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Abstract

Hapi is a new dynamic programming algorithm that ignores uninformative states and state transitions in order to
efficiently compute minimum-recombinant and maximum likelihood haplotypes. When applied to a dataset con-
taining 103 families, Hapi performs 3.8 and 320 times faster than state-of-the-art algorithms. Because Hapi infers
both minimum-recombinant and maximum likelihood haplotypes and applies to related individuals, the haplotypes
it infers are highly accurate over extended genomic distances.

Background
The emergence of high throughput genotyping technol-
ogies has enabled rapid, low-cost assays of single
nucleotide polymorphisms (SNPs) in large datasets of
human subjects. These genotype data provide two unor-
dered allele values at each queried genomic position,
with each allele derived from the two homologous chro-
mosomes in a diploid cell. However, genotype data do
not identify which variant is present on each homolo-
gous chromosome.
A haplotype is an assignment of each allele to the

homologous chromosome it resides on, and the haplo-
types of a set of individuals can be determined, with
varying levels of accuracy, from their genotype data
using haplotype inference or ‘phasing’ techniques. Hap-
lotypes are essential for many important genetic applica-
tions, including: (1) imputation of genotypes at loci that
were originally untyped in a set of samples [1-5], a tech-
nique that can uncover novel disease susceptibility loci
when incorporated into a genome-wide association
study; (2) studying the results of meiosis - within a sin-
gle generation or averaged across many generations -
providing the opportunity to build genetic maps [6],
identify recombination hotspots [7], and identify genetic
causes of recombination rate variation [8]; (3) studying
parental transmission effects such as imprinting [9]; (4)
identifying signatures of selection [10], and many others.
Indeed, much research at the frontier of biological
understanding, such as the allelic control of chromatin
structure, will require accurate haplotype information.

Genome scale haplotypes cannot be discovered using
direct molecular means at present, so computational
methods must be used to infer them. Algorithms for
inferring haplotypes can be separated into three classes.
One class of haplotyping algorithms applies to unrelated
individuals, and techniques of this class use probabilistic
constraints governed by mathematical models of popula-
tion dynamics to infer haplotypes. Available algorithms
[11,12] include PHASE [13], BEAGLE [3,4], HAPLOTY-
PER [14], and HAP2 [15,16]. The models these algo-
rithms approximate are often insufficient to prevent
switch errors - that is, positions with incorrectly
assigned haplotypes relative to the previous heterozy-
gous locus [13,16] - except across short genomic dis-
tances, as was recently demonstrated experimentally
[17]. Additionally, haplotypes inferred from unrelated
individuals can only reveal information about the results
of meiosis (including the location of hotspots) averaged
across thousands of generations and both genders.
The second class of haplotyping algorithms applies to

individuals with known family relationships [18-26].
These algorithms infer haplotypes using the laws of
Mendelian inheritance and the fact that allelic variants
in close proximity to each other segregate together (that
is, exhibit genetic linkage). Haplotypes inferred from
family-based data are accurate across extended genomic
distances: depending on the family size, they will contain
few or no switch errors. Additionally, these datasets and
algorithms enable the identification of the probable sites
of de novo meiotic recombinations and gene conversions
(which appear as short double crossovers), and have
been used to build genetic maps of recombination rates
[6], and identify hotspots [7]. Considering de novo meio-
tic recombinations and gene conversions enables the
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study of differences in location and number [27] of such
events between individuals, including gender-based dif-
ferences, and a gene affecting individuals’ genome wide
recombination rates has been identified [8]. Importantly,
haplotypes from family-based datasets are also used to
perform linkage analysis to study the genetic basis of
disease within families.
The third class of haplotyping algorithms applies to

many family trios which contain data for a father,
mother, and one child; approaches in this class leverage
techniques from the other two classes outlined above. In
particular, algorithms for haplotyping trio data use the
laws of Mendelian inheritance to resolve the haplotypes
of the trio individuals at every locus where one of the
individuals is homozygous. For the remaining ambigu-
ous loci, these algorithms utilize the mathematical mod-
els that govern haplotype expectations for unrelated
individuals, with adaptations to apply to trio data.
PHASE [13], BEAGLE [3,4], HAP2 [15,16], and other
algorithms support this form of haplotyping. Trio-based
approaches produce haplotypes with far fewer switch
errors than techniques that rely only on data from unre-
lated individuals. However, haplotypes from trios still do
not provide information about de novo meiotic recombi-
nations or gene conversions, and therefore suffer from
the same limitations for studies of the results of meiosis
as do haplotypes from unrelated individuals.
Hapi is a new dynamic programming algorithm that

infers both minimum-recombinant and maximum likeli-
hood haplotypes, and performs substantially faster than
all other haplotyping algorithms for the nuclear family
problem. Nuclear family derived genotypic data identi-
fies parents and their children, but provides no informa-
tion about relationships within a larger pedigree.
Minimum-recombinant haplotypes assign family mem-
bers’ genotypes to homologs such that the number of
recombinations that occur in the homologs the parents
transmitted to the children is minimized. Maximum
likelihood haplotypes utilize recombination frequencies
between successive loci from a genetic map to calculate
the most likely haplotype reconstruction.
Maximum likelihood haplotypes are often substantially

similar or identical to minimum-recombinant haplo-
types. Both approaches to haplotype estimation have
strengths and weaknesses.
Minimum-recombinant haplotyping may yield subop-

timal results when the recombination frequencies
between loci in some region varies widely. (Recombina-
tion rate variation can occur if the distance between
pairs of loci varies dramatically within a region, or, if
genotypes are sampled at a very fine scale, recombina-
tion hotspots and coldspots can produce such variation.)
Maximum-likelihood haplotyping reports only the most
likely haplotype, a feature that can be misleading to a

user when the difference in probability to alternate hap-
lotypes is small. Typically this occurs when the number
of recombinations across the alternate haplotypes are
the same, and in such a case, minimum-recombinant
haplotyping reports the ambiguities. Historically, geneti-
cists have manually performed minimum-recombinant
haplotype assignment to analyze small datasets. Hapi
enables this approach to be applied to the very large
datasets currently produced by high-throughput SNP
genotyping.
Several existing programs for haplotyping related indi-

viduals are based on the Lander-Green algorithm [19],
including Merlin [20], GENEHUNTER [21,22], and Alle-
gro [23,24]. The basic approach of the Lander-Green
algorithm uses hidden Markov models (HMMs) to
obtain a probability distribution of haplotype assign-
ments for individuals in a pedigree. A user can either
sample a haplotype from this distribution, or, more
commonly, obtain the maximum likelihood haplotype
assignment. The state space for these HMMs is com-
posed of inheritance vectors at each locus that are bit
strings encoding which chromosome homolog a parent
transmitted for each child in the pedigree at that locus.
This state space is inherently exponential, with 22n pos-
sible values, where n is the number of non-founders or
individuals with at least one parent in the pedigree.
Although Merlin, GENEHUNTER, and Allegro all

employ techniques to reduce computational space and
time requirements of this basic algorithm, all are rela-
tively inefficient; in general, each requires exponential
time in the number of non-founders in the pedigree.
One technique that all these algorithms employ is to
avoid representing inheritance vectors that are inconsis-
tent with Mendelian inheritance. In addition, Merlin
[20] uses sparse gene flow trees that avoid redundant
representations for states with identical likelihoods or a
probability of zero. Allegro [24] uses multi-terminal bin-
ary decision diagrams (MTBDDs) [28], which are more
general than sparse gene flow trees. MTBDDs are at
least as sparse as Merlin’s sparse gene flow trees, and
depending on how they are constructed, can be smaller.
The optimized representations that Merlin and Allegro
utilize are effective in reducing the number of states at a
single locus. However, transition probabilities will, in
general, differ for most or all possible transitions
between states at adjacent loci. Because of this, the
algorithms must represent most or all of the 22n states
in order to perform multipoint analyses, including
haplotyping.
Superlink [29] is another maximum likelihood haplo-

typing algorithm that uses Bayesian networks. While
Superlink employs several optimizations to improve its
efficiency, it performed slower than Merlin and Allegro
in our experiments.
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Hapi’s optimizations reduce the state space that it
must examine both at a single locus and across multiple
loci, as it is able to avoid considering transitions
between all possible states at adjacent loci. The optimi-
zations we introduce in Hapi represent a leap forward
in reducing the algorithm runtime and space complexity
compared to existing algorithms. The following is a
summary of Hapi’s optimizations; further details appear
in Materials and methods:
1. When a parent p is homozygous at a locus l, Hapi

only builds states for l in which the homolog that parent
p transmitted does not exhibit recombination relative to
the previous locus. In connection with this, Hapi does
not build states at loci where both parents are homozy-
gous since recombination cannot be observed at these
loci. This optimization is natural for minimum-recombi-
nant haplotyping, but it requires special consideration in
the context of maximum likelihood haplotypes.
2. At loci where Mendelian inheritance cannot unam-

biguously infer for a set of children which parent
transmitted each allele, Hapi uses a novel, concise repre-
sentation of the ambiguities instead of forming an expo-
nential number of states for all possible transmissions to
the children. Hapi also avoids building any states that
represent recombinations on both homologs for the
ambiguous children and later evaluates whether that
decision is consistent with nearby loci.
3. To transition between states at adjacent loci, Hapi

considers a state at the previous locus as possibly transi-
tioning to either two or four states at the next locus,
depending on the genotypes and possible phase assign-
ments of the parents at that locus. This optimization is
actually a by-product of the first two optimizations
mentioned above, but deserves separate consideration.
Normally if two adjacent loci each have s states, there
are s2 possible state transitions (note that s may be an
exponential number). Kruglyak and Lander [30] intro-
duced a fast Fourier transform optimization that
reduced the computational burden for transiton calcula-
tions to O(s·log s), but Hapi’s transition runtime is only
O(s), that is, linear in the number of states at a locus.
4. Some states encode the same transmissions of

homologs from the parents to the children and differ
only in the parents’ phase. These states are equivalent
downstream of the current locus and Hapi only retains
the state with minimum recombinations or maximum
likelihood. Kruglyak et al. [22] first discovered a more
general form of this optimization that applies to all
founders in a pedigree. Hapi applies this optimization to
parents in a nuclear family.
5. The previous optimization is most effective when

none of the children are missing genotype data. We
devised a mechanism for comparing nearly equivalent
states in the presence of children with missing data that

often enables the detection and elimination of subopti-
mal states.
6. At each locus, Hapi only considers states that are

consistent with Mendel’s laws for the genotypes of the
individuals and spends no time processing any inconsis-
tent states. Other algorithms also employ similar optimi-
zations that help reduce the number of states they
examine [20,21,24].
To demonstrate the efficacy of Hapi’s optimizations in

the context of real genotype data, we ran Merlin, Allegro,
Superlink, PedPhase 2.0 [26] and Hapi on a dataset con-
taining 103 nuclear families. In these experiments, Hapi
ran 3.8 and 320 times faster than Merlin, and provided
even greater runtime improvements over Allegro, Super-
link, and PedPhase (see Results).
Existing algorithms have limits on the size and num-

ber of families they can haplotype. Hapi makes possible
the efficient haplotyping of very large numbers of
families as well as families with large numbers of indivi-
duals. Because of the relative ease of gathering geno-
types for nuclear families, we expect that the number of
nuclear families within datasets will continue to grow
and that Hapi will provide the opportunity to haplotype
this large quantity of data. The techniques Hapi imple-
ments to efficiently haplotype nuclear families also apply
to general pedigrees, and thus promise to extend the
size of pedigree datasets beyond the limitations of
roughly 20 non-founders inherent in existing algorithms
(see Conclusions). Hapi is freely available for non-profit
use [31].
The remainder of this paper describes our experimen-

tal results (Results and discussion), gives a summary of
our contributions (Conclusions), and describes our algo-
rithm in detail (Materials and methods).

Results and discussion
We have evaluated Hapi’s runtime performance com-
pared to three state-of-the-art algorithms: Merlin [20],
Allegro [24], and Superlink [29], programs in current use
for family-based haplotype assignment. Like most algo-
rithms for computing maximum likelihood haplotypes,
these programs have exponential complexity in general.
However, each contains several optimizations, and these
are the most suitable programs for comparison to Hapi.
We omitted GENEHUNTER from our comparison
because Merlin outperforms it [20]. We ran each
program on a dataset of nuclear families derived from a
pedigree from the Huntington’s Disease Venezuela Colla-
borative Study [32]. This Venezuelan pedigree has 757
individuals and 458 families. None of Merlin, Allegro, or
Superlink can successfully haplotype such a large pedi-
gree. Hapi can currently only analyze nuclear families
where both parents have genotype data, so the pedigree
was broken up into such families. The choice to break up
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such a large pedigree into smaller sets of related indivi-
duals is necessary regardless of which haplotyping tool is
used since runtime and memory requirements impose
hard limits on the scalability of existing algorithms.
The derived nuclear family dataset contains 103

nuclear families where both parents have data. These
families have a total of 438 individuals. Note that
because we analyzed the families separately, we double
counted individuals that appear in more than one family
(for example, as a parent in one and a child in another,
or as a parent in more than one family).
These families range in size from one to eleven chil-

dren, with an average of 2.23 children per family. There
are 86 families with three or fewer children (308 total
individuals), with an average of 1.56 children for that
subset of families. Using the Illumina linkage IV_v3 SNP
panel, genotypes at 5,456 SNPs covering the whole gen-
ome were obtained for each individual in the dataset
[32]. The numbers of SNPs per chromosome are
roughly proportional to the chromosome’s size and
range from 102 on chromosome 21 to 468 on chromo-
some 2. Prior to analysis, the PEDSTATS [33] and Ped-
Check [34] programs were used to remove genotypes
exhibiting non-Mendelian errors. When processing a
family, Hapi omits loci that are missing data for either
parent, but the missing data status of one family does
not affect any other family in the dataset.
Table 1 shows timing results from our experiments of

performing maximum likelihood haplotyping using
Hapi, Merlin, Allegro v2, and Superlink on a 2.30 GHz
AMD Opteron machine with 32 GB of RAM. Although
this is a multi-core processor, none of the algorithms
are parallelized, so their runtimes are directly compar-
able. We used Hapi to infer maximum likelihood rather
than minimum-recombinant haplotypes in this set of
experiments because the other programs address that
problem, and because that form of haplotyping is slower
in Hapi. All programs except for Superlink (see below)
used less than 8 GB of memory.

Superlink ran for over six hours without finishing
when we used it haplotype chromosome 1 for all
families in the dataset. At that time, the program
reported that 0% of the haplotyping was complete. We
found that Superlink uses an excessive amount of mem-
ory (>24 GB) to haplotype a family with nine or ten
children. The times for Superlink therefore reflect its
haplotyping a modified set of families, with three of the
children removed from the original eleven child family.
Superlink used less than 8 GB of memory when analyz-
ing this modified dataset.
We include times for haplotyping all families in the

dataset (modified for Superlink), as well as the subset of
families with three or fewer children in Table 1. Because
of the fixed and disproportionate overhead involved in
printing the haplotypes in Hapi and Merlin (approxi-
mately .5 seconds in Hapi or about 16% of runtime and
approximately 29 seconds in Merlin or <3% of runtime),
we report the times only for reading in the dataset and
performing the haplotyping in these programs, but not
printing the results. Source code is not publicly available
for Superlink, so we could not modify it to avoid print-
ing haplotypes, but such a change is unlikely to dramati-
cally affect its runtime. We also did not modify Allegro
to prevent it from printing haplotypes, but its runtime is
also unlikely to change significantly compared to the
current results. As Table 1 shows, Hapi is substantially
faster than Merlin, running 323 times faster for the
entire dataset and 3.84 times faster for the subset of
families with three or fewer children. Hapi compares
even more favorably against Allegro and Superlink, even
though Superlink is only able to haplotype a reduced-
sized dataset. When haplotyping the entire dataset, Hapi
runs 2,462 times faster than Allegro and 448 times fas-
ter than Superlink’s analysis of the smaller dataset. For
haplotyping the subset of families with three or fewer
children, Hapi runs 6.43 times faster than Allegro and
17.2 times faster than Superlink. Hapi’s speedup for the
entire dataset demonstrates experimentally the vast

Table 1 Runtime results comparing Hapi to other family-based haplotyping algorithms

All families ≤3 Children

Machine Program Runtime Speedup Runtime Speedup

Hapi 3.112 s - 2.225 s -

2.30 GHz Merlin 1005 s 323× 8.662 s 3.84×

AMD Opteron Allegro v2 7661 s 2,462× 14.50 s 6.43×

Superlink 1393 s* 448× 38.75 s 17.2×

1.40 GHz Hapi 4.732 s - 3.451 s -

Pentium M PedPhase 2.0 >21,600 s (6 h)† >4,500× >21,600 s (6 h)† >6,000×

Runtimes for maximum likelihood haplotyping using Hapi, Merlin Allegro and Superlink of nuclear families from the Huntington’s Disease Venezuela Collaborative
Study [32]. We list times for haplotyping all nuclear families and for haplotyping those with three or fewer children. *Superlink failed to haplotype the family with
11 children; we therefore used only 8 of the children from the 11 child family to time it. Times are averages from running Hapi eight times and Merlin, Allegro,
and Superlink three times each. Runtimes also on a different machine for minimum-recombinant haplotyping using Hapi (averaged from eight runs) and
PedPhase †for chromosome 1 only.
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difference between the theoretical complexity of these
algorithms. Whereas Merlin, Allegro, and Superlink
have exponential runtime complexity, Hapi runs in poly-
nomial time in practice (see Additional file 1 for com-
plexity analysis). At the same time, the more modest
gains for the families with three or fewer children is
unsurprising. The other algorithms scale exponentially
in the number of non-founders or, in the case of nuclear
families, in the number of children in the family being
analyzed. When that number is very small, an exponen-
tial algorithm will not differ as significantly from one
that has polynomial runtime in practice. Our algorithm
is still significantly faster than these programs even in
this case that is less taxing to an exponential algorithm.
Besides these maximum likelihood systems, we com-

pared Hapi’s minimum-recombinant haplotyping to Ped-
Phase 2.0, which uses an Integer Linear Programming
algorithm to calculate minimum-recombinant haplotypes
for pedigrees [26]. PedPhase 2.0 runs only in Windows,
and we used a 1.40 GHz Pentium M laptop with 1.24 GB
of RAM to compare runtimes of these two systems.
Table 1 gives timing results on this machine for Hapi and
PedPhase. We ran PedPhase on the entire dataset and on
the families with three or fewer children. In both cases,
PedPhase did not exceed available memory, and ran for
over 6 hours without haplotyping even chromosome 1.
Because 464 of the 5,456 total SNPs reside on chromo-
some 1, we estimate that the total runtime for PedPhase
on this dataset would be at least 70 hours. In contrast,
Hapi completes haplotyping the entire dataset in 4.732
seconds (in Linux) on this machine.
As we discuss in Additional file 1 the number of states

in Hapi is affected by the number and pattern of mar-
kers that are missing data. Our nuclear family dataset
contains only 1.17% missing data. To explore the run-
time performance of Hapi in the presence of moderate
to significant proportions of missing data, we modified
it to randomly drop various proportions of data. Table 2
gives the results of our simulations. In the most extreme
case of 50% missing data, Hapi’s average runtime was
36.38 s, which is still 27.6 times faster than Merlin. Real

datasets will generally contain 5% or less missing data,
and we probabilistically dropped 3.83% markers from
the original data to obtain approximately 5% missing
data. In this scenario, Hapi performed only 5.21% slower
compared to haplotyping the dataset without the added
missing data (306 times faster than Merlin). These
results demonstrate that Hapi is robust to haplotyping
data with significant proportions of missing data and
performs very well for the more modest missing data
proportions for which it is likely to be used.
Hapi produces output in text or CSV format, suitable

for import into a spreadsheet. It can output either the
actual haplotypes with allele values or the children’s
inheritance vector values. The latter is useful for
inspecting the results of meioses, including recombina-
tion patterns. Figure 1 shows the inheritance vector out-
put from Hapi for a family with 11 children, imported
into a spreadsheet. This output uses letter symbols
rather than bit values, with lower case letters indicating
that the corresponding meiosis is uninformative. To
help identify recombinations sites, we use the spread-
sheet program’s conditional formatting feature to color
the cells based on which homolog the child received.
The output from Merlin, Allegro, and Superlink provide
the same information as Hapi, but each of these pro-
grams uses its own text-based format. We expect that
geneticists will find the ability to import Hapi’s output
into a spreadsheet to be more intuitive and more conve-
nient than the output from other programs.

Conclusions
Assignment of haplotypes is an important element in a
number of significant areas of genetic analysis, including
locating genes involved in human disease, analyzing the
products of meiosis to locate recombination hotspots and
gene conversions, and studying population dynamics and
history for humans and other species. Because of their
importance, researchers have developed computational
algorithms for inferring haplotypes from genotypes. The
most effective approach to this problem is to use data for
individuals whose family relationships are known.

Table 2 Timing results from simulations of extreme amounts of missing data

Total % missing Simulation probability Runtime Slowdown Speedup vs. Merlin

5% 3.83% 3.274 s 5.21% 306×

10% 8.83% 3.564 s 14.5% 281×

20% 18.8% 4.567 s 46.8% 220×

30% 28.8% 6.897 s 122% 145×

40% 38.8% 11.36 s 265% 88.5×

50% 48.8% 36.38 s 1070% 27.6×

Hapi’s runtime performance for haplotyping the dataset discussed in Results in the presence of various total proportions of missing data. Because this dataset
contains 1.17% missing data already, we dropped genotypes according to the indicated probabilities in order to obtain the total overall proportions of missing
data. The table lists the runtime, percentage slowdown compared to running Hapi on the unmodified dataset, and the speedup compared to running Merlin on
the unmodified dataset.
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Inferring minimum-recombinant haplotypes for the
individuals in a pedigree is known to be NP-hard in
general [25,35]. Problems classified as NP-hard are not
known to have a polynomial time (that is, efficient)
solution, and are therefore thought to be computation-
ally intractable. Existing algorithms computing either
maximum likelihood (based on recombination rates) or
minimum-recombinant solutions for pedigrees conse-
quently have exponential complexity.
Hapi is an efficient algorithm for inferring both mini-

mum-recombinant and maximum likelihood haplotypes
for nuclear families. Hapi runs in polynomial time in
practice (see Additional file 1 for algorithm complexity
details), and our experimental data demonstrate the
effectiveness of our approach. When haplotyping a large
dataset of nuclear families, Hapi outperforms the state-
of-the-art system Merlin with a speedup of between 3.8
and 320 times. Hapi also runs between 6.4 and 2,460
times faster than Allegro and between 17 and 448 times
faster than Superlink.
The optimizations Hapi uses to efficiently haplotype

nuclear families can also be extended to pedigrees. A
detailed discussion of this problem is available elsewhere
[36], but we give a brief description here. Two of Hapi’s
optimizations - eliminating equivalent states for all pedi-
gree founders, and avoiding inheritance vectors that are

inconsistent with Mendelian Inheritance - are already
included in known algorithms. The other optimizations
can apply individually to each of the nuclear families
that make up the pedigree. Whenever one or both par-
ents in one of the pedigree families is homozygous, it
suffices to propagate the inheritance vector values corre-
sponding to the parent(s) transmitted homologs from
the states at the previous locus. (The system cannot skip
uninformative loci for a particular family since other
families in the pedigree will usually be informative.)
Additionally, the ambiguous inheritance vectors optimi-
zation applies to all offspring in the pedigree except
shared individuals that are a child in one family and a
parent in another. In utilizing these optimizations, the
system need only consider a linear number of transitions
for the inheritance vectors corresponding to each
nuclear family. Note that the algorithm must build
states corresponding to all combinations of inheritance
vector values across all the nuclear families. The bound
on the number of states at each locus using our
approach is therefore O((2i* s)r), where s is the maxi-
mum states the algorithm would produce to evaluate
any of the nuclear families individually, r is the number
of nuclear families in the pedigree, and i* is the maxi-
mum number of shared individuals in any nuclear
family. This bound, while exponential, compares

Figure 1 Sample inheritance vector output from Hapi imported into a spreadsheet. Output from Hapi showing the inherited homologs on
chromosome 1 for a family with 11 children from the Huntington’s Disease Venezuela Collaborative Study [32]. Hapi produces CSV format
output, which we imported into a spreadsheet. To color the cells, we used conditional formatting based on the homolog value transmitted. The
output of inheritance vector values uses letters A and B. Lower-case letters indicate the transmitting parent is homozygous and the presence of
recombination unknown. Each column is labeled with the child’s numerical id with either a ‘P’ or an ‘M’ preceding it to indicate either paternal
or maternal-derived homologs. The left most column gives the SNP rs numbers, and the right most column lists the number of recombinations
across all children at the given locus.
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favorably against the bound of O(22n-f) states per locus
of existing techniques since r·i* <n (note: there must be
at least one offspring that is not a shared individual).
With this reduction in the bound on the number of
states, the optimizations Hapi employs make possible
the haplotyping of larger pedigrees than can be handled
by existing techniques.
As time passes and technology improves, genotype

datasets will continue to grow in size, both numbers of
individuals and numbers of loci assayed. As such, faster
tools for haplotype analysis will be essential. Existing
algorithms for haplotyping related individuals have hard
limits on the size of families they can analyze because of
their exponential complexity. These algorithms are con-
sequently ineffective for datasets with thousands of
families or for families with large numbers of children.
Hapi provides a solution that is able to meet many of
these future challenges.

Materials and methods
Hapi performs both minimum-recombinant and maxi-
mum likelihood haplotyping for nuclear families. These
two haplotyping approaches are similar, and we first
present the minimum-recombinant algorithm. Later we
will describe how to extend this approach to calculate
maximum likelihood haplotypes. This paper describes
an algorithm for haplotyping nuclear families that have
genotype data for both parents and some number of
children. We elsewhere describe how to generalize the
algorithm to infer haplotypes for nuclear families with
data for only one parent or to sets of siblings only (that
is, without data for either parent) [36].
Hapi seeks to find a minimum-recombinant haplotype

solution that is globally minimal across the chromosome
length rather than locally minimal between successive
pairs of loci. Thus, a solution may contain a locus that
has an alternate assignment of individuals’ alleles to
homologous chromosomes that yields fewer recombina-
tions from the previous locus (that is, locally), but not
over the entire chromosome length (that is, globally). An
example of such a locus from real data for a family of
human subjects is described in the Example subsection.
Hapi uses inheritance vectors, represented using bit

strings, to encode which chromosome homolog each
parent transmitted to each child at a locus. These bit
strings are composed of 2c bits, where c is the number
of children in the nuclear family.
A dynamic programming equation for calculating

minimum-recombinant haplotypes is given below. The

function R l v,
( ) calculates the minimal number of

recombinations necessary to reach inheritance vector v
at locus l:

R l v R l w H w v
w

, min , , .
   

( ) = −( ) + ( ){ }1 (1)

Here, R l w−( )1,


is the minimum number of recom-

binations necessary to reach an inheritance vector w at

the previous locus l-1. H w v
 

,( ) is the number of

recombinations between vectors w and v , which is
equal to the number of bits that differ between them,
that is, the hamming distance. The initial number of
recombinations at locus l = 0 is defined naturally as

R l v=( ) =0 0,


.

A naive implementation of the above dynamic pro-
gramming recurrence would initialize all 22c possible
inheritance vectors at locus l = 0 and would model
most or all of these vectors at successive loci. Hapi
functions differently: the initial locus has only one
inheritance vector, and successive loci model a very
small number of inheritance vectors.
Hapi uses a locus state to store the information com-

puted in the above dynamic programming equation. A
locus state stores: (1) an inheritance vector; (2) the
assignment of the heterozygous parent’s or parents’ gen-
otype alleles to homologs that is consistent with this
inheritance vector; (3) the minimal number of recombi-
nations necessary to reach this state/inheritance vector
value; (4) a pointer to the state or states at the previous
locus that yields this minimal number of recombina-
tions; and (5) a bit string encoding which children have
ambiguous inheritance values (necessary for some kinds
of loci as we describe later). Because the parents’ allele
to homolog assignments imply part or all of the inheri-
tance vector values, there is only one consistent parent
assignment for each inheritance vector.
After evaluating equation (1) by building the neces-

sary states for all loci, it is straight forward to deduce
haplotypes. Hapi does this by performing the assign-
ments of alleles to homologs as dictated by the mini-
mum-recombinant state at the final locus and then back
tracing to states at previous loci. Rather than waiting
until the final locus to make these assignments and per-
form back tracing, Hapi does this work whenever a
locus yields only one state (which happens frequently).
The one state at that locus and those leading to it at
previous loci are guaranteed to have minimum recombi-
nations. Performing this process before the final locus
allows the system to reclaim the memory used to store
states.
We give an illustrative example of what a graph of

states generated by our algorithm might look like in Fig-
ure 2. In this graph, boxes represent states, and each
row of boxes corresponds to the states for a single
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locus. The number in each box represents the minimal
number of recombinations necessary to reach that state.
The first locus (top-most box) has only one box/state
with an initial value of zero recombinations. At the sec-
ond locus, there are four states that have between one
and five recombinations. Note that at the third locus,
the second state has pointers to two different states at
the previous locus. The final locus has only one state.
Once the system determines this final state, it performs
back tracing along pointers to previous states, and uses
the haplotype values stored in the encountered states to
make the allele assignments.
Hapi implements six optimizations that allow it to

very efficiently infer minimum-recombinant haplotypes,
and it uses these same optimizations to calculate maxi-
mum likelihood haplotypes, as we describe later. The
goal of each optimization is to reduce the number of
states and state transitions that Hapi must consider and
store. Below, we give details about five of the optimiza-
tions Hapi implements. The last optimization applies at
loci where one or more children are missing data, a sce-
nario we discuss later. Note that Hapi builds states for a
locus based on the states at the previous locus and the
genotypes of the individuals at the locus being consid-
ered. Considering states at the previous locus is neces-
sary for two of Hapi’s optimizations. The initial state for

a chromosome cannot depend on previous locus states
and is therefore built differently as we discuss later.

Non-recombinant states for homozygous parents
When one or both of the parents at a locus are homozy-
gous, which homolog the homozygous parent(s) trans-
mitted is ambiguous. A naive implementation of the
Lander-Green algorithm builds states corresponding to
all possible homolog transmissions for the homozygous
parent, yielding 2c inheritance vector values for each
homozygous parent. Instead of building and processing
this exponential number of states, Hapi copies the
inheritance vector values corresponding to the homozy-
gous parent from the states at the previous locus. Typi-
cally the number of unique inheritance vector values for
the homozygous parent at the previous locus is small,
though it is possible for this number to be large. In gen-
eral, other optimizations aid in keeping the number of
states small, and our experimental results demonstrate
that the number of states is small in practice.
This approach of copying inheritance vector values for

the homozygous parent assumes a lack of recombination
for this uninformative case, and this will always yield
minimal recombinations. The next locus that is hetero-
zygous for the parent in question will indicate if a
recombination has occurred within any region of homo-
zygosity for that parent.
For loci where both parents are homozygous, all 22c

possible inheritance vectors are consistent with the gen-
otypes. Rather than building all states or copying every
state from the previous locus, Hapi simply skips these
loci. Subsequent loci utilize the states located at the
most recent locus for which states exist. Table 3 gives
an example from real data of a locus in which one par-
ent is homozygous and the other parent is heterozygous.
The inheritance vector values corresponding to the
homozygous parent p1 are shown as the second element
in each of the ordered pairs in the rows labeled v . The
inheritance vector values for the homozygous parent in
the two states a and b are the same as those in the pre-
vious state since Hapi copies these values. Without this
copying optimization, the locus would have 2·2c states
rather than two. Merlin [20] and Allegro [24] also
include techniques that reduce the number of states
they represent in the presence of uninformative meioses.
These techniques represent redundancies in states’ prob-
abilities and are effective at a single locus, but transi-
tions between states at adjacent loci inhibit their utility
since differing transition probabilities typically reduce
the amount of redundancy in the data.

Ambiguous inheritance vector values
At loci where both parents are heterozygous with
the same genotype (which we later term ‘partly

Figure 2 Example graph of states across several loci. A pictorial
representation showing the relationship between states at different
loci. Each row of boxes correspond to a locus; boxes represent a
state and indicate the numbers of recombinations the state incurs;
arrows point to previous state(s). Once the system deduces a single
state at some locus - shown here as the bottom box - it back traces
by traversing the pointers and assigns the haplotype values from
the states it encounters. The numbers are not from real data.
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informative’), a heterozygous child will have the same
genotype as its parents. As a result, these heterozygous
children are a priori ambiguous as to which parent
transmitted each of their alleles: either parent could
have transmitted either allele.
Existing algorithms build states corresponding to all

possible inheritance vector values for these ambiguous
children, and for a given assignment of the parents’
alleles to homologs, each heterozygous child has two
possible inheritance vector values. Thus, for h heterozy-
gous children, there are 2h possible inheritance vectors
for each of the four possible assignments of parents’
alleles to homologs, or 4·2h total inheritance vectors/
states consistent with the individuals’ genotypes at these
loci.
Instead of building this exponential number of states,

Hapi again uses the states at the previous locus to
reduce the number of states it must build. The system
maps each previous state to four states corresponding to
each assignment of parents’ alleles to homologs. Note
that multiple previous states can map to the same state,
so the number of states usually does not quadruple.
Also note that homozygous children have only one
inheritance vector value that is consistent with a given
assignment of parents’ alleles, so they do not affect the
number of necessary states.
Heterozygous children have two consistent inheri-

tance vector values for a given assignment of parents’
alleles to homologs, and these two values are opposite
each other. If the inheritance value in the previous
state is equivalent to one of these two values, Hapi
uses the value equivalent to the previous state in the
state being built. The other inheritance value results in
two crossovers for the child, one from each parent.
Such an event is extremely unlikely, yet if it were to
take place, downstream loci that are fully informative
would reveal its occurrence. In that rare case, Hapi will
mark the partly informative locus as ambiguous during
back tracing, since it is impossible to know whether
these two recombinations took place at the earlier

partly informative locus or at the later fully informative
locus. (Maximum likelihood haplotyping determines
the location of the recombinations based on recombi-
nation frequencies.)
In the case that the inheritance value in the previous

state is not equal to one of the two ambiguous inheri-
tance values, the previous inheritance value must differ
from these two values in exactly one bit. For example, if
the previous value is 〈0, 0〉 and is not equal to either of
the values at the current locus, they must be 〈0, 1〉 and
〈1, 0〉. The differences between the two consistent values
and the previous one represent a recombination in one
or the other parent. Which parent recombined is ambig-
uous at this locus and can only be determined at later
loci.
Rather than creating separate states for these two

inheritance values - which would yield an exponential
number of states across multiple children - Hapi instead
marks the child as having ambiguous inheritance. A
child’s inheritance being marked as ambiguous means
that its inheritance vector value can be inverted without
inducing additional recombinations - both possibilities
result in the exactly one recombination.
The choice of which of the two inheritance values to

store in the state is arbitrary, and Hapi indicates that a
child is ambiguous using another bit vector. For our
explanation, we designate ambiguous values with the?
symbol. One can view an ambiguous inheritance value
as a set of values, so 〈0, 0〉? = 〈1, 1〉? = {〈0, 0〉, 〈1, 1〉}.
For the earlier example with a previous inheritance
value of 〈0, 0〉, the resulting inheritance value would be
〈0, 1〉?. The use of these ambiguous values effectively
merges the exponential number of states that would
otherwise result. Merging the states in this way suffices
because (1) Hapi can later resolve which of the unam-
biguous inheritance vectors is optimal, and (2) the num-
ber of recombinations remains the same regardless of
which unambiguous inheritance vector ultimately
results. If the previous inheritance value is itself ambigu-
ous, the resulting value must also be ambiguous, and

Table 3 Two states at a fully informative for one parent locus built from the previous state

Parents Children # Rec

p0 p1 c0 c1 c2 c3 c4

Prev

v 〈0, 1〉 〈1, 1〉 〈1, 1〉 〈0, 0〉 〈1, 1〉 0

State hap 〈a, g〉 〈a, a〉 〈g, a〉 〈a, a〉 〈a, a〉 〈a, a〉 〈a, a〉

a

v 〈1, 1〉 〈0, 1〉 〈0, 1〉 〈0, 0〉 〈0, 1〉 4

State hap 〈g, a〉 〈a, a〉 〈g, a〉 〈a, a〉 〈a, a〉 〈a, a〉 〈a, a〉

b

v 〈0, 1〉 〈1, 1〉 〈1, 1〉 〈1, 0〉 〈1, 1〉 1

An example locus with one heterozygous and one homozygous parent that shows one state at the previous locus and the two states Hapi builds based on this
previous state. This example is from the real dataset discussed in Results. The rows labeled


v show the states’ inheritance vectors and the rows labeled hap

give haplotype assignments of the alleles. Hapi copies the inheritance vector values corresponding to the homozygous parent from the previous state to states a
and b. Recombinations result from differing inheritance vector values from the previous state; these differences appear in bold and the states’ total number of
recombinations appear in the right-most column. Note that the heterozygous parent’s inheritance vector values in the two states are exactly opposite each other
and are therefore equivalently labeled.
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when there is a recombination, the resulting value is
unequal to the previous value, such as with 〈0, 0〉? and
〈0, 1〉?.
Hapi resolves ambiguous inheritance values for a state

during the back tracing process. While back tracing, if
the system encounters a state that has one or more
ambiguous inheritance values, it compares these values
to the corresponding values at the next (already
resolved) locus. If the unambiguous form of this value
(that is, that without the ? symbol) or its opposite is
equal to the inheritance value at the next locus, the sys-
tem assigns the equivalent value at the current locus. If
neither is equal, recombinations occur on either side of
this locus and the inheritance value is truly ambiguous.
In this rare case, Hapi’s output reports the child’s haplo-
type at this locus as ambiguous.
This optimization significantly improves Hapi’s effi-

ciency. Removing this optimization would cause the
number of states to grow unwieldy whenever Hapi
encountered a locus that has heterozygous parents with
the same genotype. Even with all the other optimiza-
tions in place, the increase in the number of states
would propagate to subsequent loci that have one par-
ent that is heterozygous and the other homozygous.

State transitions between loci
In general, any state at a previous locus can transition to
any state at the next locus. However, because Hapi does
not consider state transitions that include recombina-
tions from a parent that is homozygous, and because it
uses ambiguous inheritance values, the number of possi-
ble state transitions is limited. The state transitions opti-
mization actually comes as a by-product of the two
optimizations we have already outlined, yet the effects
of these optimizations on the complexity of state transi-
tion calculations merit a separate discussion.
At each locus, Hapi considers transitions from the

states at the previous locus to either two or four states.
If only one parent is heterozygous at the locus, each
state at the previous locus can transition to only two
states at the current locus. These two states correspond
to the two possible phase assignments for the heterozy-
gous parent. A particular phase assignment for the het-
erozygous parent uniquely defines the inheritance vector
bits that that parent transmits. The system copies the
other inheritance vector bits from the previous state.
If both parents are heterozygous at a locus, then the

parents have four possible phase assignments, and each
state at the previous locus can transition to four states
at the next locus. The ambiguous inheritance vector
optimization makes this possible, since loci in which
both parents have the same heterozygous genotype
would otherwise produce an exponential number of
states. Instead, for a given phase assignment for the

parents, a state at previous locus uniquely determines
the inheritance vector it transitions to. If the parents are
heterozygous with differing genotypes, the children’s
genotypes at the locus unambiguously imply the com-
plete inheritance vectors corresponding to each parent
phase assignment. Thus, exactly four inheritance vectors
are possible, and each previous state can transition to
these four states.
The efficiency gains of our approach are significant.

Without these optimizations, haplotyping algorithms
must consider all possible state transitions between loci.
If two adjacent loci each have s states, other algorithms
compute transition probabilities corresponding to all s2

state transitions. Use of a fast Fourier transformation
reduces the computational burden of these optimiza-
tions from a quadratic O(s2) to O(s·log s) [30]. With
Hapi’s optimizations there are only 2s or 4s possible
transitions, so the computational burden is linear, O(s).
The speed of computing state transitions - in addition
to and in connection with tracking of very few states at
each locus - enable Hapi to perform haplotyping calcu-
lations very efficiently.

Equivalent states
At many loci, it is possible to unambiguously deduce
which allele each heterozygous parent transmitted to
each child. In that case, the inheritance bits that corre-
spond to transmissions from this parent can take on
exactly two values depending on the parent’s phase
assignment. The inheritance bits in these two values are
opposite each other, since the parent transmits the same
allele in each case, but the alleles reside on opposite
homologs for the opposite phase assignments. The locus
in Table 3 illustrates these ideas. For this locus, it is
easy to deduce which alleles the heterozygous parent
transmitted to each child. As well, the two states have
opposite inheritance values corresponding to this parent,
consistent with their opposite phase assignments.
Two inheritance vectors with opposite bits corre-

sponding to one parent and equivalent bits for the other
parent are equivalent in terms of the number and loca-
tions of recombinations that will occur at downstream
loci. Hapi uses inheritance vectors to detect recombina-
tions. A recombination occurs when the homolog a par-
ent transmitted to a child differs between two loci.
Because the parent’s inheritance values in these states
are exactly opposite each other, each of these inheri-
tance vectors encodes the same set of children as receiv-
ing a given homolog. The two states merely use
opposite labels for the homologs as implied by the par-
ent’s opposite phase assignments. Choosing one of the
states instead of the other results in all downstream loci
having opposite phase assignments for the parent, con-
sistent with the chosen phase assignment in the
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upstream locus. The number and location of down-
stream recombinations are the same regardless of which
state the system chooses at this locus because the sets
of children that share a common homolog same
between states. The two states a and b in Table 3 are
equivalent, and Hapi retains only state b and eliminates
state a from further consideration.
In general, any states with opposite inheritance values

for one parent and either equivalent or opposite inheri-
tance values for the other parent are equivalent. This
means that, if both parents are heterozygous with differ-
ing genotypes, there are only four possible states, and
these have equivalent downstream affects. When two or
more states are equivalent at a locus, Hapi only retains
the state with the fewest recombinations.
Kruglyak et al. [22] first discovered a more general

form of this optimization, finding that equivalent states
exist for all founders in a pedigree. A founder is an indi-
vidual with no parents in the pedigree. For each foun-
der, the number of inheritance vectors is decreased by a
factor of 2. So, whereas there are 22n possible inheri-
tance vectors in a pedigree, where n is the number of
non-founders, this optimization reduces the state space
to 22n-f inheritance vectors, where f is the number of
founders. For a nuclear family, f = 2, so this optimiza-
tion reduces the state space by a factor of 4.

States consistent with Mendel’s laws
Although there are 22c possible inheritance vectors for
every locus, the genotypes of the individuals at a locus
often make many of these inheritance vectors inconsis-
tent with the Mendelian laws of inheritance. For exam-
ple, a parent that has a genotype of a/b cannot transmit
its b allele to a child with genotype a/a. Hapi builds
states based explicitly on the genotypes at each locus
and spends no time processing any inheritance vectors
that are inconsistent with Mendelian inheritance. Merlin
[20], GENEHUNTER [21], and Allegro [24] all contain
similar optimizations to this, though each spends some
small amount of time considering inconsistent inheri-
tance vectors.

Locus types
Hapi’s optimizations apply in different contexts, and in
particular, we have identified four types of loci with dif-
ferent parents’ genotypes for which different technical
issues arise and different optimizations apply. Table 4
summarizes these locus types, listing the number of
states that result at each type if there are s states at the
previous locus. The table also includes the average num-
ber of states that occur at relevant locus types for the
dataset we evaluated in Results. (See Additional file 1
for a detailed analysis of Hapi’s runtime complexity in
general.)

Loci that we term to be fully informative for both par-
ents are those in which both parents are heterozygous
but with differing genotypes. In this case there are
exactly four possible states and the equivalent states
optimization enables Hapi to retain only one state. Note
that although this locus type is advantageous, most
SNPs are bi-allelic, and therefore this locus type will not
occur in SNP genotype datasets. A fully informative for
one parent locus is one that has one heterozygous par-
ent and one homozygous parent. Two successive loci
that are fully informative for each of the parents is ana-
logous to one fully informative for both parents locus.
Each such locus produces only two possible inheritance
vector values corresponding to each parent and, at the
second locus, the states are all equivalent.
Often the states at the locus preceding a fully informa-

tive for one parent locus do not contain ambiguous
inheritance values. When that is the case, because Hapi
does not introduce any states with recombinations for
the homozygous parent, and the because of the equiva-
lent states optimization, the system retains at most s
states. We discuss the case in which the previous locus
has states with ambiguous inheritance below. Partly
informative loci are those in which both parents are het-
erozygous with the same genotype. The number of
states at these loci may increase by a factor of four from
the previous locus, but typically the number of states
does not grow large. As Table 4 shows, the average
number of states Hapi produces at partly informative
loci when haplotyping a real dataset is only 6.31.
Uninformative loci are those in which both parents

are homozygous, and yield no information about meio-
sis. Hapi does not produce any states for these loci,
and only deduces the children’s phase if they are
heterozygous.

Ambiguous inheritance values and fully informative for
one parent loci
Ambiguous inheritance values complicate the handling
of fully informative for one parent loci. At this locus
type, we apply an optimization to propagate the inheri-
tance vector bits for the homozygous parent from the
previous locus. This requires only copying in the case of
unambiguous inheritance values, and results in two
equivalently labeled states.
The situation is different when a previous state has

children with ambiguous inheritance values. In that
case, the corresponding two inheritance vectors that
Hapi builds are not equivalent because, for children
with ambiguous inheritance values, the homozygous
parent’s inheritance bits are opposite each other rather
than equivalent. At the same time, the homozygous par-
ent’s inheritance bits for any unambiguous children
remain identical across the two values.
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Consider the example in Table 5 which is modified
from the example in Table 3 to include ambiguous
inheritance values. As usual, the inheritance vector
values for the heterozygous parent are opposite in the
two states. However, the ambiguous inheritance bits
correspond to two entirely opposite values, so the two
resulting states do not have identical inheritance vector
values for the homozygous parent (we underline these
differing values in the table). Because the two inheri-
tance vectors are not equivalent, the algorithm cannot
eliminate one of these two states. Even so, because the
heterozygous parent’s inheritance values are still exactly
opposite, if the next locus is fully informative for the
other parent, Hapi can produce one state at that locus.
Ambiguous inheritance values in states at a locus pre-

ceding a fully informative for one parent locus can pro-
duce double the number of states at that locus, but does
not always do so. While the two inheritance vectors pro-
duced by a particular previous state with ambiguous
inheritance values are not equivalent, some other pre-
vious state may yield an inheritance value that is equiva-
lent to one of these states, thereby enabling the
elimination of some states.

Initial state
To build the initial state from which to haplotype a
given chromosome, Hapi uses either a fully informative
for both parent locus or two loci that are fully

informative for opposite parents. Hapi begins at the first
locus on a chromosome, scanning for these types of
loci, and skips any partly informative loci. Later, after
defining an initial state and haplotyping the remainder
of the chromosome, Hapi resolves haplotypes at these
early partly informative loci by performing reverse hap-
lotyping from the locus that established the initial state.
A locus that is fully informative for both parents com-

pletely defines an initial state. This locus type has exactly
four possible inheritance vectors, and because they are
equivalent, Hapi arbitrarily chooses one of them.
A fully informative for one parent locus defines half of

an inheritance vector, giving information only for the
bits that correspond to the heterozygous parent. Hapi
again arbitrarily chooses one of the two possible values
to assign. The initial state is then partially defined with
values for the heterozygous parent. Later, when the sys-
tem encounters a locus that is fully informative for the
undefined parent (or a locus fully informative for both
parents), it fills in the inheritance vector values for the
undefined parent, and haplotyping proceeds forward
normally from this point. The system handles any inter-
vening loci that are fully informative for the already-
defined parent in the normal way, while still leaving the
homozygous parents’ inheritance vector bits undefined.
Table 6 (described in more detail below) gives an exam-
ple of aninitial state defined from two fully informative
loci (numbered 8 and 12).

Table 4 Four types of loci Hapi distinguishes

Number of states

Locus type Parent p Parent q If s previous states Average

Fully informative for both parents a/b a/c or c/d 1 N/A

Fully informative for one parent a/b a/a or c/c After informative for parent q: 1
Previous states unambiguous: ≤s
Previous states ambiguous: ≤2s

1.87

Partly informative a/b a/b ≤4s 6.31

Uninformative a/a a/a or b/b 0 N/A

The four types of loci our algorithm handles separately with the names we use to refer to them. The table lists the number of states that Hapi produces for each
type if there are s states at the previous locus, and gives the average number of states produced for haplotyping the dataset we evaluate in Results. Note that
either parent may have the genotypes listed for parents p and q.

Table 5 States at a fully informative for one parent locus built from a state with ambiguous values

p0 p1 c0 c1 c2 c3 c4 # Rec

Prev

v 〈0, 1〉 〈1, 1〉? 〈1, 1〉 〈0, 0〉? 〈1, 1〉 0

State hap 〈a, g〉 〈a, a〉 〈g, a〉 〈a, a〉 〈a, a〉 〈a, a〉 〈a, a〉

a

v 〈1, 1〉 〈0, 0〉 〈0, 1〉 〈0, 0〉 〈0, 1〉 4

State hap 〈g, a〉 〈a, a〉 〈g, a〉 〈a, a〉 〈a, a〉 〈a, a〉 〈a, a〉

b

v 〈0, 1〉 〈1, 1〉 〈1, 1〉 〈1, 1〉 〈1, 1〉 1

An example, modified from Table 3 and not from real data, showing a state with ambiguous inheritance values (marked by ?) at the previous locus, and the two
states Hapi builds based on it. For unambiguous children’s inheritance vector values, the system copies the bits corresponding to the homozygous parent from
the previous state. For ambiguous children, two opposite inheritance values are valid for the previous state, and the system uses the homozygous parent bit
from the inheritance value that matches the heterozygous parent’s bit in the state being built. Both of the two inheritance values are necessarily represented,
one in each of the resulting states. As the underlined values show, the inheritance values for the homozygous parent differ across the two outputs. As such, the
states are not equivalent, and Hapi cannot eliminate either. Bold values indicate recombinations.
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Missing data
Missing genotype data can result either because of qual-
ity control mechanisms associated with genotyping tech-
nologies or because of non-Mendelian errors (which can
be removed using various software packages [33,34]). To
handle loci that have children with missing data, Hapi
copies the inheritance vector values corresponding to
those children from the state(s) at the previous locus to
the states at the current locus. This approach assumes a
lack of recombination for that child, which is analogous
to assuming no recombination at loci where a parent is
homozygous. Because the inheritance vector values for
that child will no longer be opposite each other between
states with opposite parental phase - but will instead be
identical - Hapi cannot eliminate states at fully informa-
tive loci in the way it does when no data is missing.
However, it is still possible to eliminate states in most
cases.
The following constitutes Hapi’s sixth and final opti-

mization. Consider a set of states that have equivalent
inheritance vectors when the missing data children are
ignored and with identical inheritance values for those
missing data children (that is, states built based on the
same previous state). Let x be the number of children
with missing data, and let r be the value of the smallest
number of recombinations among this set of states. The
states in this set are x or 2x recombinations away from
having equivalent inheritance vectors, depending on
whether the inheritance values are opposite each other
for transmissions from one or both of the parents.
(Viewed another way, if two states have the same assign-
ment of alleles to homologs for one parent and opposite
assignments for the other, the inheritance vectors are x
recombinations away from being equivalent. If both par-
ents have opposite allele assignments, the inheritance
vectors must be entirely opposite each other and there-
fore 2x recombinations separate them since the missing

data children’s inheritance values are identical, not
opposite.) Considering states that are separated by x
recombinations, a state that has more than r + x recom-
binations will always be less optimal than the minimal
state and can therefore be removed. Even if all the miss-
ing data children later recombine relative to the state
with r recombinations - which would produce an inheri-
tance vector equivalent to the larger state - that minimal
state would yield r + x recombinations - that is, fewer
than that for the larger state.
Although this technique will not always eliminate the

same number of states as if full data were available, it is
quite effective. Our experimental results demonstrate
this as Hapi very efficiently analyzes a real dataset that
includes missing data (see Results). Often one state at a
locus will have zero or one recombinations compared to
another state that has all or all but one child recombin-
ing. In such a case, the technique just described will
typically be able to eliminate the state with more
recombinations.
Hapi does not currently handle loci that are missing

data for one or both parents. It can be modified to do
so by building states corresponding to all possible par-
ent genotypes consistent with the children’s genotypes
[36].

Example
We give a brief example illustrating some aspects of our
algorithm in Table 6. This example is from real data for
one of the families in the Huntington’s Disease Vene-
zuela Collaborative Study [32] dataset discussed in
Results. The initial locus 8 defines inheritance vector
values for parent 1, the heterozygous parent, but leaves
the values for parent 0 undefined (designated by -).
When analyzing this example, Hapi produces a complete
initial state at locus 12, where it deduces inheritance
vector values for parent 0 and copies those for parent 1

Table 6 Example haplotype inference across a series of loci from real data

Locus p0 p1 c0 c1 c2 c3 c4 # Rec

8 hap 〈a, a〉 〈a, c〉 〈a, a〉 〈a, c〉 〈a, c〉 〈a, c〉 〈a, a〉 0

v 〈-, 0〉 〈-, 1〉 〈-, 1〉 〈-, 1〉 〈-, 0〉

12 hap 〈g, t〉 〈t, t〉 〈t, t〉 〈t, t〉 〈g, t〉 〈t, t〉 〈t, t〉 0

v 〈1, 0〉 〈1, 1〉 〈0, 1〉 〈1, 1〉 〈1, 0〉

14 hap 〈c, a〉 〈c, a〉 〈a, c〉 〈a, a〉 〈c, c〉 〈a, c〉 〈a, c〉 2 14 hap 〈c, a〉 〈a, c〉 〈a, c〉 〈a, a〉 〈c, c〉 〈a, c〉 〈c, a〉 3

v 〈1, 0〉 〈1, 1〉 〈0, 0〉 〈1, 0〉? 〈1, 0〉


v 〈1, 1〉? 〈1, 0〉 〈0, 1〉 〈1, 1〉 〈0, 0〉?

16 hap 〈a, a〉 〈g, a〉 〈a, g〉 〈a, a〉 〈a, g〉 〈a, g〉 〈a, a〉 3 16 hap 〈a, a〉 〈a, g〉 〈a, g〉 〈a, a〉 〈a, g〉 〈a, g〉 〈a, a〉 3

v 〈1, 0〉 〈1, 1〉 〈0, 0〉 〈1, 0〉 〈1, 1〉


v 〈1, 1〉 〈1, 0〉 〈0, 1〉 〈1, 1〉 〈0, 0〉

17 hap 〈t, c〉 〈c, c〉 〈c, c〉 〈c, c〉 〈t, c〉 〈c, c〉 〈t, c〉 4 17 hap 〈t, c〉 〈c, c〉 〈c, c〉 〈c, c〉 〈t, c〉 〈c, c〉 〈t, c〉 3

v 〈1, 0〉 〈1, 1〉 〈0, 0〉 〈1, 0〉 〈0, 1〉


v 〈1, 1〉 〈1, 0〉 〈0, 1〉 〈1, 1〉 〈0, 0〉

An example from the real dataset described in Results. The loci are from chromosome 3 and we number them sequentially in the order they occur physically. For
simplicity and conciseness, we omit uninformative loci and one non-recombinant fully informative locus between locus 8 and 12. Bold inheritance vector values
indicate recombinations. Each state lists its total number of recombinations. Note that the state at locus 14 with minimum recombinations is ultimately not
minimum-recombinant globally. See the Example subsection for a detailed description of this table.
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from locus 8. (Note: this table omits uninformative loci.)
Locus 14 is partly informative, and with one state at the
previous locus, it has only four states corresponding to
the four possible parents’ phase assignments. The table
shows two of these four states, one on the left and one
on the right. The two omitted states have four and five
recombinations at locus 14 and still more at locus 16
and 17.
The left side state at locus 14 has two recombinations.

It transitions to two states at locus 16, one with a total
of three recombinations and one with five; the table
shows the state with fewer recombinations. These two
states at locus 16 both transition to the same two states
at locus 17, and we include the state with fewer recom-
binations in the table.
The right side state for locus 14 has three recombina-

tions. Although this is greater than the two local recom-
binations shown for the left side state, this state actually
yields fewer recombinations globally. It transitions to
two states at locus 16, one of which produces no addi-
tional recombinations, and likewise that non-recombi-
nant state produces zero recombinations at locus 17.
This path of states therefore has only three recombina-
tions, which is minimal across these loci.
Although this discussion considered the downstream

effects of each state at locus 14 separately, Hapi consid-
ers all states at successive loci at the same time and
does not revisit loci. The four states at locus 14 each
transition to two non-equivalent (because of ambiguous
inheritance values) states at locus 16, for a total of eight
states. Because locus 16 is fully informative for parent 1,
the inheritance vector values for that parent are equiva-
lently labeled in these states. Locus 17 is heterozygous
for parent 0 and produces exactly four equivalently
labeled states, and the state with the fewest recombina-
tions must be globally minimal. This globally minimal
state is on the right side of the table.

Maximum likelihood haplotyping
We now formulate the problem of maximum likelihood
haplotyping and show how to solve it using the same tech-
niques as those we employ for minimum-recombinant
haplotyping.
Suppose we have genotyped loci numbered 0,...,L for

each member of a nuclear family with c children, and
assigned inheritance vectors v for each locus l. Let θl be

the recombination frequency between locus l and l - 1

for all 0 <l ≤ L. Also let r l H v vl l( ) = ( )−
 

1, , the number

of recombinations (Hamming distance) between the
inheritance vectors at loci l - 1 and l. Then the probabil-
ity of the assigned inheritance vectors is:

 = ⋅ −
=

−∏ l
r l

l

L

l
c r l( ) ( )( ) .

1

21 (2)

Using log likelihoods, this can be written as:

 = ⋅ + − ⋅ −
=
∑ ln( ) ( ) ln( ) [ ( )].

l

L

l lr l c r l

1

1 2  (3)

This formulation of the maximum likelihood problem
shows clearly the relationship of the maximum likeli-
hood problem to the minimum-recombinant one. If all
loci have the same recombination frequency θ < 0:5,
then the maximum likelihood solution is the same as
the minimum-recombinant one since ln(θ) < ln(1 - θ)
across all loci, so decreased r(l) values increase the over-
all likelihood. However, when the recombination fre-
quencies differ across loci, more recombinations at one
locus may have higher likelihood than fewer recombina-
tions at another.
A dynamic programming equation computing maxi-

mum likelihood haplotypes can be written as follows,

where l is a locus, and v ,

w are inheritance vectors:

P l P l wv
w l

H w
l

c H wv v( , ) max{ ( , ) ( ) }.( , ) ( , ) 


  
= − ⋅ −⋅ −1 1 2  (4)

Using log likelihoods, the dynamic programming for-
mulation becomes:

L l v L l w H w v c H w
w

l l( , ) max{ ( , ) ln( ) ( , ) ln( ) [ ( ,
    

= − + ⋅ + − ⋅ −1 1 2 

v)]}. (5)

Immediate application of the above formula is proble-
matic because we cannot completely ignore uninforma-
tive loci: they have non-zero recombination frequencies
that affect the overall probability of a solution. Without
some novel insight, it is necessary to model most or all
of the 22c/4 non-equivalent inheritance vectors at unin-
formative loci, and at least 2c/2 inheritance vectors at
loci that are fully informative for one parent.
In order to account for recombination frequencies at

loci where both parents are homozygous - that is, at
uninformative loci - Hapi computes modified recombina-
tion frequencies at all other informative loci, including
fully informative for one parent loci where one parent is
homozygous. These modified recombination frequencies
include the recombination frequencies for all uninforma-
tive loci that occur between a given informative locus
and the nearest upstream informative locus. In calculat-
ing these probabilities, the algorithm is pre-computing
the effects of recombination frequencies at uninformative
loci, allowing it to avoid directly processing such loci.
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We denote Hapi’s modified recombination frequency
at a locus l as �l and the frequency of non-recombina-
tion (expressed above as (1 - θl)) as ψl. To calculate �l
and ψl for a locus l, let l0 be the nearest upstream infor-
mative locus and let l1, ..., ln-1 be the uninformative loci
that appear between l0 and l. Let ln = l and let l* be the
locus with the highest recombination frequency, that is,

find l* Î {l1, ..., ln} such that  
l i

n
l* max= =1 i
. Then:

  l l

i l l

n

l i

i

= −⋅∗
= ≠ ∗
∏ ( ).

,

1

1

(6)

Thus, the probability of recombination between locus
l0 and ln = l is equal to the maximum between-marker
recombination frequency within the region spanned by
these loci, or θl*, multiplied by the probability of not
recombining anywhere else. Note that θl* is the prob-
ability of recombining between locus l* and l* - 1, and
either or both of these loci can be uninformative. Hapi
stores the locus number l* so that the final haplotype
solution includes any recombinations in their most likely
positions.
A consequence of this formula is that at most one

recombination can occur between any two informative
loci on a given homolog. Thus, within a region of unin-
formative loci, we do not model the possibility of inter-
vening gene conversions or double recombinations. Not
modeling such events is sensible because it is impossible
to observe or verify them. Furthermore, haplotypes that
include additional recombinations or gene conversions
not directly implied by the data are less likely than
those without these events since θl < 0.5 means recom-
bination is less likely than non-recombination. There-
fore, even if we were to model such events, they would
not ultimately appear in the haplotype solution, so we
lose nothing by not modeling them.
The probability of not recombining between locus l0

and ln = l is the product of non-recombination across
each of the locus intervals:

 l l

i

n

i
= −

=
∏( ).1

1

(7)

The equations for �l and ψl utilize the recombination
frequencies between each pair of loci rather than a sin-
gle recombination frequency spanning the region
between l0 and l. This is the case because the haplotyp-
ing output must place every recombination at some dis-
crete location between a pair of markers. There must
exist a pair of markers flanking every recombination,
and sometimes one or both of these will be uninforma-
tive. This matches the maximum likelihood approach

employed by other algorithms, which calculate the prob-
ability of recombining (or not) between each pair of
markers, not just those that are informative. A conse-
quence of this formulation is that �l + ψl ≠ 1. This
occurs because, as we earlier noted, these probabilities
account for the possibility of only one recombination on
a given homolog between any two informative loci -
more than one recombination will always be less likely.
Some applications - notably linkage analysis; see below -
may benefit from using a single recombination fre-
quency between the region spanned by l0 to l. Our algo-
rithm functions the same regardless of how we calculate
� and ψ. To increase numerical stability and efficiency,
Hapi uses the log likelihood formulation of this dynamic
programming problem. This formula substitutes multi-
plication for exponentiation and uses the values ln(�l)
and ln(ψl) which requires summation instead of multi-
plication to calculate. The dynamic programming equa-
tion for maximum log likelihood haplotypes at a locus l
is thus given by the following:

L l v L l w H w v c H w v
w

l l( , ) max{ ( , ) ln( ) ( , ) ln( ) [ ( ,
     

= − + ⋅ + ⋅ −1 2  ))]}. (8)

The formulation just presented solves the problem of
needing to track states at uninformative loci, but does
not resolve another important issue. One of Hapi’s key
optimizations is to avoid modeling states that exhibit
recombination from a parent that is homozygous at a
locus, including at fully informative for one parent loci.
This approach suffices in order to produce minimum-
recombinant haplotypes since recombinations only
occur at the informative locus that reveals them. For
maximum likelihood haplotyping, if some informative
locus exhibits recombination, the most likely location of
that recombination might be upstream of an earlier fully
informative for one parent locus where the transmitting
parent is homozygous.
A further complication to this issue of fully informa-

tive for one parent loci is the interactions between such
loci and partly informative loci. A child may exhibit an
ambiguous recombination at a partly informative locus
immediately after a fully informative for one parent
locus. In this case, the recombination might occur at the
partly informative locus or upstream of the fully infor-
mative for one parent locus on the homozygous parent’s
homolog. Confounding this issue is the possibility of
additional recombinations occurring downstream of the
partly informative locus in this scenario. Although we
could immediately evaluate the relative likelihoods of
placing the ambiguous recombination upstream or at
the partly informative locus, a downstream recombina-
tion may affect the overall likelihood.
Complicated dependence across loci can also occur

when a fully informative for one parent locus appears
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downstream of a partly informative locus where the child
is heterozygous. The earlier partly informative locus may
be the result of an ambiguous recombination and the
opposite inheritance value may have equivalent or nearly
equivalent likelihood. Choosing the opposite inheritance
at the partly informative locus introduces a recombina-
tion but also inverts the inheritance value that occurs for
the homozygous parent at the subsequent fully informa-
tive for one parent locus. Making such a change affects
the inheritance values at downstream loci and may be
more likely than some other downstream recombination.
To address all these possibilities, Hapi tracks the prob-
ability of an alternate inheritance value for each child at
a locus. In the case of fully informative for one parent
loci, this is the probability of inverting the inheritance
value transmitted by the homozygous parent. For partly
informative loci, the alternate inheritance has inverted
homolog transmissions from both parents. The alternate
inheritance probability at a locus depends on the sur-
rounding loci. For example, the system can assign the
alternate inheritance at a fully informative for one parent
locus by recombining at that locus or, if the previous
locus is fully informative for the same parent or partly
informative, the system can apply the alternate inheri-
tance (and associated probability) at the previous locus.
(Note that the system must account for any additional
local recombinations introduced by using the alternate
inheritance at the previous locus.) Hapi evaluates the
probabilities for all possible ways of assigning the alter-
nate inheritance for each child at a locus and stores those
probabilities and the information relating to how they are
assigned. Because of space considerations, we omit the
details of how Hapi handles alternate inheritance prob-
abilities; a complete description is available in another
document [36].
We note briefly that because the alternate inheritance

probabilities will differ across states at a locus, whenever
multiple states transition to the same state at the next
locus, Hapi must sometimes track multiple probabilities.
To do so, it stores a range of probabilities - the maximum
and minimum alternate probability for each child across all
previous states. The alternate probability is therefore
ambiguous during haplotyping and can only be determined
during back tracing as Hapi explores the paths yielding the
alternate inheritance values. Determining the maximum
likelihood haplotyping assignment therefore requires back
tracing to determine which path of states yields the highest
likelihood and then forward tracing to assign those states.

Linkage analysis and LOD scores
The basic Hapi algorithm is applicable not only to hap-
lotype reconstruction but also to linkage analysis and
LOD score calculations. This paper provides an over-
view of how to apply Hapi to linkage analysis; for more

details, see Williams [36]. Briefly, all that is required is
that Hapi retain all states it considers across all loci
(that is, it should not perform back tracing), and that it
calculate state probabilities that fully account for inheri-
tance values at both upstream and downstream loci.
Hapi already includes probabilities for upstream loci in
each state. To include the probabilities of states at
downstream loci, Hapi must perform a second traversal
of all the loci/states in reverse, multiplying a given
state’s probability by the appropriate transition probabil-
ity and the probability of the state at the next locus.
With the probability distribution of locus states com-
puted in this way, Hapi can calculate LOD scores (or
non-parametric Z scores) by weighting the score of each
possible inheritance vector by its probability at the locus
in question [22]. Hapi does not consider all possible
states at each locus; specifically, it omits any states that
exhibit double recombinations within a series of unin-
formative loci. Hapi also omits some states at partly
informative loci, depending on the inheritance values at
surrounding loci. Any omitted states always have lower
likelihood than some other included state, and will typi-
cally exhibit extra recombinations and thus have consid-
erably lower likelihood. Because of their lower
likelihood, the potential impact on the overall linkage
score of any omitted states is proportionately limited.
As well, a high LOD score for a state that exhibits a
double recombination is suspect since physical limita-
tions make double recombinations within a short span
of uninformative loci extremely unlikely. To more fully
account for possible inheritance vector assignments at
partly informative loci, Hapi could detect and include
states in which the opposite inheritance assignment for
a child or children does not yield additional recombina-
tions but only places the recombinations differently
across parents. Making this change for partly informa-
tive loci would enable Hapi to omit only states that
exhibit additional recombinations relative to those it
already considers. This change would serve to exclude
very unlikely states from consideration and include mar-
ginally likely ones.
Hapi’s dramatic efficiency gains over other algorithms

make it attractive to apply to linkage analysis for disease
gene studies. Its optimizations make possible analyses of
datasets for which current algorithms either fail or have
significant time and storage requirements.

Additional material

Additional file 1: Analysis of Hapi’s runtime complexity. A detailed
discussion of Hapi’s runtime complexity, including descriptions of inputs
that can yield runtime that is exponential in the size of the family. Also a
probabilistic analysis of the likelihood of one class of these inputs
occurring in real data.
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HMM: Hidden Markov Model; LOD score: Logarithm base 10 of Odds score;
MTBDD: Multi-Terminal Binary Decision Diagram; SNP: Single Nucleotide
Polymorphism.
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