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Abstract

Background: The growth-rate of an organism is an important phenotypic trait, directly affecting
its ability to survive in a given environment. Here we present the first large scale computational
study of the association between ecological strategies and growth rate across | 13 bacterial species,
occupying a variety of metabolic habitats. Genomic data are used to reconstruct the species'
metabolic networks and habitable metabolic environments. These reconstructions are then used
to investigate the typical ecological strategies taken by organisms in terms of two basic species-
specific measures: metabolic variability - the ability of a species to survive in a variety of different
environments; and co-habitation score vector - the distribution of other species that co-inhabit
each environment.

Results: We find that growth rate is significantly correlated with metabolic variability and the level
of co-habitation (that is, competition) encountered by an organism. Most bacterial organisms adopt
one of two main ecological strategies: a specialized niche with little co-habitation, associated with
a typically slow rate of growth; or ecological diversity with intense co-habitation, associated with a
typically fast rate of growth.

Conclusions: The pattern observed suggests a universal principle where metabolic flexibility is
associated with a need to grow fast, possibly in the face of competition. This new ability to produce
a quantitative description of the growth rate-metabolism-community relationship lays a
computational foundation for the study of a variety of aspects of the communal metabolic life.

Background growth is determined by metabolic factors such as the rate
Variations in growth rate are observed both within and  and yield of ATP production [5], variations in growth rate are
between species, reflecting, respectively, regulatory-leveland ~ bound to be associated with metabolic capabilities and con-
genomic-level adaptations [1-4]. Since the rate of bacterial straints. Several examples have demonstrated, at the single
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species level, that growth rate is affected by the availability of
environmental resources and the level of competition in a
given environment [5-8]. Comparative-growth studies have
pointed to several metabolic and regulatory genes that are
under selective pressure for accelerated growth - for example,
genes involved in the transport of essential substrates in
highly-competitive Escherichia coli populations [9]. How-
ever, such comparative growth studies are typically restricted
to species that occupy similar ecological niches, potentially
missing the impact of genomic adaptations that may vary
across different niches and lifestyles. To this day, the genome
design principles underlying the association between growth
rate and metabolic adaptations have not yet been established
at a global, cross-species scale.

A comprehensive cross-species analysis, beyond a compara-
tive study of organisms sharing a similar ecological niche, of
genomic traits that are associated with the potential growth
rates of bacterial organisms was made possible due to a recent
list of minimal generation times of a wide spectrum of bacte-
rial species [10,11]. Previously, these doubling-time data have
led to the important finding that variations between genes
involved in translation and transcription influence growth
rate [10,11]. Here we focus on the influence of genomic-
derived metabolic properties. We use genomic information to

Table |
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generate second-order (network-based) metabolic knowledge
through the reconstruction of metabolic networks, and third-
order environmental knowledge through the reconstruction
of habitable metabolic environments for the species studied
[12]. Then, species-specific environmental information is fur-
ther exploited to estimate the level of competition encoun-
tered by each organism according to the potential ability of
other species to thrive in similar habitats [13]. Through con-
verting genomic data to environmental and communal infor-
mation, this study examines factors that potentially underlie
growth rates across all these levels, through the analysis of the
metabolic networks and environments of 528 contemporary
sequenced bacterial species, where growth rate data were
available for 113 of these species (Additional data file 1).

Results and discussion

Growth rate is associated with basic genomic and
environmental attributes

We first studied the association between growth rate and the
size of the genome, and the size of the corresponding meta-
bolic network (see Materials and methods). Both attributes
displayed a significant inverse correlation with doubling time
(genome size, -0.31; metabolic network size, -0.38; Table 1);
that is, fast growth rate is typical of species with large

Correlation (P-value) versus duplication time

Significance of difference between slow and fast growerst

Total (N =113) *Non-obligatory symbiont only Total (N =113) §Non-obligatory symbionts
(N=77) (N=77)

Genome size (bp) -0.30 -0.04 0.001 0.4

(0.001) 0.7) (S: 2,695,676, F: 3,402,099) (S: 3,614,838, F: 3,479,053)
Network size -0.38 -0.13 0.002 0.3

(3.1e-05) 0.2) (S: 326, F: 410) (S: 408, F: 431)

Fraction of -0.42 -0.21 4e-4 0.2
regulatory genes [33] (0.0004) (0.13) (S: 0.03, F: 0.05) (S: 0.04, F: 0.05)
Estimate of -0.34 -0.07 le-4 -+
environmental complexity [19] (2-04) (0.5) (S:3,F:4)
ESI -0.25 -0.23 0.03 0.06

(0.008) (0.04) (S: 0.006, F: 0.02) (S: 0.008, F: 0.02)
ESI: random -0.47 -0.35 8e-6 0.002
environments$ (1.6e-07) (0.002) (S:0.007, F: 0.03) (S: 0.01, F: 0.004)
Maximal-CHS -0.27 -0.28 0.03 0.02

(0.03) (0.01) (S: 14, F: 27) (S: 20, F: 31)
Maximal-CHS: random -0.34 -0.23 6e-4 0.01
environments$ (le-4) (0.05) (S:39,F:72) (S: 50, F: 85)

*According to definitions from [19] and manual curation (see Materials and methods). TThe two sets of data (all species and non-obligatory

symbionts) were divided into two bins according to species growth rate (fast and slow). The significance between the genomic attributes studied (for
example, genome size, network size, and so on) was calculated with one-sided Wilcoxon rank sum test. Values in parentheses are the mean values of
the relevant attribute in the slow growing (S) and fast growing (F) groups. #Values not computed since low-ranked estimates of environmental
complexity represent the obligatory symbionts, which were excluded from the analysis. $Random environments are described in Materials and

methods.
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genomes and large metabolic networks. Notably, obligatory
symbionts (parasites and mutualists) are known to have both
slow growth rate and small genome size [11,14]; excluding this
group from the computation, we observe no significant differ-
ence in the genome size (or network size) between slow grow-
ing and fast growing bacteria (Table 1), indicating that there
is no universal link (beyond the unique properties of this
group of species) between metabolic network size and bacte-
rial growth rate. The lack of association between growth rate
and genome size was already reported in previous studies [15]
where the profound effects of the translation process on
growth rate were suggested to mask any influences of genome
size on replication speed.

Moving to the environmental dimension, we examine the
association between growth rate and two established meas-
ures of the variability of species' habitats (fraction of regula-
tory genes and environmental complexity estimate; see
Materials and methods). Both measures yield similar results:
a significant negative correlation with doubling time (-0.42
and -0.34, respectively; Table 1) - that is, fast growth rates are
typical of species that exhibit ecological diversity. Though
these correlations are insignificant following exclusion of
obligatory symbionts, we still observe significant differences
between fast and slow growers with respect to their fraction of
regulatory genes (Table 1). While these data-driven indices
track general characteristics of the environment, our goal is to
focus on studying the specific relationship between metabolic
factors and growth. Grouping bacterial species according to
their oxygen requirements (aerobic, anaerobic, and faculta-
tive), the slowest growth rate (that is, longest mean genera-
tion time) is observed for obligatory aerobic bacteria,
followed by obligatory anaerobic bacteria (Table 2). Notably,
the fastest growth rate is observed for facultative bacteria
(Table 2; significance over the anaerobic group, P = 0.03; sig-
nificance over the aerobic group, P = 1.9e-6; Wilcoxon rank
sum test); these bacteria can alternate between aerobic and
anaerobic metabolism in accordance with their environment
[5,8], utilizing alternative metabolic pathways to maximize
rate or yield and gain an advantage over competitors [7]. The
growth advantage of these facultative organisms gives rise to
the hypothesis that, in general, higher growth rate may be
associated with increased metabolic environmental variabil-
ity and flexibility.

Table 2
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Modeling metabolic-environmental attributes

To test this hypothesis in the absence of an appropriate large-
scale data-driven index of metabolic variability, we turned to
develop a computational-based one. Employing a previously
developed 'reverse ecology' algorithm that computes the set of
metabolites that an organism extracts from its environment,
we reconstructed the likely natural metabolic environments
of each organism (see Materials and methods, and [12] for a
comprehensive description). This provides an ensemble of
environments computed for all 528 sequenced organisms,
providing the broadest ecological view provided by the cur-
rent data. Subsequently, the viability of each species is tested
in all these environments. This is done by examining if, in a
given metabolic environment (that is, a combination of
metabolites), an organism can successfully expand its meta-
bolic network so that it produces a set of target metabolites
that are essential for growth (see Materials and methods).
Repeating this procedure for all species provides an 'environ-
mental viability matrix' whose rows denote the species, col-
umns the environments, and binary entries whether a given
species can survive in a given environment. We then com-
puted the mean population level (number of species per envi-
ronment) across the environments populated by organisms of
a given lifestyle. Reassuringly, these results are compatible
with ecological knowledge (Figure 1): soil bacteria and species
populating the human gut inhabit the most densely populated
environments; sparsely populated environments are inhab-
ited by specialized organisms and (though to a lesser extent)
by obligatory symbionts [16-19]. Notably, our dataset
includes a large group of obligatory symbionts (54 species in
comparison to 7 terrestrial organisms and 17 gut bacteria;
Additional data files 1 and 2, respectively), hence indicating
that the level of population of a given environment does not
reflect the prevalence of the lifestyle categories of the species
inhabiting it; that is, despite the ubiquity of obligatory symbi-
onts in the data, they tend to inhabit specialized metabolic
environments. We additionally examined alternative
approaches for generating other biologically plausible sets of
random metabolic environments. One such alternative
approach for generating random environments is to construct
528 shuffled seed environments - that is, maintaining an
approximation of the original metabolite representation over
all seeds (see Materials and methods). Sparse populations in
environments inhabited by specialized and obligatory symbi-

Typical duplication time of bacterial organisms according to their mode of respiration

Number of species™*

Mean duplication time

Median duplication time Mean network size

Aerobic bacteria 40 13
Anaerobic bacteria 18 53
Facultative bacteria 41 1.7

3 412
1.6 318
0.8 380

Oxygen-dependence annotations were taken from [34]. *Species in this analysis are those for which duplication times are available, the metabolic
network was reconstructed (Materials and methods), and their oxygen-dependence group is one of the groups in the table (bacteria species whose
oxygen-dependence annotation is 'unknown' or 'microaerophylic' are not shown here).
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Figure |

Mean co-habitation (population) levels of environments occupied by bacteria of a given lifestyle. Annotations of lifestyle are according to [19] (specialized,
obligatory symbionts, aquatic, multiple, faculatative symbionts, and terrestrial) and according to identification of species in environmental samples (human
gut; see Materials and methods). The number of environments in each lifestyle (in the same order as in the figure) are 11, 81, 5, 144, 157, 38,and 117
(environments can include species of more than a single lifestyle). Error bars show the standard error.

onts versus dense populations in environments inhabited by
soil and gut bacteria are also observed when using this alter-
native collection of random environments (Additional data
file 3).

Growth rate is associated with the level of metabolic
variability

The 'environmental scope index' (ESI) of a species is defined
as the fraction of environments in which it is viable. The ESI
measure of metabolic variability is positively correlated with
both genome size (0.4, P = 3e-6, Spearman) and metabolic
network size (0.6, P = 1e-10, Spearman). It is also positively
correlated with the data-driven general environmental-diver-
sity measures examined above (fraction of regulatory genes,
0.32, P = 0.008; estimate of environmental complexity, 0.23,
P = 0.01; Spearman), hence providing support for the ecolog-
ical plausibility of the model. There is a significant negative
correlation between the ESI and doubling time in the com-
plete dataset (-0.25) and, notably, the differences between the
ESI scores of slow and fast growing bacteria remain signifi-
cant also after excluding obligatory symbionts (Table 1).
Thus, there is a general association between broader meta-
bolic capacities and faster maximal growth rates, extending
the initial observations concerning the fast growth rate of fac-
ultative bacteria and implying that the metabolic versatility of
species is better associated with their growth rate than other,

more general environmental characteristics. This result, as all
other reported correlations, remains valid when using the
alternative collection of random environments described
above (Table 1; Materials and methods). The negative corre-
lation between EST and duplication time is also maintained in
species that are evenly distributed among different habitat
types and taxonomic groups (Additional data file 3). Pseu-
domonas aeruginosa, an organism with a high ESI score
(Additional data file 1) provides an example of fast growth
rate in a generalist, possessing broad metabolic capabilities
that allow it to successfully grow in diverse environments
[20]. However, the association between fast growth and met-
abolic flexibility is not at all obvious, as one may assume that
living in a specific niche habitat would enable an organism to
specialize and adapt towards a fast growth solution. Indeed,
Desulfotalea psychrophila, an organism with a low ESI score
(Additional data file 1), provides such an example. It is a sul-
fate-reducing extremophilic bacterium, thriving in extreme
conditions (cold arctic sediments), and exhibiting metabolic
and environmental specialization [21].

Growth rate is associated with the level of co-
habitation

If metabolic specialization does not preclude fast growth, how
then can we explain the slow growth of most specialists? An
emerging hypothesis is that such organisms face weak com-
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petition. Conversely, organisms that occupy a large variety of
metabolic environments face a larger number of co-inhabit-
ing species, which in turn may exert selection pressure for
maintaining higher growth rates. To test this hypothesis, we
used the 'co-habitation score' (CHS) vector (deduced from the
environmental viability matrix), denoting the number of spe-
cies that co-populate each viable environment of a given spe-
cies. This vector can serve as an indication of the level of
competition encountered by a species in its habitats. We focus
on each species' most populated niche (maximal-CHS) and
most sparsely populated one (minimal-CHS). The minimal-
CHS is not significantly correlated with either ESI or doubling
time. In contrast, the maximal-CHS exhibits a significant
inverse relationship with duplication time (Table 1) - that is,
faster growth rates are observed in richly populated, compet-
itive environments. The maximal-CHS also displays a highly
marked positive correlation with metabolic variability (P-
value < 1e-3, computed by comparing to random; Additional
data file 3). That is, a species' metabolic flexibility tends to
erode when it populates only sparsely populated, non-com-
petitive environments. This result remains valid when using
an alternative collection of random environments (Table 1;
Materials and methods). The negative correlation between
maximal-CHS and duplication time is also maintained in spe-
cies that are evenly distributed among different habitat types
and taxonomic groups (Additional data file 3). The relevance
of maximal- and minimal-CHS to growth rate can be put in a
biological context by considering the lifestyle of the pathogen
Staphylococcus aureus: inside a host-cell (where no competi-
tion with other bacterial species is encountered) it exhibits a
far slower growth rate than in the more competitive environ-
ment of the human skin [22,23].

Delineating major ecological strategies

To delineate potential major ecological strategies, we grouped
the bacterial species according to their location on the ESI-
CHS plane (Figure 2). As can be expected from the tight asso-
ciation between the environmental scope and co-habitation
scores, the large majority of all species falls within the low
ESI-low maximal-CHS and high ESI-high maximal-CHS
diagonal groups, exhibiting two different but equally popular
ecological strategies - a specialized niche with little competi-
tion or ecological diversity with intense competition, with the
latter group displaying faster growth rates (P = 0.02, Wil-
coxon rank sum test). E. coli, a generalist capable of fast
growth, is an example of the first group, while Mycobacte-
rium leprae, an obligatory intracellular pathogen with highly
specialized nutritional demands and an exceptionally slow
growth rate [24,25], is an example of the second group (Fig-
ure 2). However, some organisms exhibit different ecological
approaches (Figure 2). In some bacterial species tight adapta-
tion to a specific niche (low scope) does not involve escaping
competition (high maximal-CHS). The oral bacterium Fuso-
bacterium nucleatum is an example of a species whose
metabolism is adapted to a specific, though non-exclusive,
niche [26]. In contrast, the last and smallest group includes
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Environmental scope index versus maximal co-habitation score. The size
of dots corresponds to duplication time - larger size corresponds to
longer duplication time and slower growth rate. The color of dots
corresponds to their ecological habitat (Additional data file 1): red,
obligatory host-associated; green, specialized; blue, aquatic; black, host-
associated (non-obligatory); orange, multiple; brown, terrestrial. DT,
duplication time; BL, bottom left (47 species); BR, bottom right (10
species); TL, top left (16 species); TR, top right (40 species). The plot is
divided according to median values of the axes.

species with a relatively high environmental scope but exclu-
sive habitats. Members of this group exhibit a faster growth
rate than the low scope/low maximal-CHS group (P = 0.05,
Wilcoxon rank sum test). As an example, the intracellular
pathogen Legionella pneumophila has a duplication time
close to a hundred times faster than M. leprae. Whereas M.
leprae possesses highly specific metabolic requirements that
limit its ability to exploit the resources in the host cell [25], L.
pneumophila exhibits a more generic metabolism, scaveng-
ing the host cell for both sugars and amino acids, exhausting
its own resources [27]. Accordingly, L. pneumophila is the
causative agent of an acute disease whereas M. leprae causes
a long-lasting chronic disease, requiring tight adaptation to
co-existence within the host cell.

Beyond these specific examples, the characterization of
growth strategies based on the intricate interplay between the
ESI-maximal-CHS values suggests that when taken together,
these values can be used for predicting growth strategies.
Using ESI and maximal-CHS values retrieved from the 113
species that were included in the original analysis, we trained
a support vector machine (SVM) classifier that assigns bacte-
rial species into one of two extreme growth classes (either fast
or slow; see Materials and methods). We tested the generali-
zation ability of the classifier in a cross-validation setting,
obtaining an average receiver operating characteristic (ROC)
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score of 0.75 (Materials and methods). We then obtained
growth rate data for Parachlamydia UWE25 [11], an endo-
symbiont of amoeba from the chlamydiae group, and for
Bacillus thuringiensis, a widely distributed bacteria [28]; for
both species, growth rate data have not so far been included
in our analysis. Parachlamydia UWE25 is an obligate intrac-
ellular bacterium that exhibits reduced central metabolic and
biosynthetic pathways, and is auxotrophic for most amino
acids and nucleotides [29]. In accordance with the lifestyle of
this organism, we compute for this species a low environmen-
tal diversity and low competition scores (ESI, 0.002; maxi-
mal-CHS, o0; Additional data file 1). For the ubiquitous B.
thuringiensis we compute high environmental diversity and
high competition scores (ESI, 0.09; maximal-CHS, 59; Addi-
tional data file 1). We applied the SVM classifier to character-
ize the growth rates of these species; in accordance with
experimental data, B. thuringiensis falls into the fast-growing
category and Parachlamydia UWE25 falls into the slow-
growing category (corresponding to the experimentally
observed doubling times of 40 minutes [30] and 48 hours,
respectively [11]).

Conclusions

This paper presents the first large-scale rigorous computa-
tional exploration of the ecological strategies of a species in
association with its growth rate, lifestyle and metabolic capa-
bilities. Several limitations of this analysis should be men-
tioned: first, the estimation of the growth environments and
their viability is based on a topological network-based com-
putation, which is obviously a first-approximation model of
the underlying biology. Second, co-habitation involves addi-
tional facets of interspecies interactions beyond competition,
notably cooperation and symbiosis. Bearing this in mind, the
metabolic environmental model correctly captures several
patterns already observed in data-driven biological habitats,
testifying to its ecological plausibility.

We find that growth rate is significantly positively correlated
with both the span of the environments and the level of com-
petition that bacterial species encounter in their metabolic
habitats. The model points to two main ecological strategies,
suggesting a universal principle where metabolic flexibility is
associated with a need to grow fast, possibly in the face of
competition. The new ability to produce a quantitative
description of the growth rate-metabolism-community rela-
tionship lays a computational foundation for the study of a
variety of aspects of communal metabolic life. With the grow-
ing recognition that bacteria should be better studied in the
context of their ecological niche and communities, future
computational approaches should take into account the com-
plex interrelationships between organisms. Such approaches
are likely to become increasingly helpful for studying various
aspects of microbial life within naturally occurring ecological
habitats.
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Materials and methods

Dataset

Metabolic data were collected from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [31] (release 46) for 528 bacte-
rial organisms. Out of these species, information describing
the maximal doubling time was available for 113 species
(downloaded from [11]). We constructed the metabolic net-
works of bacterial organisms following the approach outlined
in [32]. To download networks, see Additional data file 3.

Construction of metabolic environments

Metabolic growth environments were inferred using the seed
algorithm developed by [12]. This algorithm predicts the set
of exogenously acquired compounds, given the metabolic net-
work. We additionally examined alternative approaches for
generating other biologically plausible sets of random meta-
bolic environments. One such alternative approach for gener-
ating random environments is to construct 528 shuffled seed
environments - that is, maintaining an approximation of the
original metabolite representation over all seeds. Each
metabolite in the original seed environments is randomly
assigned to the shuffled environments where its representa-
tion over all environments is 1.05 times that of its original
representation. That is, if a certain metabolite has, for exam-
ple, 20 appearances over all seeds, then it is randomly
assigned to 21 out of 528 environments. This process is
repeated for each seed metabolite. The 1.05 ratio of appear-
ances between original and shuffled environments was cho-
sen as it allows a similar level of habitation of the
environmental viability matrix, described below (Additional
data file 3).

Characterizing bacterial environments

Fraction of regulatory gene values were taken from [33],
describing the fraction of transcription factors out of the total
number of genes in the organism, an indicator of environ-
mental variability [19]. Environmental complexity estimated
values were obtained from [19], where the natural environ-
ments of 117 bacterial species were categorized based on the
NCBI classification for bacterial lifestyle [34] and ranked
according to the complexity of each category (1, obligatory
symbyonts; 2, specialized; 3, aquatic; 4, facultative host-asso-
ciated; 5, multiple; 6, terrestrial [19]). Annotations for envi-
ronmental complexity were available for only 68 of the 113
species for which doubling time was available. To validate the
reliability of these annotations, we manually searched the lit-
erature. In two cases we changed the original annotation
(from multiple to terrestrial; Additional data file 4). In addi-
tion, we searched the literature for annotations for the
remaining 45 species (Additional data file 4). Together with
retrieving the annotations as described above, classification
of species into habitats was also done by looking for the pres-
ence of species from the dataset in environmental samples.
Occurrence of species from our dataset in environmental
samples was inferred according to the results of a BLAST
search [35] of 16S RNA sequences from the 528 species in the
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analysis against env_nt, a comprehensive collection of
sequences from environmental samples (downloaded in Feb-
ruary 2009). We find that in the large majority of cases (30 of
33), experimental findings support the literature-based anno-
tations (Additional data file 3).

All parameters retrieved/computed for the species in the
analysis are provided in Additional data file 1.

Computing the environmental viability matrix,
environmental scope index and co-habitation score

As a measure for species viability we constructed a list of 65
compounds termed 'target metabolites' (Additional data file
5), which are most likely essential for growth in most species
[36-38]. A species-specific target metabolite list is formed by
the intersection between the target metabolites and the
metabolites that each species produces. We then tested the
viability of each species over the set of 528 metabolic growth
environments. Given a specific organism and an environ-
ment, an organism is considered viable in this environment if
all its essential target metabolites are produced - this is exam-
ined by using a network expansion algorithm [39] that out-
puts an activated metabolic subnetwork, and verifying that
the expanded subnetwork produces all target metabolites.
This process yields the environmental viability matrix, whose
rows denote the species, columns the metabolic environ-
ments, and binary entries the corresponding viability. From
this matrix, the scope (ESI) and CHS for each species are
deduced: The ESI of a species is defined as its fraction of via-
ble environments. The CHS vector of a species records how
many viable organisms populate each of its viable environ-
ments EST and CHS values computed for all 528 species are
provided (Additional data file 6).

All software used for the analysis will be provided upon
request from the authors.

Constructing a support vector machine classifier

We partitioned the organisms according to their doubling
time: fast and slow growers are those whose duplication time
is shorter and longer by at least one standard deviation from
the mean (0.48 and 9 hours, respectively; Figure S6 in Addi-
tional data file 3). Species with intermediate values were
excluded from the analysis. For the remaining species, ESI
and maximal-CHS values were used for training a SVM clas-
sifier with a linear kernel [40]. We estimate the accuracy of
the classifier using a ten-fold cross-validation. In this proce-
dure, the organisms are randomly partitioned into ten dis-
tinct sets; then the class labels (slow or fast) in each set are
predicted by a classifier trained on the rest of the sets. We
repeated this procedure 50 times, and report the mean and
standard deviation of the ROC curve [41]. Our quality metric
is the area under this curve (the ROC score).
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listing the biomass target metabolites (Additional data file 5);
a table listing genomic and ecological attributes for the 528
species in the metabolic analysis (Additional data file 6).
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