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Abstract

Background: Yeast responding to stress activate a large gene expression program called the
Environmental Stress Response that consists of approximately 600 repressed genes and
approximately 300 induced genes. Numerous factors are implicated in regulating subsets of
Environmental Stress Response genes; however, a complete picture of Environmental Stress
Response regulation remains unclear. We investigated the role of the histone deacetylase Rpd3p,
previously linked to the upstream regions of many Environmental Stress Response genes, in
producing Environmental Stress Response gene expression changes in response to stress.

Results: We found that the Rpd3-Large complex is required for proper expression of both
induced and repressed Environmental Stress Response genes under multiple stress conditions.
Cells lacking RPD3 or the Rpd3-Large subunit PHO23 had a major defect in Environmental Stress
Response initiation, particularly during the transient phase of expression immediately after stress
exposure. Chromatin-immunoprecipitation showed a direct role for Rpd3-Large at representative
genes; however, there were different effects on nucleosome occupancy and histone deacetylation
at different promoters. Computational analysis implicated regulators that may act with Rpd3p at
Environmental Stress Response genes. We provide genetic and biochemical evidence that Rpd3p is
required for binding and action of the stress-activated transcription factor Msn2p, although the
contribution of these factors differs for different genes.

Conclusions: Our results implicate Rpd3p as an important co-factor in the Environmental Stress
Response regulatory network, and suggest the importance of histone modification in producing
transient changes in gene expression triggered by stress.
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Background

Sudden environmental changes can trigger rapid and dra-
matic changes in genomic expression. This involves coordi-
nated expression of hundreds to thousands of genes, whose
expression is precisely modulated in timing and magnitude.
Many different transcription factors function in the cell at any
given time and respond to distinct upstream signals. There-
fore, cells must integrate the action of numerous signals and
regulatory factors to produce a coherent genomic expression
program customized for each new environment.

Yeast respond to stress in part by initiating the Environmen-
tal Stress Response (ESR), which consists of approximately
600 genes whose expression is repressed and approximately
300 genes whose expression is induced by diverse stresses
[1,2]. The repressed genes include approximately 130 ribos-
omal protein ('RP') genes and a distinct group of approxi-
mately 450 genes more broadly related to protein synthesis
('PS genes'). Both groups are highly expressed in actively
growing cells but sharply repressed, with slightly different
expression profiles, in response to stress. Genes induced in
the ESR (iESR genes') are involved in varied aspects of stress
defense, including redox regulation, protein folding, osmo-
tolerance, cell signaling, and other functions. Initiation of the
ESR is not required to survive the offending stress but rather
helps to protect cells against subsequent severe doses of the
same or different stress (although it cannot fully explain
acquired stress resistance in all cases) [3].

Although activated by many different stresses, the ESR is reg-
ulated differently depending on the environment. Numerous
upstream signaling pathways have been implicated in condi-
tion-specific ESR regulation, including the high osmolarity
glycerol (HOG) [4] (Jessica Clarke and APG, unpublished
data), MEC [5], and protein kinase C (Scott Topper and APG,
unpublished) pathways in response to osmotic shock, DNA
damage, or reducing agents, respectively, and the protein
kinase A and target of rapamycin (TOR) pathways upon stress
relief [6-10] (reviewed in [11]). Furthermore, different sub-
sets of iESR genes can be induced by stress-specific transcrip-
tion factors, such as the oxidative-stress factor Yapip [1], the
heat shock factor Hsfip [12-14], Skoip and Hotip upon
osmotic stress [15-18], and the 'general-stress' transcription
factors Msn2p and Msn4p in response to diverse stresses
(reviewed in [11]). However, little is known about how these
signals are integrated to mediate ESR initiation, or how genes
repressed in the ESR are coordinated with genes induced in
the program.

One mechanism of altering gene expression is through
changes in chromatin state. The histone deacetylase Rpd3p
deacetylates histones in both coding and noncoding regions,
where it is thought to function in at least two distinct com-
plexes (reviewed in [19,20]). A small complex (Rpd3S) sup-
presses cryptic transcription initiation by deacetylating
histones after elongating polymerase [21-23]. Rpd3S is
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recruited via the combined action of the Eaf3p and Rcoip
subunits to histone H3 methylated by Set2p during transcrip-
tion of the open reading frame [21-23]. In contrast, a large
complex (Rpd3L) is recruited to promoters by site-specific
DNA binding proteins, including the Ume6p subunit of
Rpd3L, where it is thought to function in transcription initia-
tion [23-27]. Rpd3p is known to bind different promoters
under different conditions, such as cold shock and rapamycin
treatment [28-30]. In fact, many promoters to which Rpd3p
relocalizes are of genes repressed in the ESR. The effects of
Rpd3p at these promoters have not been shown on a global
scale, but the result suggests Rpd3p is required for stress-
dependent repression of ESR genes [11,30].

Although traditionally linked to repression, histone deacety-
lases can also function during gene activation [31-36]. Induc-
tion of several different yeast genes requires Rpd3p following
salt treatment, hypoxia, or DNA damage [32-34]. The precise
mechanism is not clear but requires Rpd3p for recruitment of
RNA polymerase to promoters of genes (including iESR
genes) induced by osmotic shock and DNA damage [32,34].
Furthermore, induction of hypoxic genes requires Rpd3p-
dependent histone deacetylation for nucleosome displace-
ment and stable binding of the Upc2p transcription factor
within the genes' regulatory regions [33]. That Rpd3p has
been linked to stress-dependent gene induction and repres-
sion raised the possibility that Rpd3p participates in regulat-
ing both induced and repressed genes within the ESR.

Indeed, here we show that Rpd3p is required for proper initi-
ation of the ESR, including normal regulation of both induced
and repressed genes, in yeast responding to multiple stresses.
Cells lacking RPD3 or the Rpd3L subunit PHO23 had a major
defect, specifically during the transient phase immediately
after H,O, treatment, while cells lacking the Rpd3S subunit
RCO1 did not. Chromatin-immunoprecipitation (ChIP) at
candidate ESR genes revealed that Rpd3p moves to numer-
ous promoters upon stress to mediate histone deacetylation;
however, the precise pattern of chromatin change was differ-
ent for different nucleosomes and genes investigated. We
show that Rpd3p binds directly to genes induced by stress
and is required for normal binding of Msn2p to numerous
promoters. Together, this work implicates Rpd3L as an
important co-factor in the ESR regulatory network.

Results

Rpd3p is required for the full dynamic range of stress-
activated gene expression changes

We followed genomic expression in wild-type and rpd34 cells
responding over time to a 25°C to 37°C heat shock, 0.4 mM
H,0,, and 0.75 M NaCl. A large fraction (56 to 80%) of the
gene expression changes seen in wild-type cells was affected
by RPD3 deletion, and this included both repressed and
induced genes (Table 1). In particular, Rpd3p was required
for normal expression of the vast majority of ESR genes (Fig-
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ure 1). Repression of PS genes was heavily dependent on
Rpd3p in response to all stresses, whereas repression of RP
genes required Rpd3p for full repression in response to heat
and H,O, stress but not salt treatment. Normal induction of
iESR genes also required Rpd3p, since the rpd34 strain dis-
played more than twofold decreased induction levels at the
peak of the response. Interestingly, a subset of iESR genes
(approximately 50% at a false discovery rate of 0.05) showed
slight derepression (approximately 1.5-fold) in the rpd34
mutant in the absence of stress (Figure 1; Figure S1 in Addi-
tional data file 1). The defect in stress-dependent induction
was not due to an already activated stress response in mutant
cells, indicated by normal cytosolic localization of Msn2p
before stress but substantial Msn2p nuclear accumulation
after stress, similar to wild-type (Figure S2 in Additional data
file 1). Furthermore, these iESR genes (as well as those with
no significant difference in basal expression) still had a defect
in induction beyond what could be accounted for by basal
expression differences (Figure S1 in Additional data file 1).
Thus, Rpd3p is required for the induction and repression of
ESR genes during stress, although each ESR subgroup shows
a qualitatively different dependence on the protein.
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Stress-dependent gene expression changes are often tran-
sient, in that large changes immediately after stress subse-
quently relax to new 'steady-state' levels as cells acclimate
(reviewed in [37]). We found that Rpd3p is particularly
important for this transient phase of expression (Figure 1b).
PS genes showed almost no transient expression changes,
while iESR genes showed reduced expression levels specifi-
cally at the peak of the transient phase. RP genes also showed
diminished expression differences at the peak of the response
to heat shock and H,0, treatment. Despite the defect in tran-
sient ESR expression, the rpd34 mutant eventually reached
near-wild-type expression changes by the end of these time
courses. This indicates that Rpd3p is not necessarily required
to maintain new steady-state levels of expression in cells
acclimated to high temperature or H,0O,, but is critical in pro-
ducing a large, rapid response to stress.

ESR regulation requires histone deacetylase activity
through the Rpd3L complex

We found that the catalytic activity of Rpd3p, as well as mod-
ifiable histones and subunits of the Rpd3L complex, were
required for proper ESR regulation. Cells harboring the cata-
Iytically inactive rpd3-H150:151A protein [32] or treated with
the Rpdgp inhibitor trichostatin A displayed the same wide-
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Rpd3p is required for stress-dependent activation of the environmental stress response. Gene expression in wild-type and rpd34 cells responding to 25°C
to 37°C heat shock (left panels), 0.4 mM H,O, treatment (middle panels), or 0.75 M NaCl exposure (right panels) as described in Materials and methods.
(@) The gene expression diagram represents the induced (red) or repressed (green) expression measurements of each gene (represented as rows) in the
protein synthesis (PS), ribosomal protein (RP), and induced environmental stress response (iESR) gene groups for each microarray experiment
(represented as columns organized temporally within each time course). The difference ('dif.") between wild type and rpd34 is represented to the right of
each expression diagram: yellow indicates weaker repression and blue indicates weaker induction in the rpd3A4 mutant. Basal expression differences
between rpd34 and wild type grown in the absence of stress are also shown. (b) The average log, expression change of genes in the PS, RP, and iESR
subgroups shown in (a) plotted for wild type and rpd34 cells. Time points with statistically smaller changes in expression in rpd34 cells (P < 0.01, paired t-
test) are indicated with an asterisk.
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Table |
Genes affected by RPD3 deletion
Heat shock H,0, NaCl Common*
Wild typet 2,089 2,082 2,421 996
Rpd3p-affectedt 1,643 (79%) 1,175 (56%) 1,696 (70%) 562 (56%)

*Genes common to all three stresses. TGenes affected in wild-type cells (see Materials and methods). ¥Genes whose expression change was defective
in the rpd34 strain relative to wild type, based on time-course analysis (see Materials and methods).

spread defect as the rpd34 strain (Figure S3 in Additional
data file 1). A similar defect was observed in cells harboring a
mutant histone H4 (H4KQ), in which amino-terminal lysines
were changed to glutamine to mimic the acetylated histone
state [38] (Figure S3 in Additional data file 1). This effect was
particularly clear for PS and iESR genes, although there was
only a subtle defect in repression of the RP genes in the Hg
mutant strain.

To distinguish between the effects of the different Rpd3p
complexes, we characterized the H,O, response in cells lack-
ing Pho23p or Rcoip, exclusive members of the Rpd3L and
Rpd3S complexes, respectively [21,23,39]. The expression
defect seen in the pho234 mutant, but not the rco14 cells, was
highly similar to that in the rpd34 mutant. Over 80% of
Rpd3p-affected genes were equally dependent on Pho23p (R
= 0.94, m = 0.98), whereas less than 12% of Rpd3-affected
genes showed a partial expression defect in cells lacking
RCO1. Furthermore, the pho234 strain showed the same
defect in transient expression as the rpd34 cells (Figure S4 in
Additional data file 1). In contrast, the rcoi4 cells showed
large changes in expression similar to wild type, albeit with a
slightly delayed response that is difficult to interpret due to
spurious internal transcripts in this mutant [21,23]. Nonethe-
less, these data show that defects in the magnitude and tran-
sience of gene expression can be accounted for by the Rpd3L
complex. Consistent with previous studies [28,40,41], we
found few of the Rpd3L-dependent expression changes were
dependent on the Ume6p subunit (data not shown), which is
thought to recruit the complex to specific loci [24,25,27]. This
suggests that other DNA binding proteins may be required for
RpdsL-dependent gene expression changes (see below).

Representative ESR genes show Rpd3p-dependent
changes in chromatin following stress

Previous studies showed Rpd3p physically bound to many
ESR-gene promoters during times of stress [28-30]. Global
studies probing Rpd3p binding after cold shock (inadvert-
ently inflicted by [28]) and rapamycin treatment [29] showed
that promoters of 60% of PS genes (P < 10-32) and 90% of RP
genes (P < 1072°) were bound by Rpd3p. Few of these regions
are bound under standard conditions [29,30]. Roughly 20%
of iESR-gene upstream regions were bound by Rpd3p under
stress conditions, though this may be an underestimate, since
chromatin-remodeling enzymes are difficult to ChIP, particu-
larly during dynamic responses [28]. Consistent with these

studies, we found Rpd3p bound upstream of four representa-
tive ESR genes (including one PS, one RP, and two iESR
genes) after H,0, treatment (Figure 2). Three of the targets
also showed some Rpd3p binding before stress, and all but
the UBC5 promoter showed increased Rpd3p binding after
H,0, treatment. These results were similar to those seen in
cold-shock (Figure 2), suggesting that many of the previously
observed binding events from [28] also occur during H,0,
stress.

We therefore characterized changes in nucleosome occu-
pancy and H4 acetylation at nucleosomes spanning the same
four ESR genes in wild-type, rpd34 or pho23A4 strains using
mononucleosome digestion and ChIP of acetylated H4 before
and after H,O, exposure. The results showed different trends
at different genes. Nucleosomes at repressed ESR genes
GAR1 and RPL16A showed Rpd3L-dependent changes in his-
tone deacetylation following H,O, treatment. Though wild-
type cells showed an approximately three- to eightfold
decrease (depending on the gene and nucleosome) in the frac-
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Rpd3p is bound upstream of several target genes after stress. Rpd3-myc
binding upstream of several genes (including the positive control INO/, PS
gene GAR/, RP gene RPLI6A, and iESR genes UBC5 and XKS/) was assessed
using ChlP before and 10 minutes after 0.4 mM H,O, treatment or cold
phosphate-buffered saline shock (see Materials and methods for details).
The log2 enrichment of each fragment recovered from the Rpd3-myc
expressing strain versus an untagged control strain is shown, for
unstressed cells and cells responding to stress, according to the key on the
right. Error bars represent the standard deviation of biological triplicates.
The enrichment of each locus in whole-cell extracts (WCE) is shown as a
control.
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tion of acetylated nucleosomes (Figure 3b), both the rpds4
and pho234 mutants had a major defect in histone deacetyla-
tion across both repressed ESR genes. This defect correlated
with the defect in their H,0,-dependent repression (Figure
3¢). Interestingly, the rpd34 mutant, and to some extent the
pho23A4 strain, also had a defect in nucleosome repositioning
at these repressed genes: whereas wild-type cells responding
to H,0, showed a dramatic increase in nucleosome occu-
pancy upstream of RPL16A, the rpd34 mutant showed a
major defect in this response (Figure 3a). The pho234 mutant
displayed a weaker defect than the rpd34 strain, indicating
that Pho23p is only partially required for the stress-depend-
ent increase in nucleosome occupancy at this locus. Together
with results in Figure 2, this indicates that Rpd3L-dependent
histone deacetylation is required for repression of these PS
and RP genes.

The two representative iESR genes each displayed a unique
profile in chromatin change. Nucleosomes surrounding the
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transcription start site of the induced gene UBC5 displayed
decreased histone acetylation in wild-type cells but not the
rpd34 or pho234 mutants responding to H,0,. In addition,
nucleosome occupancy at these loci increased in wild-type
cells, but not the mutants. In contrast, both the promoter and
open reading frame of iESR gene XKS1 showed increased his-
tone acetylation and nucleosome loss in wild-type cells, with
no significant defect in either mutant. Nonetheless, this gene
showed approximately threefold weaker induction in the
rpd34 and pho234 mutants, specifically during the transient
phase of expression. This reveals a decoupling of chromatin
changes upstream of XKS1 and XKS1 gene induction in the
mutant strains responding to stress, in a manner dependent
on direct Rpd3p binding to the region (see Discussion).

Implication of Rpd3p-dependent and -independent
transcriptional regulators

The above results indicate that Rpd3p has different effects at
different ESR genes, perhaps due to different regulators func-
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Figure 3

Rpd3p mediates stress-dependent changes in histone acetylation. Changes in nucleosome occupancy (NucOcc) and histone H4 acetylation (H4Ac) at
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specific nucleosomes (blue bars) spanning representative repressed (green) and induced (red) ESR genes shown in Figure 2 was measured in wild-type,
rpd34 and pho23A cells responding to 0.4 mM H,0, treatment (see Materials and methods for details). The log2 changes in (a) nucleosome occupancy and
(b) fraction of nucleosomes acetylated on H4 following H,O, exposure is shown for each gene. Error bars represent the range of two replicates for wild
type or the standard deviation of at least three experiments for rpd34 and pho23A. H4 acetylation levels were normalized to levels of nucleosome
occupancy to capture the change in the fraction of acetylated nucleosomes. (c) Expression changes of each gene as measured by microarray experiments
at 10, 20, 30, 40, and 60 minutes after H,O, treatment in wild-type, rpd34 and pho23A4 cells, according to the key shown.
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tioning at those genes. To identify additional stress-depend-
ent regulators, we systematically analyzed clustered
expression data for enrichment of known transcription factor
targets or functional gene groups. We manually identified
gene clusters in the hierarchically clustered dataset and
scored enrichment of Gene Ontology annotations [42], tar-
gets of known transcription factors [43], and genes with dif-
ferent upstream cis-regulatory elements [44]. This analysis
pointed to transcription factors involved in the Rpd3p-
dependent and Rpd3p-independent regulation of gene
expression (Table S1 in Additional data file 2).

Multiple clusters of Rpd3p-dependent induced genes were
enriched for genes with upstream Msn2p and Msn4p binding
sites (CCCCT [45,46]), consistent with the known role of
Msn2/4p in regulating iESR genes [1,46,47]. Another cluster
of Rpd3-dependent repressed genes was heavily enriched for
genes with upstream Polymerase A and C (PAC; GCGATGAG)
elements and Ribosomal RNA Processing Elements (RRPEs;
AAAAWTTTT), known to be enriched in PS genes and previ-
ously linked to promoters bound by Rpd3p [1,28,41,48].
Another cluster was enriched for proteasome genes and genes
containing binding sites of the proteasome regulator Rpn4p.
These associations raise the possibility that Rpd3p may work
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with these factors to mediate the observed gene expression
changes (see more below).

Interestingly, we identified some genes whose expression was
conditionally dependent on Rpd3p. Targets of the heat shock
transcription factor Hsfip or the oxidative stress transcrip-
tion factor Yapip were only dependent on Rpd3p in response
to specific conditions (Figure 4). The majority of Hsfip tar-
gets did not require Rpd3p for induction following heat shock
but showed Rpd3-dependent induction in response to H,0,
and NaCl treatment (Figure 4a). Similarly, induction of Yap1p
targets (Figure 4b) was independent of Rpd3p in response to
H,0,, while a subset induced with the ESR required Rpd3p
for full induction following heat shock and salt stress only.
Hsfip and Yapip are known to be condition-specific regula-
tors of subsets of iESR genes, functioning during heat shock
and oxidative stress, respectively (reviewed in [11]). Under
other conditions, many of these genes are regulated by Msn2/
4p. Our observations are consistent with the model that Hsfip
and Yap1p function independently of Rpd3p to regulate gene
induction, whereas Msn2/4p act in an Rpd3p-dependent
manner.
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Figure 4

Targets of Hsflp and Yap|p show conditional dependence on Rpd3p. The average expression of (a) Hsflp targets [14] or (b) Yap|p targets [|] was
plotted for wild-type (dark purple) and rpd3 (light purple) cells responding to heat shock (left panels), H,O, treatment (middle panels), or NaCl exposure
(right panels) as described in Materials and methods. Time points with smaller expression changes in rpd34 cells (P < 0.01, paired t-test) are indicated with

an asterisk.
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Rpd3p is required for normal Msn2p binding and
transcription initiation

To investigate the link between Msn2/4p and Rpd3p func-
tion, we measured genomic expression in strains lacking
RPD3, MSN2/MSN4, or MSN2/MSN4/RPD3 as cells
responded to H,O,. Interestingly, genes fell into different cat-
egories depending on their expression defect (Figure 5). One
class of genes was equally dependent on Rpd3p and Msn2/4p
for induction, with no additional defect in the triple mutant
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(Figure 5a). A second class required both sets of factors but
was more dependent on Msn2/4p (Figure 5b), while a third
class suggests redundant function of Rpd3p and Msn2/4p at
these genes (Figure 5¢). The latter group was enriched for
genes involved in carbohydrate metabolism (P < 108) and
trehalose synthesis (P < 1075), suggesting functional relevance
of the categorization. A fourth class of genes was dependent
only on Rpd3p (data not shown), indicating that additional
Rpd3p-dependent transcription factors are required for
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Figure 5

Rpd3p is required for proper Msn2/4p action. (a-c) Gene expression measured in wild-type (WT), rpd34, msn24 /msn4A4, and msn2A Imsn4A Irpd3 A cells
treated with 0.4 mM H,O, for 30 minutes. Average log, expression changes of (a) 215 genes equally affected by deletion of RPD3, MSN2/MSN4, or MSN2/
MSN4/RPD3, (b) 83 genes affected more by deletion of MSN2/MSN4 than RPD3, and (c) 103 genes that display additive dependence on RPD3 and MSN2/
MSN4. The standard deviation of the genes' expression is shown for each gene group. (d) Msn2p binding before and 10 minutes after 0.4 mM H,O,
treatment in wild-type and rpd34 cells, according to the key for: TSA2 (from (a)), DDR2 (from (b)), YGP! (from (c)), HOR7 (dependent on Rpd3p only), and
YPS127W (dependent on Msn2/4p but not Rpd3p). Fold-change in Msn2p occupancy between stressed and unstressed cells is listed below each plot. Error
bars represent the standard deviation of triplicate experiments.
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proper initiation of the ESR (including Rpn4p and others).
Importantly, a fifth group of genes was dependent only on
Msn2/Msn4p (data not shown), which underscores that the
Rpd3p-dependent defect in iESR-gene induction is not sim-
ply caused by failure to activate Msn2/4p, consistent with
microscopy data (Figure S2 in Additional data file 1). Thus,
most but not all of Msn2/4p-dependent genes require Rpd3p
for full induction, and these targets show qualitative differ-
ences in their dependence.

These results suggest Rpd3p may be required for Msn2/4p
action during gene induction. We therefore measured Msn2p
binding upstream of genes representing each category above
in wild-type and rpd34 cells responding to H,O, (Figure 5d).
While none of the promoters tested showed Msn2p bound
before stress, as expected, wild-type cells showed an increase
in Msn2p promoter binding that was defective in the rpd34
strain at most targets, regardless of class. The exception was
YPR127W, an Msn2p-dependent but Rpd3p-independent
target, which showed no significant defect in Msn2p binding
in the rpd3A4 strain. Thus, Rpd3p was required for Msn2p
binding upstream of targets that showed dependence on
Rpd3p for induction.

It is important to note that over half the H,0,-induced gene
expression changes were not affected by RPD3 deletion or
MSN2/4 deletion. This underscores that Rpd3p is not univer-
sally required for all gene expression changes in response to
stress, and shows that the defect in expression is not due to a
gross alteration in the rpd34 mutant's response.

Rpd3p is required for ESR suppression following stress
relief

That Rpd3p is implicated in both gene induction and repres-
sion following stress treatment raised the possibility that
Rpd3p participates in the reciprocal regulation of the same
genes during stress relief, when the ESR is suppressed. To test
the role of Rpd3p in ESR suppression, we measured gene
expression in wild-type and rpd34 cells acclimated to 37°C as
cells were returned to 25°C. Strikingly, the rpd34 strain had a
significant defect in ESR suppression during stress relief (Fig-
ure S5 in Additional data file 1): whereas wild-type cells rap-
idly repressed expression of iESR genes in response to stress
relief, rpd34 cells displayed a significantly weaker response.
Similarly, induction levels of PS genes were significantly
smaller in the rpd34 strain compared to the wild-type cells
recovering from stress. Consistent with results presented
above, the RP genes were distinct in that induction upon
stress relief was only mildly affected by RPD3 deletion. These
results suggest that Rpd3p is not exclusively required for the
repression or for the induction of the ESR genes but instead
is required for proper changes in the genes' expression
regardless of the directionality of the change.
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Discussion

Our results reveal that Rpd3p is required for many stress-
dependent gene expression changes, particularly genes in the
yeast ESR. We show that Rpd3p and the RpdsL subunit
Pho23p (but not the Rpd3S component Rco1p), as well as
Rpd3p catalytic activity and modifiable histones, are required
to produce these effects. Rpd3p binds directly to promoters of
representative ESR genes, indicating that the Rpd3-depend-
ent changes in chromatin structure that we see are direct at
these promoters. Furthermore, the observed defects in iESR
induction correlate with decreased Msn2p binding at candi-
date promoters in the rpd34 strain. Together with previous
global studies of Rpd3p localization [28-30], these results
indicate that Rpd3L acts directly at many ESR genes to medi-
ate transient changes in gene expression. The defect in stress-
activated expression leads to a corresponding defect in
acquired stress resistance (Figure S6 in Additional data file 1),
similar to that we have previously shown in cells lacking
Msn2p and/or Msngp [3]. Thus, Rpd3p is an important
cofactor in initiating the ESR. Models for how Rpd3p fits into
the ESR regulatory network are discussed below.

Role of Rpd3p in ESR initiation under diverse stress
conditions

Rpd3p likely acts with distinct transcription factors at differ-
ent classes of ESR promoters. PS genes are heavily enriched
for upstream PAC elements (GCGATGAG) and RRPEs
(AAAAWTTTT) [1,48], which have also been linked to Rpd3p
binding [28]. Recently, the binding proteins of both elements
have been identified and linked to PS expression. PAC is
bound by Dot6p and Pbsip [49,50], and deletion of the two
genes leads to defective PS gene repression in response to
heat shock [50]. The RRPE binding factor was recently iden-
tified as Stb3p, which interacts with the Sin3p subunit of
Rpd3p complexes [51,52] and is required for PS gene induc-
tion upon starvation relief but represses PS gene transcrip-
tion when overexpressed (D Liko and W Heideman, personal
communication). Although we found no expression defect in
an stb3A4 mutant responding to stress (data not shown), the
link between Stb3p, Sin3p/Rpd3p, and RRPEs suggests that
the proteins function together at this regulatory motif to
affect PS gene expression.

Rpd3p has a distinct role in repressing RP genes, since their
expression was mildly Rpd3L-dependent under certain con-
ditions only. Nonetheless, we found that Rpd3p moves to the
promoter of RPL16A upon H,0, treatment (Figure 2), as pre-
viously found in response to cold shock [28,30], and is
required for normal histone deacetylation and nucleosome
deposition/repositioning (Figure 3). Rpd3p has previously
been linked to RP gene repression after rapamycin treatment
[29,53,54], although we found no requirement for the pro-
posed repressor Crfip (data not shown) [55]. We have, how-
ever, found a requirement for the ATP-dependent
nucleosome-remodeling complex, RSC, which is important
for proper nucleosome organization upstream of many genes
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[49]. RSC mutants have increased RP expression in the
absence of stress [56], while cells lacking Rsc1p fail to fully
repress RP expression and, to some extent, PS gene expres-
sion upon H,O, treatment (our unpublished data). Like
Rpd3p, RSC binds RP promoters in a condition-specific man-
ner [57]. Thus, Rpd3p and RSC may function in parallel path-
ways at these genes. Interestingly, stress-dependent changes
in nucleosome occupancy at RPLi16A were only partially
dependent on Pho23p, raising the possibility that Rpd3L
functions partially independently of Pho23p or that Rpd3p is
acting through multiple complexes, at least one of which does
not require Pho23p [20-23].

The role of Rpd3L at iESR genes is less clear; however, our
ChIP experiments suggest four general models for how
Rpd3p may affect gene induction. The first is that some iESR
genes may be indirectly affected by Rpd3L activity, particu-
larly those for which there is no evidence of Rpd3p binding in
response to stress. The second model is that Rpd3p plays an
important and direct role in repressing iESR expression in the
absence of stress, since Rpd3p binds directly to the promoters
of UBC5 and XKS1 before stress (Figure 2) and these genes
(plus nearly half of iESR genes) show slight derepression
under normal conditions (Figure 1). This model is not incom-
patible with separate roles for Rpd3p in regulating stress-
dependent expression changes, demonstrated by UBC5 and
XKS1. At the UBC5 promoter, Rpd3p directly deacetylates
promoter-based histones to mediate gene induction. This is
consistent with results of De Nadal et al. [32], who showed
Rpd3-dependent histone deacetylation is required for
polymerase recruitment. In contrast, H,0,-dependent chro-
matin changes at XKS1 were not detectibly dependent on
RpdsL, despite increased Rpd3p binding upon treatment.
The rpd34 mutant ultimately induced XKS1 to levels higher
than wild type, but with a major defect in the normal transient
burst of expression. Thus, the changes in histone acetylation
did not lead to normal gene induction. One possibility is that
gene induction triggered by H,O, requires proper Rpds3-
dependent promoter architecture before stress; alternatively,
Rpd3p may play a role late in gene induction, after active
nucleosome acetylation, as previously proposed for DNA
damage-responsive genes [34].

We also show that Rpd3p activity is required for normal
Msn2p binding to representative promoters. This is reminis-
cent of the requirement of Rpd3p for nucleosome displace-
ment and Upc2p binding at the promoters of hypoxia-
regulated genes [33]. The exact mechanism of Rpd3p involve-
ment at Msn2/4p targets is unclear; however, Lindstrom et
al. [58] recently showed that Msn2/4p activity is inhibited by
NuA4-dependent histone acetylation. This raises the possibil-
ity that histone deacetylation by Rpd3p counteracts the inhib-
itory effects of NuA4-dependent acetylation to allow Msn2p
binding and gene induction. That different targets of Msn2/
4p and Rpd3p show distinct sensitivities to the factors' dele-
tion again implies distinct regulatory mechanisms for the dif-
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ferent subclasses of targets. Understanding the differences in
regulation will be an interesting area of future investigation.

Rpd3p functions as a 'general-stress’ co-factor in the
ESR regulatory network

The ESR regulatory network consists of condition-specific
regulators - those that only regulate ESR expression under
specific circumstances - as well as 'general-stress' factors
(such as Msn2/4p) that function under a wide variety of con-
ditions. Our results suggest Rpd3p acts with the 'general-
stress' set of ESR regulators at iESR and PS genes. Rpd3L is
required for proper expression of these genes in response to
numerous stresses (Figure 1). Furthermore, Msn2/4-depend-
ent induction, but not condition-specific regulation by Hsfip
and Yap1ip, requires Rpd3p (Figures 4 and 5). Like Msn2/4p,
the 'general stress' role of Rpd3p persists despite the involve-
ment of different upstream regulators under different condi-
tions. For example, De Nadal et al. [32] showed that Rpd3p is
recruited to numerous iESR promoters in a manner depend-
ent on the Hog1p kinase following salt stress but independent
of Hog1p after heat shock. Thus, the involvement of Rpd3p,
and the transcription factors it interacts with at these promot-
ers, is controlled by different upstream signaling pathways
under different environments. It will be interesting to deci-
pher the mechanisms by which Rpd3p associates with stress-
activated transcription factors despite distinct, condition-
specific upstream pathways.

Rpd3p is required for the transient phase of stress-
activated gene expression changes

This study also demonstrates the importance of histone mod-
ification in mediating rapid and transient responses to envi-
ronmental changes. The Rpd3L complex is particularly
important in producing the large, rapid expression changes
during the period of stress acclimation. The transient expres-
sion changes produced by acute stress treatment are qualita-
tively distinct from continuous expression changes seen
under different nutrients. However, Rpd3p can affect the
rapid kinetics of both types of expression responses. Upon
phosphate limitation, cells lacking RPD3 showed delayed
induction of PHO5 but eventually altered expression similar
to wild-type cells [59]. Interestingly, a similar effect was
reported in cells lacking the histone acetyltransferase Gensp,
which also showed delayed induction of metabolic genes [60].
These results reflect that changes in chromatin states, medi-
ated by both deacetylases and acetyltransferases, are particu-
larly important for rapid kinetics of gene-expression changes
in response to variable environments. Consistently, we found
that rpd34 cells display defects in reciprocal expression
changes of the same genes upon stress exposure as well as
stress relief. Dynamic and successive alterations in histone
modification are crucial in producing proper transcriptional
changes (for example, [61-67]). Elucidating the dynamics of
chromatin changes upon stress treatment will continue to
shed light on the dynamics of stress-dependent gene expres-
sion changes.
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Conclusions

Rpd3p is an important co-factor in the regulatory network
that controls ESR gene expression in response to stress,
working with different factors at different subsets of ESR
genes. Many questions remain about the mechanistic details
of Rpd3p action at these promoters. While future studies will
be required to dissect the precise mechanism of Rpd3p in reg-
ulating these genes, this work contributes to our understand-
ing of the ESR regulatory network and provides an avenue for
identifying additional factors that work with Rpd3p in regu-
lating the ESR.

Materials and methods

Strains and growth conditions

Strains used in this study are listed in Table S2 in Additional
data file 3. PHO23 and RCO1 deletion strains were purchased
from Open Biosystems (Huntsville, AL, USA), and each dele-
tion was verified by PCR. The rpd34 and msn24 msn4A
rpd3A strains were constructed by homologous recombina-
tion to replace RPD3 with KANMX or LEU2 in BY4741 or
AGYo0249, respectively. Unless otherwise noted, cells were
grown at 30°C in YPD medium. Although the growth rate of
the rpd34 strain is approximately 1.5-fold slower than wild
type, this cannot explain the observed expression defects,
since the mutant phenotypes are recapitulated by the pho234
mutant, whose doubling rate is indistinguishable from wild

type.

Cell collection for microarray analysis

Cells were grown approximately three doublings to an optical
density (ODg,,,) of approximately 0.6 to 0.8 and a sample was
collected for the unstressed control, as previously described
[68]. Basal expression in rpd34 versus wild type was meas-
ured in triplicate. For heat shock time courses, cells were
grown at 25°C, filtered and resuspended in 37°C YPD. Aliq-
uots were collected at 5, 15, 30, 45, and 60 minutes (time
course HS_1) or at 5, 10, 20, 30, and 60 minutes (time course
HS_2) as previously described [68]. For the H,O, experi-
ments, peroxide was added to 0.4 mM and cells were col-
lected at 10, 20, 30, 40, and 60 minutes (time course H,0,_1)
or at 30 minutes for single-time point experiments, done in
triplicate. For sodium chloride (NaCl) time courses, NaCl was
added to 0.75 M and cells were collected at 15, 30, 60, and 90
minutes (time course NaCl_1) or at 30, 45, and 60 minutes
(time course NaCl_2). Experiments probing the catalytically
inactive rpd3 [32] were done in SC-leucine. The catalytically
inactive rpd3 plasmid and the histone H4KQ mutant [38]
strain were generously provided by F Posas and R Morse,
respectively.

Wild-type cells were also exposed to heat shock with and
without exposure to 10 pM trichostatinA (Sigma-Aldrich, St
Louis, MO, USA), added 15 minutes before and throughout
shock. For stress relief, cells grown at 37°C were collected by
centrifugation, resuspended in 25°C YPD, and collected at 5,
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10, 20, and 40 minutes (time course RH_ 1) or 10, 40, and 60
minutes (time course RH_ 2).

Microarrays and genomic analysis

Total RNA extraction, cDNA synthesis and labeling were per-
formed as previously described [3,68], using Superscript RT
IIT (Invitrogen, Carlsbad, CA, USA), amino-allyl dUTP
(Ambion, Austin, TX, USA) and NHS-ester cyanine dyes
(Flownamics, Madison, WI, USA). Microarray data are avail-
able in the NTH Gene Expression Omnibus database with the
access number [GEO:GSE9108].

Microarray data were analyzed by average-linkage hierarchi-
cal clustering, using the programs Cluster and Java-Treeview
[69] as previously described [1]. Genes affected in wild-type
cells were defined based on triplicate single-time-point meas-
urements [70,71] or based on time courses [72] if ¢ < 0.01 or
if expression was altered more than 1.5-fold in at least two
time points from replicate experiments. Genes affected in
deletion strains were identified similarly, except the g-value
cutoff was relaxed to 0.05.

Chromatin immunopreciptation and quantitative PCR
Rpd3-myc and Msn2p ChIP experiments were done as previ-
ously described [73]. Briefly, cells were grown as described
above and were either untreated or exposed to 0.4 mM H,0,
for 10 minutes, or washed twice with cold phosphate-buffered
saline for the cold-shock control then exposed to 1% formal-
dehyde for 30 minutes (Rpd3-myc) or 45 minutes (Msn2
ChIPs) at 25°C. Cells were flash frozen, resuspended, and
lysed; isolated chromatin was sonicated to an average size of
approximately 400 bp. Protein (2.0 mg) was incubated with 5
ul anti-c-myc (9E11, Abcam (Cambridge, MA, USA) ab-56) or
15 ul anti-Msn2 (y-300, Santa Cruz (Santa Cruz, CA, USA) sc-
33631) antibody overnight at 4°C. For chromatin ChIP, cells
were exposed to 0.4 mM H,0, for 20 minutes, cross-linked as
above, then digested to spheroplasts with zymolyase (Seika-
gaku Biosystems, Tokyo, Japan) for 60 minutes at 30°C and
treated with micrococcal nuclease (Worthington Biochemi-
cal, Lakewood, NJ, USA) for 20 minutes at 37°C to isolate
mononucleosomes. This sample measured total nucleosome
occupancy; in addition, 1.5 mg protein was mixed with 3 pl
anti-acetylated H4 (Upstate 06-866 (Millipore, Billerica, MA,
USA)) to immunoprecipitate acetylated histone H4. DNA
purified from each sample was amplified [74] and converted
to cDNA using SuperScript III (Invitrogen). All ChIPs were
done in triplicate and quantified by real-time quantitative
PCR reactions, using Sybrgreen Jumpstart Taq (Sigma-
Aldrich, St Louis, MO, USA) and an Applied Biosystems 7500
detector (Foster City, CA, USA). Each ChIP PCR was normal-
ized to a control fragment between YEL073C and YELo72W
on chromosome V as previously described [75]. Apparent his-
tone acetylation levels were normalized to nucleosome occu-
pancy at each locus to report the fraction of acetylated
nucleosomes. Primers were designed to span approximately
75 bp regions within positioned nucleosomes [76] and data
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not shown) and were validated by amplifying genomic DNA;
primer sequences are available upon request.

Abbreviations

ChIP: chromatin immunoprecipitation; ESR: environmental
stress response; iESR: induced ESR; PAC: Polymerase A and
C; PS: protein synthesis; RP: ribosomal protein; RRPE:
Ribosomal RNA Processing Element.
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