls.

In the first experiment, 128 K additional reads of 4.12
M aligned after correcting with Quake, of which 110 K
(85.8%) aligned to SNPs, demonstrating the major bene-
fit of error correction before SNP calling. As seen in
Table 5 with these reads mapped, we discovered more
SNPs and recall increased at the same level of precision.
Supporting the hypothesis that many of these newly dis-
covered SNPs would exist in SNP-dense regions, we
found that 62% of the new SNPs were within 10 bp of
another SNP, compared to 38% for the entire set of
SNPs. On the uncorrected reads, Bowtie’s quality-aware
alignment policy mapped 165 K (4.9%) more reads than
a two mismatch policy. Similarly, many of these new
alignments contained SNPs, which led to more SNPs
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Table 5 E. coli SNP calling
Method Reads SNPs Recall Precision
mapped
Two mismatch 339 M 79,748 0.746 0.987
uncorrected
Two mismatch corrected 35T M 80,796 0.755 0.987
Quality-aware uncorrected 3.56 M 85,071 0.793 0.984
Quality-aware corrected 355 M 85,589 0.798 0.984

We called SNPs in 35x coverage of 36 bp reads from E. coli K12 by aligning
the reads to a close relative genome E. coli 536 with Bowtie using both a two
mismatch and quality-aware alignment policy and calling SNPs with SAMtools
pileup. SNPs were validated by comparing the E. coli K12 and E. coli 536
reference genomes directly. Under both alignment policies, correcting the
reads with Quake helps find more true SNPs.

discovered, increasing recall with only a slight drop in
precision. Using the quality-aware policy, slightly fewer
reads mapped to the reference after error correction
because some reads that could not be corrected and
were removed could still be aligned. However, 33.7 K
new read alignments of corrected reads were found,
which allowed the discovery of 518 additional SNPs at
the same level of precision. Thus, error correction of
the reads using Quake leads to the discovery of more
true SNPs using two different alignment policies.

In order to demonstrate the ability of Quake to scale
to larger datasets and benefit re-sequencing studies of
humans, we corrected 1.7 billion reads from a Korean
individual [SRA:SRA008175] [42]. This set includes 1.2
B 36 bp reads and 504 M 75 bp reads. Quake corrected
206 M (11.9%) of these reads, trimmed an additional
75.3 M (4.4%), and removed 344 M (19.9%). Before and
after error correction, we aligned the reads to the
human genome (NCBI build 37) and called SNPs with
Bowtie allowing two mismatches and SAMtools as
described above (though requiring the diploid genotype
to have quality 240 implicitly requires coverage >4).
Because some putative SNPs had read coverage indica-
tive of a repeat, we filtered out locations with read cov-
erage greater than three times the median coverage of
19, leaving 3,024,283 SNPs based on the uncorrected
reads. After error correction, we found 3,083,481 SNPs,
an increase of 2.0%. The mean coverage of these SNPs
was 20.1 reads, an increase of 4.8% over the coverage of
these locations in the alignments of uncorrected reads,
which should provide greater accuracy. Thus, Quake
helps detect more SNPs in larger diploid genomes as
well.

Data quality

Our experiences correcting errors in these datasets
allowed us to assess the quality of the sequencing data
used in a number of interesting ways. First, as has pre-
viously been established, nucleotide-specific error rates
in Illumina sequencing reads are not uniform [26]. For
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example, adenines were miscalled far more often as
cytosine than thymine or guanine in Megachile rotun-
data (see Figure 2). As exemplified in the figure, error
rates also differ significantly by quality value. While mis-
calls at adenines were highly likely to be cytosines at low
quality, errors were closer to uniform at high quality
positions in the read. Finally, error rates varied from
lane to lane within a sequencing project. For example,
the multinomial samples of nucleotide to nucleotide
miscall rates for every pair of six lanes from the Mega-
chile rotundata sequencing reads differed with unques-
tionably significant P-values using two sample chi
square tests.

As sequencing becomes more prevalent in biological
research, researchers will want to examine and compare
the quality of an instance (single lane, machine run, or
whole project) of data generation. Error correction with
Quake provides two simple measures of data quality in
the number of reads corrected and the number of reads
removed. Furthermore, Quake allows the user to search
for biases in the data like those described above using
bundled analysis scripts on the log of all corrections
made. Thus, researchers can detect and characterize
problems and biases in their data before downstream
analyzes are performed.
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Figure 2 Adenine error rate. The observed error rate and
predicted error rate after nonparametric regression are plotted for
adenine by quality value for a single lane of lllumina sequencing of
Megachile rotundata. The number of training instances at each
quality value are drawn as a histogram below the plot. At low and
medium quality values, adenine is far more likely to be miscalled as
cytosine than thymine or guanine. However, the distribution at high

Instances

quality is more uniform.
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Conclusions

The low cost and high throughput of second-generation
sequencing technologies are changing the face of gen-
ome research. Despite the many advantages of the new
technology, sequencing errors can easily confound ana-
lyzes by introducing false polymorphisms and fragment-
ing genome assemblies. The Quake system detects and
corrects sequencing errors by using the redundancy
inherent in the sequence data. Our results show that
Quake corrects more reads more accurately than pre-
vious methods, which in turn leads to more effective
downstream analyzes.

One way Quake improves over prior corrections
methods is by g-mer counting, which uses the quality
values assigned to each base as a means of weighting
each k-mer. The coverage distributions of error and true
k-mers cannot be separated perfectly according to their
number of appearances due to high coverage errors and
low coverage genomic regions. Yet, the choice of a cut-
off to determine which k-mers will be trusted in the
correction stage can have a significant affect on down-
stream applications like genome assembly.

Weighting k-mer appearances by quality puts more
distance between the two distributions because erro-
neous k-mers generally have lower quality than true
k-mers. Furthermore, with g-mers, the cutoff value
separating the two distributions no longer needs to be
an integer. For example, at low coverage we might use
0.95 as a cutoff, such that k-mers that appear once with
high quality bases would be trusted, but those with
lower quality would not. Such fine-grained cutoff selec-
tion is impossible with simple k-mer counting.

Quake includes a sophisticated model of sequencing
errors that allows the correction search to examine sets
of corrections in order of decreasing likelihood, thus cor-
recting the read more accurately. The model also helps
to better identify reads with multiple sets of equally good
corrections, which allows the system to avoid mis-
correcting and creating a chimeric read. At a minimum,
quality values should be included in error correction as a
guide to the likely locations of sequencing errors. In each
dataset we examined, the rates at which each nucleotide
was mis-called to other nucleotides were not uniform
and often varied according to quality. Adjusting for these
rates provides further improvements in error correction,
and distinguishes our method.

We expect Quake will be useful to researchers inter-
ested in a number of downstream applications. Correct-
ing reads with Quake improves genome assembly by
producing larger and more accurate contigs and scaf-
folds using the assemblers Velvet [20] and SOAPdenovo
[13]. Error correction removes many of the false paths
in the assembly graphs caused by errors and helps the
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assembler to detect overlaps between reads that would
have been missed. Eliminating erroneous k-mers also
significantly reduces the size of the assembly graph,
which for large genomes may be the difference between
being able to store the graph in a computer’s memory
or not [13]. In a re-sequencing application, correcting
reads with Quake allows Bowtie [40] to align many
more reads to locations in the reference genome where
there is one or more SNPs. Reads containing variants
already have differences from the reference genome;
correcting additional differences caused by sequencing
errors makes these reads easier to align and then avail-
able as input for the SNP calling program. Finally,
Quake offers a unique perspective into the quality of the
data from a sequencing experiment. The proportion of
reads corrected, trimmed, and removed are useful statis-
tics with which experiments can be compared and data
quality can be monitored. The output log of corrections
can be mined for troubling biases.

On microbial sized genomes, error correction with
Quake is fast and unobtrusive for the researcher. On lar-
ger datasets, such as a human re-sequencing, it is compu-
tationally expensive and requires substantial resources.
For the Korean individual reads, we counted k-mers on a
20-core computer cluster running Hadoop [43], which
required from two to three days. For error correction, the
data structure used to store trusted k-mers requires 4%
bits, which is 32 GB for human if k = 19. Thus, the cor-
rection stage of Quake is best run on a large shared
memory machine, where correction is parallelized across
multiple threads using OpenMP [44]. Running on 16
cores, this took a few days for the Korean individual data-
set. Future work will explore alternative ways to perform
this step that would require less memory. This way cor-
rection could be parallelized across a larger computer
cluster and made more accessible to researchers without
a large shared memory machine.

k-mer based error correction programs are affected
significantly by the cutoff separating true and error
k-mers. Improvements in k-mer classification, such as
the g-mer counting introduced by Quake, improve the
accuracy of error correction. Coverage biases in second-
generation sequencing technologies, which are largely
inexplicable outside of the affect of local GC content,
add to the difficulty [26]. Further characterization of
these biases would allow better modeling of k-mer cov-
erage and better classification of k-mers as true or error.
In more repetitive genomes, the probability increases
that a k-mer that is an artifact of an error actually does
occur in the genome. Such k-mers are not really mis-
classified, but may cause Quake to ignore a sequencing
error. To improve error correction in these cases, the
local context of the k-mer in the sequencing reads must
be taken into account. Though this was done for Sanger
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read error correction [15-17], it is not currently compu-
tationally and algorithmically feasible for high through-
put datasets containing many more reads.

Quake’s model for sequencing errors takes into
account substantial information about which types of
substitution errors are more likely. We considered using
Quake to re-estimate the probability of a sequencing
error at each quality value before using the quality
values for correction. Doing so is difficult because
Quake detects many reads that have errors for which it
cannot find a valid set of corrections and pinpoint the
errors’ locations. If Quake re-estimated quality value
error probabilities without considering these reads, the
error probabilities would be underestimated. Addition-
ally, the benefit of re-estimation is minimal because
quality values are mainly used to determine the order in
which sets of corrections are considered. Alternatively,
passing on more information from the base calling
stage, such as the probability that each individual
nucleotide is the correct one, would be very helpful.
Quake’s error model could be made more specific, the
need to learn nucleotide specific error rates would be
alleviated, and more accurate error correction could be
expected.

Methods

Quake detects and corrects errors in sequencing reads
by using k-mer coverage to differentiate k-mers trusted
to be in the genome and k-mers that are untrustworthy
artifacts of sequencing errors. For reads with untrusted
k-mers, Quake uses the pattern of trusted and untrusted
k-mers to localize the errors and searches for the set of
corrections with maximum likelihood that make all
k-mers trusted. The likelihood of a set of corrections to
a read is defined by a probabilistic model of sequencing
errors incorporating the read’s quality values as well as
the rates at which nucleotides are miscalled as different
nucleotides. Correction proceeds by examining changes
to the read in order of decreasing likelihood until a set
of changes making all k-mers trusted is discovered and
found to be sufficiently unambiguous.

Counting k-mers

Counting the number of occurrences of all k-mers in
the sequencing reads is the first step in the Quake pipe-
line. k must be chosen carefully, but a simple equation
suffices to capture the competing goals. Smaller values
of k provide greater discriminative power for identifying
the location of errors in the reads and allow the algo-
rithm to run faster. However, k cannot be so small that
there is a high probability that one k-mer in the genome
would be similar to another k-mer in the genome after a
single nucleotide substitution because these occurrences
confound error detection. We recommend setting k
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such that the probability that a randomly selected k-mer
k

from the space of 4_ (for odd k considering reverse
2

complements as equivalent) possible k-mers occurs in a
random sequence of nucleotides the size of the
sequenced genome G is ~0.01. That, is we want k such
that

2G
—5 =0.01 (2)
4

which simplifies to
k = log4 200G (3)

For an approximately 5 Mbp such as E. coli, we set k
to 15, and for the approximately 3 Gbp human genome,
we set k to 19 (rounding down for computational rea-
sons). For the human genome, counting all 19-mers in
the reads is not a trivial task, requiring >100 GB of
RAM to store the k-mers and counts, many of which
are artifacts of sequencing errors. Instead of executing
this computation on a single large memory machine, we
harnessed the power of many small memory machines
working in parallel on different batches of reads. We
execute the analysis using Hadoop [43] to monitor the
workflow, and also to sum together the partial counts
computed on individual machines using an extension of
the MapReduce word counting algorithm [45]. The
Hadoop cluster used in these experiments contains 10
nodes, each with a dual core 3.2 gigahertz Intel Xeon
processors, 4 GB of RAM, and 367 GB local disk (20
cores, 40 GB RAM, 3.6 TB local disk total).

In order to better differentiate true k-mers and error
k-mers, we incorporate the quality values into k-mer
counting. The number of appearances of low coverage
true k-mers and high copy error k-mers may be similar,
but we expect the error k-mers to have lower quality
base calls. Rather than increment a k-mer’s coverage by
one for every occurrence, we increment it by the pro-
duct of the probabilities that the base calls in the k-mer
are correct as defined by the quality values. We refer to
this process as g-mer counting. g-mer counts approxi-
mate the expected coverage of a k-mer over the error
distribution specified by the read’s quality values. By
counting g-mers, we are able to better differentiate
between true k-mers that were sequenced to low cover-
age and error k-mers that occurred multiple times due
to bias or repetitive sequence.

Coverage cutoff

A histogram of g-mer counts shows a mixture of two
distributions - the coverage of true k-mers, and the cov-
erage of error k-mers (see Figure 3). Inevitably, these
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Figure 3 k-mer coverage. 15-mer coverage model fit to 76x
coverage of 36 bp reads from E. coli. Note that the expected
coverage of a k-mer in the genome using reads of length L will be
Lokt1 (imes the expected coverage of a single nucleotide
because the full k-mer must be covered by the read. Above, g-mer
counts are binned at integers in the histogram. The error k-mer
distribution rises outside the displayed region to 0.032 at coverage
two and 0.691 at coverage one. The mixture parameter for the prior
probability that a k-mer’s coverage is from the error distribution is
0.73. The mean and variance for true k-mers are 41 and 77
suggesting that a coverage bias exists as the variance is almost
twice the theoretical 41 suggested by the Poisson distribution. The
likelihood ratio of error to true k-mer is one at a coverage of seven,

but we may choose a smaller cutoff for some applications.

distributions will mix and the cutoff at which true and
error k-mers are differentiated must be chosen carefully
[46]. By defining these two distributions, we can calcu-
late the ratio of likelihoods that a k-mer at a given cov-
erage came from one distribution or the other. Then the
cutoff can be set to correspond to a likelihood ratio that
suits the application of the sequencing. For instance,
mistaking low coverage k-mers for errors will remove
true sequence, fragmenting a de novo genome assembly
and potentially creating mis-assemblies at repeats. To
avoid this, we can set the cutoff to a point where the
ratio of error k-mers to true k-mers is high, for example
1,000:1.

In theory, the true k-mer coverage distribution should
be Poisson, but Illumina sequencing has biases that add
variance [26]. Instead, we model true k-mer coverage as
Gaussian to allow a free parameter for the variance.
k-mers that occur multiple times in the genome due to
repetitive sequence and duplications also complicate the
distribution. We found that k-mer copy number in var-
ious genomes has a ‘heavy tail’ (meaning the tail of the
distribution is not exponentially bounded) that is
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approximated well by the Zeta distribution [47], which
has a single shape parameter. Our full model for true k-
mer coverage is to sample a copy number from a Zeta
distribution, and then sample a coverage from a Gaus-
sian distribution with mean and variance proportional
to the chosen copy number.

The error k-mer coverage distribution has been pre-
viously modeled as Poisson [10]. In data we examined,
this distribution also has a heavy tail, which could plausi-
bly be explained if certain sequence motifs were more
prone to errors than others due to sequence composition
or other variables of the sequencing process. Addition-
ally, by counting g-mers, we have real values rather than
the integers that Poisson models. We examined a few
options and chose the Gamma distribution with free
shape and scale parameters to model error g-mer counts.

Finally, we include a mixture parameter to determine
which of the two distributions a k-mer coverage will be
sampled from. We fit the parameters of this mixture
model by maximizing the likelihood function over the g-
mer counts using the BFGS algorithm, implemented as
the optim function in the statistical language R [48]. Fig-
ure 3 shows an example fit to 76x coverage of E. coli.
Using the optimized model, we compute the likelihood
ratio of error k-mer to true k-mer at various coverages
and set the cutoff to correspond to the appropriate ratio.

Localizing errors

Once a cutoff to separate trusted and untrusted k-mers
has been chosen, all reads containing an untrusted
k-mer become candidates for correction. In most cases
the pattern of untrusted k-mers will localize the sequen-
cing error to a small region. For example, in Figure 4a,
a single base substitution causes 15 adjacent untrusted
15-mers. To find the most likely region for the sequen-
cing error(s), we take the intersection of a read’s
untrusted k-mers. This method is robust to a few mis-
classified error k-mers, but not to true k-mers with low
coverage that are classified as untrusted. Thus, if the
intersection of the untrusted k-mers is empty (which
also occurs when there are multiple nearby errors) or a
valid correction cannot be found, we try again localizing
to the union of all untrusted k-mers.

A few more complications are worth noting. If the
untrusted k-mers reach the edge of the read, there may
be more sequencing errors at the edge, so we must
extend the region to the edge, as in Figure 4b. In this
case and in the case of multiple nearby sequencing errors,
we may also benefit from considering every base covered
by the right-most trusted k-mer and left-most trusted k-
mer to be correct, and trimming the region as in Figure
4c. Because this heuristic is sensitive to misclassified k-
mers, we first try to correct in the region shown in Figure
4c, but if no valid set of corrections is found, we try again
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(a)

(b)

(c)

Figure 4 Localize errors. Trusted (green) and untrusted (red) 15-
mers are drawn against a 36 bp read. In (a), the intersection of the
untrusted k-mers localizes the sequencing error to the highlighted
column. In (b), the untrusted k-mers reach the edge of the read, so
we must consider the bases at the edge in addition to the
intersection of the untrusted k-mers. However, in most cases, we
can further localize the error by considering all bases covered by
the right-most trusted k-mer to be correct and removing them from
the error region as shown in (c).

with the larger region in Figure 4b. Finally, in longer
reads we often see clusters of untrusted k-mers that do
not overlap. We perform this localizing procedure and
correction on each of these clusters separately. Alto-
gether, these heuristics for localizing the error in a read
vastly decrease the runtime of the algorithm compared to
considering corrections across the entire read.

Sequencing error probability model

After finding a region of the read to focus our correction
efforts on, we want to search for the maximum likelihood
set of corrections that makes all k-mers overlapping the
region trusted. First, we must define the likelihood of a
set of corrections. Let O = Oy, O,,..., Oy represent the
observed nucleotides of the read, and A = A, Ay,..., Ay
the actual nucleotides of the sequenced fragment of
DNA. Given the observed nucleotides we would like to
evaluate the conditional probability of a potential assign-
ment to A. Assuming independence of sequencing errors
at nucleotide positions in the read and using Bayes theo-
rem, we can write

N
P(A=a|O=0)= H PO; = Oill;(“(;:a;);’(Ai =) ()
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Because we compare likelihoods for a single observed
read O at a time, P(O; = 0,) is the same for all assign-
ments to A and is ignored. P(A; = a;) is defined by the
GC% of the genome, which we estimate by counting Gs

_%
and Cs in the sequencing reads. Let p;=1-10 10 be

the probability that the nucleotide at position i is accu-
rate, where ¢; is the corresponding quality value. Also,
let Eq(x, y) be the probability that the base call y is
made for the nucleotide x at quality value g given that
there has been a sequencing error. Then P(O; = 0,|A; = a;)
can be specified as

Dpi ifo; =q;

P(OiZOiIAi:ai):{ (5)

(1-p)E, (a;,0;) otherwise

Modeling sequencing errors with E allows for biases in
base substitution that are known to exist for the Illu-
mina platform. For example, one study found A to C
was the most frequent error, likely because A and C are
detected by one laser while G and T are detected by
another [26]. Making the substitution distribution con-
ditional upon the quality value allows this substitution
bias to vary at different qualities, which was found to
occur for Sanger sequencing [49] and here for Illumina
(see Figure 2). Although some work has modeled error
distributions conditionally on the position of the nucleo-
tide in the read [50], we assume that quality values cap-
ture this sequencing cycle effect. Recent base-calling
algorithms incorporate this effect on fluorescence inten-
sity measurements explicitly in some way and generate
quality values that satisfy our assumption [27-31].

The error matrices E are estimated from the sequencing

reads as follows. First we initially set Eq(x,y) = é Vg, x,y

and run the algorithm, counting the corrections by quality
value and nucleotide to nucleotide type. During this initial
pass, we only make simple, unambiguous corrections by
abandoning low quality reads more aggressively and using
a greater ambiguity threshold (described below). In order
to reduce the variance of our estimate of E, we perform
kernel smoothing across the quality g using a Gaussian
kernel [51] with standard deviation two. Let C,(x, y) be
the number of times actual nucleotide x was observed as
error nucleotide y at quality value g, C,(x) be the number
of times actual nucleotide x was observed as an error at
quality value g, and N(g; u, s) be the probability of g from
a Gaussian distribution with mean u and standard devia-
tion s. Then E is defined by

Y Cq(xyIN@sq.2)
Ziqu(x)N(qi;q, 2)

E (x,y)=

Page 11 of 13

Correction search

Once we can assign a likelihood to a set of corrections
and localize the error(s) to a specific region of the read,
we must search for the set with maximum likelihood
such that all k-mers in the corrected read are trusted.
We refer to a set of corrections as valid if all resulting
k-mers are trusted. In order to limit the search space,
we consider only sets of corrections for which the ratio
of the likelihood of the corrected read to the original is
above a fixed threshold (default 10°°).

Figure 5 outlines the algorithm. To consider sets of
corrections in order of decreasing likelihood, the algo-
rithm maintains a heap-based priority queue P where
each element contains a set of corrections C and the
ratio of their likelihood to the original read’s likelihood
L. In each iteration through the main loop, the algo-
rithm pops the maximum likelihood set of corrections C
from the queue P. If C makes all k-mers in the region
trusted, then it returns C. Otherwise, it examines the
next lowest quality read position that has not yet been
considered, which we track with minor additional book-
keeping. For each nucleotide substitution at this posi-
tion, we compute a new likelihood and add the updated
set of corrections to the priority queue if its likelihood
ratio is above the threshold. If the queue empties with-
out finding a valid set of corrections, we abandon the
read. This procedure could alternatively be viewed as
searching a tree where nodes are corrected reads and
branches represent corrections (see Figure 6).

1: function SEARCH (R)

2 P.rusH({} , 1)

3 while (C, L) < P.rorP() do

4 if VALD (R, C) then

5: return C

6 else

7 i <—lowest quality unconsidered position
8: for nte [A,C,G,T] do

9: if R[i]== nt then

10: Cnt =C

11: else

12: Cnt = C+(i,nt)

13: L pt ¢— LIKELIHOODRATIO (R, Cr¢)

14: if L, > likelihood _threshold then
15: P.PusH(Crt, Lnt)

16: return {}

Figure 5 Correction search algorithm. Pseudocode for the
algorithm to search for the most likely set of corrections that makes
all k-mers in the read trusted. P is a heap-based priority queue that
sorts sets of corrections C by their likelihood ratio L. The algorithm
examines sets of corrections in decreasing order of their likelihood
until a set is found that converts all k-mers in the read to trusted
k-mers.
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observed read: ACGTCCTAG—I—I—A

quality:

Likelihood

corrected reads: (ACGGCCTAGTI'A)

(ACGCCCTAGTTA)

(ACGACCTAGTTA)

(ACGTCCTAATTA)

actual read:
(ACGGCCTACTTA)

(ACGTCCTATTTA )

(ACGGCCTAATTA)

(ACGGCCTATTTA)

likelihood threshold:

Figure 6 Correction search. The search for the proper set of corrections that change an observed read with errors into the actual sequence
from the genome can be viewed as exploring a tree. Nodes in the tree represent possible corrected reads (and implicitly sets of corrections to
the observed read). Branches in the tree represent corrections. Each node can be assigned a likelihood by our model for sequencing errors as
described in the text. Quake's algorithm visits the nodes in order of decreasing likelihood until a valid read is found or the threshold is passed.

In practice, we make a few adjustments to this proce-
dure. Reads from repeats may have multiple sets of valid
corrections separated by a small likelihood difference so
that the true correction is ambiguous. Therefore, we
actually continue past the point of finding a valid set of
corrections to ensure that another valid set does not
exist within a certain likelihood threshold (default 0.1).
As described, the algorithm will devote a large majority
of its computation effort to the lowest quality reads,
which have many potential sets of corrections to con-
sider. In order to balance correction sensitivity with
speed, we pre-screen the error region and immediately
abandon a read if its error region is filled with low qual-
ity base calls. More specifically, in our experiments we
found that regions containing >13 positions with a prob-
ability of error >1% were difficult or impossible to cor-
rect quickly, and these reads are abandoned without
further effort. For regions containing 29 such positions,
we increase the likelihood ratio threshold to 10 so that
we only consider a limited number of corrections before
giving up.

In order to run Quake on very large datasets (for exam-
ple, containing billions of reads), we must be able to
determine very quickly whether a set of corrections
makes all k-mers trusted. We accomplish this by map-
ping all 4° k-mers to an index in a bit array that is set to
one if the k-mer is trusted and zero otherwise. For 15-

mers this bit array uses just 128 MB of space, while it
requires 32 GB for 19-mers, which are needed for larger
genomes. If memory usage must be reduced, a Bloom fil-
ter could be used to hash the trusted k-mers in <4 GB at
the expense of occasional false positive queries [12].

Abbreviations
bp: base pair; Gbp: gigabases; Mbp: megabases; SNP: single nucleotide
polymorphism.
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