
�e organization of nucleosomes in living cells is non-
random and conserved across similar cells [1], and it 
affects several processes, most notably transcription 
[2-5]. It is therefore important to understand what factors 
govern the organization of nucleosomes on DNA. Given 
that transcription changes dynamically across different 
cellular states, one would also expect nucleosome 
organization to be dynamic and governed, at least in part, 
by dynamic factors. However, because histones have 
different affinities for different DNA sequences [6-8], one 
might also expect the static DNA sequence to have a role 
in determining the organization of nucleosomes. Clearly, 
given the static nature of both nucleosome sequence 
preferences and the DNA sequence, these two factors 
cannot be the only determinants of in vivo nucleosome 
organization. However, the magnitude of the effect of 
histone DNA sequence preferences on nucleosome 
organi zation in vivo could, in principle, range from 
negligible to highly significant.

In recent years, the DNA sequence preferences of 
nucleo somes and their contribution to in vivo nucleo-
some organization have received much attention. A 
major difficulty in addressing this question is that current 
experimental methods cannot directly measure nucleo-
some organization but rather only certain aspects of it, 

averaged over a cell population. Another issue is that, 
despite intensive research, the terminology and analysis 
methods used in the field vary, leading to ambiguity and 
confusion. We believe that this has created an incorrect 
appearance of a major controversy in the field, with 
seemingly contradictory paper titles such as ‘A genomic 
code for nucleosome positioning’ [9], ‘�e DNA-encoded 
nucleosome organization of a eukaryotic genome’ [10], ‘A 
high-resolution, nucleosome position map of C. elegans 
reveals a lack of universal sequence-dictated positioning’ 
[11], and ‘Intrinsic histone-DNA interactions are not the 
major determinant of nucleosome positions in vivo’ [12]. 
However, these works largely agree with each other both 
on the various experimental measurements and on most 
of the conceptual conclusions. Although many scientific 
debates and interesting questions are still open, we 
believe it is generally agreed that histone sequence 
prefer ences have a central role in nucleosome organiza-
tion in vivo, and our view is that much of the remaining 
debate revolves around semantic and quantitative issues 
rather than conceptual differences.

Here, we attempt to organize clearly the various terms, 
measures, experimental issues, and results in the field 
and to state which results are relatively established and 
which questions remain open. Specifically, we propose 
definitions for nucleosome position, nucleosome con-
figura tion, nucleosome organization, nucleosome occu-
pancy and nucleosome positioning; we discuss how the 
various quantities are measured experimentally and 
estimated; we discuss aspects of how nucleosome maps 
can be compared; and finally, we discuss the effect of 
histone sequence preferences on nucleosome organiza-
tion in vivo, summarizing current evidence, what is 
generally agreed on and what is not.

De�nitions
Nucleosome position
A nucleosome position consists of 147 consecutive base 
pairs that are wrapped around a nucleosome, assuming 
no partial wrapping of DNA. A nucleosome position can 
be specified by the nucleosome start (the first of the 
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147  base pairs, that is, the base pair with the lowest 
coordinate), center (the 74th base pair) or end (the 147th 
base pair).

Nucleosome configuration
A nucleosome configuration is a set of non-overlapping 
nucleosome positions on a single DNA molecule of 
defined length. The requirement for non-overlapping 
positions is motivated by steric exclusion, which does not 
allow a DNA base pair to be simultaneously wrapped 
around more than one nucleosome. Thus, a nucleosome 
configuration can be represented by a binary vector that, 
for each base pair, specifies whether a nucleosome starts 
at that base pair (assigned ‘1’), with the steric hindrance 
constraint such that if a base pair is in state 1, then both 
the preceding and following 146 base pairs (bp) must be 
‘0’. Formally:

c  {0,1}N s.t. i:ci = 1 ⇒ ci–146, .  . , ci–1, ci+1, .  . , ci+146 = 0

where c is the nucleosome configuration, N is the length 
of the DNA molecule, ci is the ith coordinate of c and ci = 
1 represents a nucleosome starting at base pair i. Example 
nucleosome configurations on single DNA molecules are 
shown in Figure 1a.

Nucleosome organization
We define a nucleosome organization as a probability 
distribution over nucleosome configurations, that is, as a 
set of nucleosome configurations in which each configur
ation is assigned a probability and the sum over the set of 
configurations is 1. Formally:

P : C → R s.t. c  C : P(c) > 0 and Σ
cC

 P(c) = 1

where P is the nucleosome organization, C is a set of 
nucleosome configurations, and P(c) represents the pro
bability of configuration c. Thus, a nucleosome organi
zation can specify a complete description of all nucleo
some configurations on a DNA sequence across an 
isogenic cell population. Figure 1a illustrates this concept.

Nucleosome occupancy
We define the nucleosome occupancy of a base pair as 
the sum of the probabilities of the configurations in 
which the base pair is covered by a nucleosome. Formally:
			                    x

Occ(x) = Σ
cC     

Σ
i=x–146

P(c)ci

where Occ(x) is the occupancy of base pair x, P is the 
nucleosome organization and C is the set of nucleosome 
configurations in P. Thus, a base pair covered by a 
nucleosome in all configurations will have 100% occu
pancy and a base pair that is not covered in any of the 

configurations will have 0% occupancy. The nucleosome 
occupancy of a base pair has important functional 
implications because it reflects how accessible the base 
pair is. Figure 1b shows the nucleosome occupancy that 
would result from the example nucleosome organization 
in Figure 1a. Note, however, that different nucleosome 
organizations can result in the same nucleosome 
occupancy.

Nucleosome positioning
Nucleosome positioning is a commonly used term but its 
exact meaning is often left vague or undefined. Typically, 
it attempts to quantify the degree to which the positions 
of individual nucleosomes vary across the different 
configurations of a nucleosome organization. It is gener
ally agreed that a perfectly positioned nucleosome is one 
that adopts the same position across all measured con
figurations. However, unlike nucleosome occupancy, 
which describes a physical quantity and is thus intuitive, 
the meaning of ‘30% positioning’, for instance, is typically 
unclear. We thus define two kinds of nucleosome 
positioning that have a physical interpretation and that 
relate to quantities that were previously suggested 
[11,12]: absolute and conditional.

Absolute nucleosome positioning
We define the absolute nucleosome positioning at base 
pair x as the probability of a nucleosome starting at base 
pair x, equal to the sum of probabilities of the configura
tions in which a nucleosome starts at base pair x 
(Figure 1c). Formally:

Pa(x) = Σ
cC

 P(c)cx

where Pa(x) is the absolute nucleosome positioning at 
base pair x, P is the nucleosome organization and C is the 
set of nucleosome configurations in P. Notably, absolute 
positioning uniquely determines nucleosome occupancy, 
and different landscapes of absolute positioning can yield 
identical occupancy at a given position. However, 
absolute positioning does not uniquely determine the 
nucleosome organization, because information regarding 
the individual nucleosome configurations is not retained.

Conditional nucleosome positioning
Some investigators focus on a different positioning 
metric, which asks about the absolute positioning at base 
pair x divided by the probability that a nucleosome starts 
anywhere within a larger (for example, nucleosome-
length) region centered on x [11,12]. For definiteness we 
therefore also define the conditional nucleosome 
positioning at base pair x as the probability of a nucleo
some starting at x (absolute nucleosome positioning) 
divided by the sum of probabilities of the configurations 

Kaplan et al. Genome Biology 2010, 11:140 
http://genomebiology.com/2010/11/11/140

Page 2 of 12



in which a nucleosome starts at the 147 base pairs 
centered on base pair x (Figure 1d). Formally:

                               Σ
cC

 P(c)cx                     Pa(x)           Pc(x) =      x+73                       =     x+73
                             Σ

i=x–73

 Σ
cC

 P(c)ci                    Σ
i=x–73

Pa(i)

where Pc(x) is the conditional nucleosome positioning at 
base pair x, Pa(x) is the absolute positioning at x, P is the 
nucleosome organization and C is the set of nucleosome 
configurations in P. Thus, the conditional nucleosome 
positioning at base pair x is the probability that a 
nucleosome starts at x given that a nucleosome starts 
somewhere between x - 73 and x + 73. Conditional 
positioning at x is undefined if the absolute positioning of 
all 147 base pairs around x is zero.

Absolute positioning versus conditional positioning
To illustrate the difference between absolute and 
conditional positioning, consider the example shown in 
Figure 1a. This shows a base pair x with absolute posi
tioning 0.6, and another base pair y with absolute 
positioning 0.2, which is proximal to x (that is, y is within 
the 147-bp window around x). Because a nucleosome 
starts at x in a large fraction (60%) of the configurations, 
we might consider it to be well positioned. Base pairs 
proximal to x are not explicitly considered in computing 
the absolute positioning at x, although the values of x and 
y are not independent (because the occupancy is limited 
to 1). In the case of base pair x, although its conditional 
nucleosome positioning is also high, computed as Pc(x) = 
0.6/(0.6 + 0.2) = 0.75, the conditional nucleosome position
ing value offers a different interpretation: the nucleosome 

Figure 1. Illustration of the proposed definitions. (a) Four nucleosome configurations, which, together with their respective probabilities, 
constitute a nucleosome organization. (b-d) The derived (b) nucleosome occupancy, (c) absolute positioning and (d) conditional positioning measures. The 
configuration with a probability of 0.4 is weighed twice as heavily as the other configurations in the derived occupancy (b) and positioning (c,d) measures. Note 
how the rightmost nucleosome that appears in the same position in two of the four configurations has a relatively low absolute positioning value (0.4 in (c)) but 
a high conditional positioning value (1 in (d)), whereas the leftmost nucleosome is relatively well positioned by both the absolute and conditional positioning 
measures (0.6 in (c) and 0.75 in (d)). Also note that owing to the existence of another nucleosome close to the leftmost nucleosome, the rightmost nucleosome 
has a higher conditional positioning value than the leftmost nucleosome (d), even though the rightmost nucleosome has an overall lower probability across all 
four nucleosome configurations. Red boxes in (d) represent regions in which the conditional positioning is undefined.

Nucleosome
occupancy

Nucleosome configurations

Nucleosome
organization 

0.2

0.2

0.4

0.2

Probabilities

0.6
0.8

0.2

Absolute 
nucleosome
positioning

0.6

0.2

Conditional 
nucleosome
positioning

0.75

0.25

0.4

0.4

1

x y

x y UndefinedUndefined
0

1

0

1

1

0

z

z

(a)

(b)

(c)

(d)

Kaplan et al. Genome Biology 2010, 11:140 
http://genomebiology.com/2010/11/11/140

Page 3 of 12



at x is well positioned because, across all configurations 
in which a nucleosome appears in the window around x, 
it starts at x in 0.75 of the cases.

This difference in interpretation may also result in very 
different values for absolute and conditional positioning, 
as is the case of base pair z shown in the example, which 
has absolute positioning 0.4 but conditional positioning 
of 1 (because no other nucleosome is positioned in its 
vicinity). Base pair z demonstrates the dependence of 
conditional positioning on absolute positioning in its 
vicinity, because a base pair with absolute positioning of 
0.4 can have conditional positioning anywhere within the 
range from 1 (if no nucleosome is in its vicinity) down to 
0.4 (if high-probability nucleosomes are in its vicinity). 
Absolute positioning provides a lower bound on condi
tional positioning because, at most, one nucleosome can 
start in a 147-bp window:
                                          Pa(x)               Pa(x)                       Pc(x) =      x+73             ≥
                                         Σ

i=x–73

Pa(i)               1

Thus, high absolute positioning necessarily means high 
conditional positioning, but the converse is not implied. 
Similarity in absolute positioning of two nucleosome 
maps implies similarity in nucleosome organizations. 
Alternatively, two nucleosome maps may have low 
similarity in absolute positioning but high similarity in 
conditional positioning, suggesting that whereas the 
fraction of configurations in which a nucleosome appears 
differs greatly between the maps, the position of the 
nucleosome when it does appear is similar between the 
maps. These important differences between absolute and 
conditional positioning suggest that they could each be 
useful for addressing different biological questions.

Experimental measurement and estimation of 
nucleosome organization
Because nucleosome organization is a probability distri
bution over nucleosome configurations, ideally one 
would like to estimate it by measuring the nucleosome 
configuration of a single cell and then repeat this 
measurement for many cells. Unfortunately, such 
measurements are not currently possible. Instead, 
existing methods sample nucleosome positions from the 
entire nucleosome organization, in which each nucleo
some position measured can come from a different cell in 
the population. Although such methods do not directly 
measure the nucleosome organization, they do allow us 
to estimate occupancy and positioning.

Experimental technology
A popular method for nucleosome mapping is digestion 
of chromatin by micrococcal nuclease (MNase), an 

endonuclease that preferentially cuts linker DNA rather 
than DNA wrapped around a nucleosome. Thus, DNA 
that is highly digested is relatively depleted of nucleo
somes, and loci that are under-digested are relatively 
protected by nucleosomes. The resulting digestion 
pattern can then be measured by methods such as primer 
extension and real-time PCR with gel electrophoresis or 
low-throughput sequencing of nucleosome-protected 
DNA segments. More recently, high-throughput techno
logies were used to measure nucleosome positions on a 
genome-wide scale, first using DNA microarrays [13-
15,16] and then using deep sequencing [10,11,15,17-24]. 
Importantly, deep sequencing can potentially provide 
measurements of many individual nucleosome positions, 
whereas microarrays have lower resolution and can only 
provide measurements of nucleosome occupancy.

Experimental biases
Genome-wide nucleosome mapping experiments have 
two main steps, DNA isolation and DNA measurement, 
and both can introduce noise and biases. The DNA 
isolation step typically includes MNase digestion followed 
by extraction of the approximately 147-bp mononucleo
some DNA band that results. One bias of this step arises 
from the sequence specificity of MNase, because MNase 
has a preference to having a TA/AT dinucleotide as its 
cleavage site [18,25]. The appearance of a discrete mono
nucleosome band after MNase digestion shows that 
nucleosome protection, not MNase specificity, is the 
dominant factor in the digestion. In addition, because the 
specificity of MNase is low, a preferred cleavage site is 
found frequently. Thus, biases arising from MNase 
specificity will mostly result in imprecise mapping of 
nucleosome ends, but the extracted mononucleosomes 
still correspond to nucleosome-bound DNA. Neverthe
less, the use of MNase limits the accuracy of the resulting 
nucleosome maps, which are certainly not at single-base-
pair resolution.

Another bias introduced by MNase digestion arises 
from the length variability of the extracted mononucleo
somes. Studies that fully sequenced the extracted 
mononucleosomes showed that their lengths vary by tens 
of base pairs even within the same experiment [11,​17,​18,​
22]. This length variability limits the mapping accuracy, 
especially in more recent maps that used short-read 
sequencing with only one nucleosome end sequenced. 
Indeed, for this reason, these recent maps, which currently 
constitute most of the nucleosome data available, are 
actually less accurate than earlier maps in which 
mononucleosomes were sequenced in their entirety.

The DNA measurement stage includes primer ligation 
and DNA amplification, followed by application of 
microarrays or deep sequencing. All of these steps have 
sequence-specific biases [26,27] that will manifest as 
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inaccuracies in the resulting intensity (microarrays) or 
number of reads (deep sequencing) obtained. However, 
such biases can sometimes be sporadic and not repro
ducible between experiments, as seen, for instance, in a 
small number of genomic positions that have extremely 
high read coverage in only a subset of the replicates [10].

Experimental control of biases
Control experiments are the most direct way to account 
for the above experimental biases, but unfortunately they 
are not straightforward in the case of nucleosome map
ping. In one type of control experiment, naked DNA is 
digested by MNase, followed by size selecting specific 
DNA lengths (such as approximately nucleosome length, 
about 150 bp), and DNA measurement using microarray 
[15] or deep sequencing [11,12]. In principle, such an 
experiment could account for biases that arise from the 
sequence specificity of MNase, or from microarrays and 
deep sequencing. However, we believe that such an experi
ment is not valid as a control, for the following reasons.

First, because there are no nucleosomes to protect 
against MNase digestion in the naked DNA experiment, 
if one uses the same concentration of nuclease for the 
same time as used with the chromatin, the naked DNA 
will be digested completely, down to tiny oligonucleo
tides. Therefore, the extent of MNase digestion must be 
far lower on the naked DNA than on the chromatin. 
Sequence specificities are generally more pronounced in 
lower enzyme concentrations, so this means that the 
MNase sequence specificities that appear in the naked 
DNA experiment will exaggerate the true effect of MNase 
sequence specificities on chromatin. The appearance of 
the sharp band of about 147 bp after MNase digestion in 
the real experiment but not in the naked DNA 
experiment indicates that the band in the real experiment 
truly reflects nucleosomes, and not just favored MNase 
sites, and further evidence of this includes the following 
observations: that the products of MNase digestion on 
chromatin yield nucleosomes that crystallize and whose 
structure, determined at 7 Å resolution by X-ray crystal
lography [28], is commensurate with that of later analyses 
of reconstituted nucleosomes imaged at atomic resolu
tion [29]; and that the ladder-like distribution of oligo
nucleosome DNAs created during the nuclease digestion, 
and its evolution during the course of the digestion, 
mirror exactly the distribution of actual oligonucleo
somes as imaged by electron microscopy [30].

Second, another problem with such a ‘control’ 
experiment is that linker DNAs in vivo are generally AT-
rich (a result that was also shown by methods that did 
not use MNase; see [31] for details), and MNase prefer
entially cleaves TA/AT dinucleotides. Thus, we expect 
that on naked DNA, MNase will have more cleavage sites 
in regions that are true linkers in the real nucleosome 

samples, leading to similarities between the real and 
control experiment. Indeed, it is well known that MNase 
cleavage sites on naked DNA are related to true linkers 
[32-34], and these observations are reinforced by the new 
genome-wide analyses. Normalizing by such a ‘control’ 
dataset would artifactually reduce the real nucleosome 
positioning signals.

Considering both these caveats, we propose that results 
of nucleosome mapping experiments are best validated by 
independent methods that do not use MNase. Many such 
approaches are available, including: (i) using selection-
based methods to define the nucleosome sequence 
preferences [10]; (ii) using high-resolution imaging to map 
nucleosome locations without nuclease [35,36]; (iii) using 
chemical probes, such as methidium propyl EDTA [37,38] 
or 1,10-phenanthroline-cuprous complex [39], to define 
linker regions; (iv) using chemical probes to define specific 
locations within the nucleosome, such as the nucleosome 
center [40] or the nucleosome ends [41]; and (v) using 
other enzymes that may have reduced, or at least different, 
sequence specificities compared with MNase [42].

Estimating nucleosome organization from experimental 
measurements
The final result of a sequence-based nucleosome mapping 
experiment is a set of uniquely mapped nucleosome-
bound DNA segments, which we can represent as a 
vector r whose entries are the number of nucleosome 
reads that start at each base pair. From these reads, we 
then estimate quantities of interest, such as nucleosome 
occupancy and nucleosome positioning. The given 
estimations are not probabilities, as converting these 
quantities into probabilities is not trivial.

Estimating nucleosome occupancy
Estimating the nucleosome occupancy of a base pair is 
straightforward because it is simply the sum of reads 
covering that base pair, that is, the sum of reads in the 
147 bp preceding the base pair. Formally:
                                                                                                x

Occe(x) = Σ
i=x–146

ri

where Occe(x) is the estimated (unnormalized) occupancy 
at base pair x and r is the reads vector. Although this 
quantity is commonly referred to as nucleosome 
occupancy, it is not a probability and thus is not exactly 
occupancy as defined above. In addition, nucleosome 
occupancy is relatively robust to errors in the precise 
mapping of true nucleosome ends, which typically arise 
from the use of MNase.

Estimating absolute nucleosome positioning
In principle, nucleosome positioning could be computed 
from the number of nucleosome reads that start at each 
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base pair. However, because nucleosome maps have 
considerable noise at the single-base-pair level, such 
estimation would be noisy, as seen by the poor 
reproducibility of nucleosome positioning obtained from 
two randomly chosen subsets of the same nucleosome 
map (Figure 2). A reasonable solution, which considerably 
increases this reproducibility, is to convolute the raw 
reads with some smoothing function (Figure 2). Formally, 
we propose that absolute nucleosome positioning should 
be estimated as:
                                                                                           d

Pae(x) = Σ
i=–d 

wirx+1

where Pae(x) is the estimated (unnormalized) absolute 
positioning at base pair x, w is a weights vector repre-
senting the smoothing function, d determines the dimen-
sion of w and r is the reads vector. Typical smoothing 
functions are uniform smoothing, which is a simple 
moving average of reads in some window, and Gaussian 
smoothing, in which the moving average assigns higher 
weight to closer base pairs. Both functions have a single 
parameter representing the width of the smoothing 
window, and we suggest that its value should be tens of 
base pairs to accommodate for inaccuracies in mapping 
precise nucleosome positions. Unlike nucleo some 
occupancy, absolute positioning estimation depends on 
an arbitrary parameter choice (width) and its estimation 
may thus be less robust. In addition, estimating absolute 
positioning with uniform smoothing over 147-bp 
windows is exactly equal to nucleosome occupancy 
(shifted by 73 bp), showing that the two terms are 
strongly related.

Estimating conditional nucleosome positioning
Having estimated the absolute positioning of a base pair, 
it is straightforward to compute its conditional position-
ing, as it is simply the ratio between its absolute 
positioning and the sum of the absolute positioning in 
the 147-bp window surrounding the base pair. However, 
conditional positioning is more sensitive to experimental 
noise. For example, consider a base pair x whose 
surround ing 147 bp contain no other read starts, where 
in one case one nucleosome read starts at x and in 
another case 1,000 reads start at x. Although in both 
cases the conditional positioning of x is 1, a single 
additional nucleosome read in the vicinity of x (not 
within the range of the smoothing function) will change 
the conditional positioning at x to 0.5 in the first case but 
to 0.999 in the second case. �us, estimation of 
conditional positioning is less robust to noise than 
estimation of absolute positioning and nucleosome 
occupancy, especially in regions with relatively few reads. 
Notably, this problem stems from the estimation process 
rather than from the definition of conditional positioning. 

Figure 2. The e�ect of the number of sequence reads on the 
comparison of nucleosome maps using di�erent measures. 
(a,b) We randomly sampled in vivo nucleosome data from yeast 
at di�erent levels of genomic coverage [10]. At each level, �ve 
pairs of nucleosome maps were generated and, for each map, 
we estimated �ve di�erent quantities: nucleosome occupancy, 
absolute nucleosome positioning (without smoothing), conditional 
positioning (without smoothing), smoothed absolute positioning 
and smoothed conditional positioning (both using a Gaussian �lter 
with 20-bp standard deviation). For each pair of maps and every 
estimated measure, the Pearson correlation between each pair of 
maps was computed; this simulates the comparison of two replicates 
with the same level of coverage and thus shows the di�erence 
between two random samples from the same experiment with the 
same number of reads. The black arrow indicates an average read 
number beyond the scale of the y-axis. (b) An expansion of (a) for 
low numbers of reads. Standard deviation at all plotted points is 
smaller than 0.001. The coverage of the full in vivo map was about 
2.2 nucleosome read starts per base pair. This simulation addresses 
only the error introduced by sampling and does not simulate the 
e�ect of other sources of errors in the experiments. These include the 
e�ect of variability in the extracted lengths of nucleosome-protected 
sequences, to which measures such as positioning are especially 
sensitive. Vertical dashed lines indicate the approximate amount of 
uniquely mapped reads in various studies [5,10-12,18,24], suggesting 
that sequencing coverage in several of these studies might lead 
to underestimation of similarities among maps, depending on the 
estimated quantity.
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One practical solution is to ignore regions with a low 
read coverage when calculating conditional positioning.

Comparing nucleosome maps
Effects of experimental issues on nucleosome map 
comparisons
Several experimental issues can affect the similarity 
between nucleosome maps. First, the experimental 
sequence-specific biases and length variability of the 
measured nucleosome-bound sequences can lead to 
overestimation or underestimation of similarity between 
maps, respectively. Second, comparisons of maps are 
sensitive to the number of reads measured because each 
map is sampled from the distribution of nucleosome 
positions, and thus even two random samples of reads 
from the same experiment will differ, with the difference 
being inversely proportional to the number of reads 
(Figure 2). Even with deep sequencing, the current 
coverage of existing maps is relatively low, totaling about 
2 nucleosome read starts per base pair in a yeast in vivo 
map [10], about 0.1 to 1 in yeast in vitro maps [10,12], 
and only about 0.07 in a human in vivo map [24]. Thus, 
reported similarities are likely to increase as maps with 
more reads are measured (Figure 2).

Finally, there are often many experimental differences 
in how the maps are measured, which can lead to under
estimation of the maps. For example, in vivo maps differ 
from in vitro maps in temperature, salt concentrations, 
histone concentrations and even in the histones them
selves, because in vitro maps used histones from chicken 
erythrocytes [10] or fly embryos [12].

Comparing nucleosome occupancy
We propose several methods for comparing nucleosome 
occupancies of maps. One direct method for comparing 
the occupancies is by computing the Pearson correlation 
between their respective occupancy vectors. The corre
lation of unrelated maps is expected to be close to zero, 
although the background model is non-trivial because of 
dependencies between adjacent positions. Alternatively, 
the Spearman correlation can be computed, which is the 
same as Pearson except that each value is converted to its 
rank in the data. Although the conversion to ranks loses 
information, it is less sensitive to non-linear scaling errors 
and to outlier regions that have an abnormally large 
number of reads, which are occasionally observed [10].

A third method used to compare nucleosome 
occupancy is receiver operating characteristic (ROC) 
analysis, where the aim is to quantify the degree to which 
one map (the predictor map) can discriminate high 
occupancy regions from low occupancy regions in the 
other map (the target map) [18,43,44]. First, a set of high 
occupancy regions and a set of low occupancy regions 
are derived from the target map by choosing two 

thresholds, such that high occupancy regions are defined 
as those consecutive genomic regions in which all base 
pairs are above one threshold, and low occupancy regions 
as consecutive regions where all base pairs are below the 
second threshold. When the two thresholds are close (or 
equal) to each other, then the defined regions will cover 
most (or all) of the genome. Next, each high and low 
occupancy region defined in the target map is assigned a 
single occupancy value using the other (predictor) 
occupancy map - for instance, by taking the mean 
occupancy that each region has in the predictor map. 
Finally, the degree to which the predicted occupancy 
values of the target regions discriminate between high 
and low occupancy regions can be computed using the 
area under curve (AUC) metric, or the Mann-Whitney-
Wilcoxon statistic [45]. A perfect discrimination, in 
which all high occupancy regions have higher predicted 
occupancy values than all low occupancy regions, has an 
AUC value of 1. Random discrimination has an AUC 
value of 0.5, allowing statistical significance to be com
puted. An advantage of the AUC analysis is that it is less 
sensitive to coverage- and resolution-related experi
mental noise because its computations are done on 
regions that are typically much larger than single base 
pairs. Thus, the AUC is especially suited to comparisons 
of maps with relatively low coverage.

Finally, we note that all of the above methods are 
insensitive to linear scaling and may thus overestimate 
the similarity of maps that are not on the same scale. For 
example, one could compare a map whose occupancy 
values are between 95 and 105 reads per base pair with a 
map whose occupancy values range from 0 to 1,000 reads 
per base pair. Although the maps are very different, they 
could still show a perfect correlation of 1. Thus, we 
emphasize the importance of examining the occupancy 
distributions, and in cases of scaling differences we 
suggest using a non-scaling metric such as the fraction of 
variance unexplained (FVU) statistical measure. Simply 
put, this measure quantifies the mean squared error 
between two vectors relative to the mean squared error 
between one vector and its mean.

Comparing nucleosome positioning
As with occupancy, absolute and conditional positioning 
can both be represented by per-base-pair positioning 
vectors and thus can be compared using the Pearson or 
Spearman correlation. However, there are two important 
differences. First, because a well positioned nucleosome 
produces a narrow peak whose width is equal to the 
smoothing window, positioning is more localized than 
occupancy and can thus be more sensitive to experi
mental noise that causes small shifts in the location of 
read starts (such as the amount of MNase used to digest 
the chromatin). In addition, the amount of data used to 
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estimate the nucleosome positioning of a base pair is 
significantly smaller than the amount of data used to 
estimate its occupancy, because when estimating 
positioning each read start provides data for a single base 
pair, whereas in occupancy estimation each read start 
provides data for the 147 bp covered by its corresponding 
nucleosome. Thus, positioning comparisons are less 
robust than occupancy comparisons, especially given the 
relatively low coverage of existing maps (Figure 2). For 
these reasons, even at a higher read coverage, the regions 
of low occupancy would produce less reliable positioning 
comparisons. The problem is especially pronounced in 
comparisons of conditional positioning because this 
quantity may be undefined in low occupancy regions.

Comparing locations of well positioned nucleosomes
Even if every nucleosome has a different position in vivo 
and in vitro, histone sequence preferences may still be 
important determinants of nucleosome positions in vivo. 
For example, consider a case in which every well 
positioned nucleosome in vivo is shifted in vitro by a 
couple of dozens of base pairs in an arbitrary direction. 
This type of correspondence between the maps might not 
be captured by correlation analysis. Instead, we can ask 
whether the locations of nucleosomes that are well 
positioned in the two maps are closer to each other than 
expected by chance.

The first step in such an analysis is to identify well 
positioned nucleosomes in each map; the resulting set of 
well positioned nucleosomes will depend on the details 
and parameters of the method. After selecting well 
positioned nucleosomes in each map, we designate 
nucleosomes of one map as the target set and those of the 
other as the predicted set. For each target nucleosome 
start, we then find the distance to the closest predicted 
nucleosome start. We then plot the fraction of target 
nucleosomes that have a predicted nucleosome start at 
most d base pairs away, for all possible distances d. To 
assess significance, we repeat the computations after 
shuffling nucleosome locations in the predicted set; in 
this shuffling we maintain the original distribution of 
pairwise distances between neighboring nucleosomes 
and shuffle only in the uniquely mappable regions over 
which the original map is defined. Finally, for each 
distance d we can estimate the fraction, above random 
expectation, of target nucleosomes that have a predicted 
nucleosome less than d base pairs away by subtracting 
the shuffled value from the actual value and dividing the 
result by one minus the shuffled value. The division is 
needed to scale the resulting value such that the highest 
attainable value is 1.

One important limitation of this nucleosome distance 
analysis is that although the concept of well positioned 
nucleosomes is intuitive and simple for analysis, it is an 

oversimplification because there is no requirement for 
such nucleosomes to be especially prevalent in nucleo
some maps. In principle, a nucleosome occupancy map 
could have regions of high occupancy and regions of low 
occupancy without having a single well positioned 
nucleosome. Whether or not nucleosomes are well 
positioned in a given genomic region in vivo is not 
indicative of whether or not the positions of nucleosomes 
in the region are governed by histone sequence prefer
ences. This is because regions with well positioned 
nucleosomes and regions with weakly positioned 
nucleosomes can both be encoded by histone sequence 
preferences - for example, through a peaked nucleosome 
affinity landscape in the former case and a relatively flat 
affinity landscape in the latter.

Current agreements and open questions
Nucleosome maps are similar across different technologies
In vivo nucleosome maps have been measured by differ
ent laboratories and using tiling microarrays and multiple 
different deep-sequencing technologies [10,​13‑15,​​17-20]. 
In general, these maps show significant correspondence. 
Although formally, in the absence of a gold standard, we 
cannot say that deep sequencing is better than tiling 
microarrays, this is generally believed to be the case 
because deep sequencing maps data at single-base-pair 
resolution and it allows direct measurement of position
ing rather than just occupancy. In vitro nucleosome 
maps, produced by reconstitution of histones on naked 
DNA, have been measured using deep sequencing and by 
a wholly independent single-molecule microscopy assay 
that does not use MNase [10,12,35]. Here, too, the maps 
are significantly similar. However, some technologies may 
share sequence biases that can contribute to similarities 
between maps. In conclusion, although technological 
differences clearly lead to differences in the results 
obtained, in general, both in vitro and in vivo maps are 
reliable.

DNA sequence is significantly predictive of nucleosome 
organization in vitro and in vivo
Numerous studies [9,13,18,43,44,46,47] have used genome-
wide in vivo maps of nucleosomes, generated by either 
microarrays or deep sequencing, to construct sequence-
based computational models that predict nucleosome 
occupancy or nucleosome positions using only DNA 
sequence information. Importantly, these models were 
evaluated in a cross-validation manner, that is, they were 
trained on part of the in vivo data and their predictions 
were tested on the other (held-out) parts of the data. 
These methods were evaluated in various ways, including 
correlation, AUC and nucleosome distance analyses; all 
methods performed significantly better than random 
expectation, thereby demonstrating that DNA sequence 

Kaplan et al. Genome Biology 2010, 11:140 
http://genomebiology.com/2010/11/11/140

Page 8 of 12



is significantly predictive of various aspects of the in vivo 
nucleosome organization. More recently, these sequence-
based nucleosome models were constructed using in 
vitro nucleosome maps, so their sequence signals are 
more likely to reflect histone sequence preferences, and, 
again, these models had strong predictive power [10,48]. 
It is thus clear that DNA sequence is significantly 
predictive of aspects of nucleosome organization both in 
vitro and in vivo.

Histone sequence preferences are major determinants of 
nucleosome organization in vivo
A direct way of assessing the effect of histone sequence 
preferences on the nucleosome organization in vivo is 
through comparisons of in vivo nucleosome maps with in 
vitro maps produced by reconstitution of histones on 
naked DNA. Given that the in vitro map is governed only 
by the histone sequence preferences, similarity of this 
map to the in vivo map would suggest that histone 
sequence preferences contribute to in vivo organization. 
Because nucleosome organizations cannot be measured 
directly, these comparisons must be done using the 
occupancy and positioning measures. Although actual 
numbers may depend on technical details, comparison of 
nucleosome occupancy by correlation and AUC analyses 
clearly demonstrate that this aspect of nucleosome 
organization is significantly similar in vitro and in vivo 
[10,12].

Estimation of nucleosome positioning is less reliable 
because it depends on arbitrary thresholds and requires 
higher coverage to be robustly estimated, and we thus 
expect that its correspondence between the two maps 
will be lower. Although direct comparisons of positioning 
were not done between the in vivo and in vitro maps, 
different versions of nucleosome distance analyses were 
performed, yielding estimates that, after accounting for 
random expectation, about 20 to 50% of the well 
positioned nucleosomes in vivo are in close proximity to 
matching nucleosomes in vitro [12,49].

Even though these comparisons could overestimate or 
underestimate the actual similarity, the in vitro and in 
vivo maps clearly show significant similarity even when 
they are measured with different technologies, confirm
ing that their similarity is robust. Thus, the results of all 
studies so far indicate that histone sequence preferences 
have a considerable effect on nucleosome organization in 
vivo, both in terms of occupancy and positioning.

Which sequence signals are important for nucleosome 
organization?
The exact sequence preferences of nucleosomes are not 
known. Because it is not feasible to measure directly the 
nucleosome affinities of all of the possible 147-bp 
sequences, one approach to comprehensively characterize 

nucleosome affinities is to construct a mathematical 
model that attempts to generalize from a smaller set of 
nucleosome affinity measurements. Ideally, such models 
should be learned from affinity measurements of 
sequences that represent a random sample of the 
sequence space. However, large collections of nucleosome 
affinity measurements are currently available only for the 
yeast genome. This may bias our current understanding 
of nucleosome sequence preferences and limit the ability 
of current models to correctly predict the nucleosome 
affinities of many types of sequences that do not exist in 
the yeast genome.

Periodic patterns of dinucleotides, initially observed in 
alignments of nucleosome-bound sequences in vivo [50], 
were the basis of the first models of nucleosome sequence 
preferences that were used for genome-wide prediction 
[9,47,51,52]. Because relatively few nucleosome affinity 
measurements and nucleosome-bound sequences were 
available at the time, these initial models were trained 
and evaluated on a relatively small amount of data (on the 
order of hundreds of sequences). The use of deep sequen
cing for measuring nucleosome positions increased the 
available data by about 100,000-fold, prompting the 
development of a new generation of models whose 
performance was drastically better than that of the initial 
models [18,43,44]. Prominent features of these newer 
models include poly(dA:dT) sequences, which are 
strongly predictive of low nucleosome occupancy, and 
high GC content, which is strongly predictive of high 
nucleosome occupancy. These features are unlikely to be 
a consequence of sequence-specific experimental biases 
as they were observed by many different measurement 
technologies [10,35]. Notably, although a model based 
only on poly(dA:dT) frequency and GC content is highly 
predictive of nucleosome occupancy, models with more 
features are significantly more predictive [53]. Moreover, 
it is not clear whether these simplified models can accu
rately predict detailed nucleosome positions, mainly 
because such evaluations are difficult to perform given 
the limited accuracy of nucleosome position measure
ment. Periodic dinucleotide patterns are also evident in 
large nucleosome collections derived from deep sequen
cing, so they are also likely to have an important effect.

Finally, we again note that because our current under
standing is mainly based on measurements of yeast 
sequences, it may be biased. Specifically, it is not clear 
whether the correlation between GC content and 
nucleosome affinity also holds for sequences with very 
high GC content because such sequences are rare in yeast 
and their affinity has thus not been measured on a large 
scale. Thus, although we clearly understand some of the 
sequence signals that are important for determining 
nucleosome organizations, we expect that better map
ping technology and measurements on more diverse 
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sequences will improve our understanding and allow 
better models to be developed.

What causes the long-range ordering of nucleosomes over 
genes?
Studies have observed a long-range ordering of nucleo
somes downstream of gene start sites, which decays with 
the distance from the start of the gene [15,18,19]. 
Although the functional significance of this ordering is 
not known, it is a prominent feature of nucleosome 
organization in vivo, and it is thus important to under
stand its cause. Kornberg and Stryer [54,55] suggested 
that this phenomenon can be explained by boundary 
elements that restrict nucleosomes from binding to 
specific regions (for example, DNA-bound transcription 
factors or polymerase, whose presence sterically occludes 
a nucleosome from adjacent base pairs). They showed 
[54,55] that given a high concentration of nucleosomes 
along DNA and steric hindrance between nucleosomes, a 
simple model based on statistical mechanics predicts that 
a single boundary constraint is sufficient to generate a 
long-range ordering of nucleosomes, where the ordering, 
or ‘statistical positioning’, is greatest immediately 
adjacent to the boundary and decays with the distance 
away from it.

One possibility is that in vivo factors cause the long-
range nucleosome ordering. For example, the boundary 
constraint for nucleosome binding could be caused by 
the binding of transcription factors and of the transcrip
tional initiation machinery upstream of gene starts. This 
possibility is supported by our previous observation [10] 
that alignment of in vitro nucleosome data relative to 
gene starts does not show long-range nucleosome order
ing over genes.

A second possibility, which is not mutually exclusive, is 
that nucleosome-disfavoring sequences cause long-range 
ordering. Given that many sequences, most notably 
poly(dA:dT)-like elements, strongly disfavor nucleosome 
formation, one possibility is that these sequences 
themselves, rather than just bound proteins, constitute 
the boundary constraint required to generate the ob
served long-range ordering of nucleosomes. Indeed, 
many yeast genes have such nucleosome-disfavoring 
sequences just upstream of their start site [15,18,19]. 
Even if such a mechanism were partly responsible for 
generating the long-range ordering, some might argue 
that it should be regarded as a contribution from histone 
sequence preferences. However, this argument is purely 
semantic because it would still be a case in which nucleo
some positions are determined in part by DNA sequence, 
even though here the influencing positioning sequences 
act negatively and reside in linker regions and not where 
the nucleosomes are bound. Notably, by incorporating 
nucleosome concentration and steric hindrance between 

nucleosomes, some of the current sequence-based 
models for predicting nucleosome organization from 
DNA sequence can capture the long-range effect of 
nucleosome-disfavoring sequences [10,18,36]. Thus, the 
long-range ordering of nucleosomes could be caused in 
part by histone sequence preferences, through the 
indirect effect of nucleosome-disfavoring sequences. 
Indeed, nucleosome-disfavoring sequences have been 
shown in principle to be able to induce statistical 
ordering effects [36]. However, current genome-wide in 
vitro maps do not show statistical positioning.

Thus, although the exact reason for the long-range 
ordering of nucleosomes over genes in vivo is still unclear, 
most of the current evidence suggests that it is mostly 
due to statistical positioning emanating from boundary 
constraints for nucleosome binding, where the boundary 
constraints may be caused by the binding of various 
factors in vivo and by nucleosome-disfavoring sequences.

Can the effect of histone sequence preferences on 
nucleosome organization be called a major determinant or 
a code?
Although studies mostly agree with each other on the 
results of many of the analyses, some studies have argued 
about the semantics of whether or not the effect of 
histone sequence preferences can be called a ‘code’ or a 
‘major’ determinant of in vivo nucleosome organization. 
For example, one paper [56] stated that if histone 
sequence preferences account for about 25% of in vivo 
nucleosome positions, then this is ‘considered to be too 
low for the existence of a nucleosome positioning code’. 
Although this is clearly a subjective statement about 
which we make no judgment, even if the estimate of 
about 25% were true, then we are not aware of any other 
single factor that affects the genome-wide nucleosome 
organization to a greater or even similar extent. For 
example, poly(dA:dT) sequences are significantly more 
predictive of nucleosome depletion in vivo than is any 
known transcription factor [18]. In this sense, histone 
sequence preferences are a major determinant of in vivo 
nucleosome organization, even if the aforementioned 
conservative estimates of 25%, which we believe to be 
underestimates, are used.

Regarding the use of the term ‘code’, it has been argued 
that, by analogy to the genetic code, a biological code 
must be deterministic. Clearly, some aspects of the in 
vivo nucleosome organization are encoded in the DNA 
sequence through histone sequence preferences. How
ever, it is also clear that histone sequence preferences do 
not, and in fact cannot, completely determine the in vivo 
nucleosome organization. However, the term ‘code’ has 
also been used in several biological contexts to describe 
non-deterministic information flow; prominent examples 
include the transcriptional code, the histone code and the 
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splicing code. Whether the DNA sequence preferences of 
nucleosomes should or should not be called a code is, in 
our view, an inconsequential semantic issue.

In parallel to the active research and fast progress that 
the nucleosome positioning field is experiencing, it is 
important to develop clear definitions and standards that 
researchers agree on, and with which the key issues can 
be addressed. We believe that the lack of such standards 
has contributed to a perceived disagreement regarding 
the role of histone sequence preferences in determining 
nucleosome organization in vivo. Here, we propose 
definitions and procedures for measuring and comparing 
nucleosome maps and try to summarize clearly which 
points are currently in agreement, and which questions 
are still open. Our conclusion is that most studies agree 
on the key points. Specifically, although there are indeed 
some quantitative and semantic disagreements, it is 
generally agreed that histone sequence preferences do 
indeed have a central effect on nucleosome organization 
in vivo.
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