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Taxonomically-restricted genes<p>Computational and functional genomic analyses in Hydra magnipapillata suggest that taxonomically-restricted genes are involved in the evolution of morphological novelties such as the cnidarian nematocyte</p>

Abstract

Background: Despite decades of research, the molecular mechanisms responsible for the
evolution of morphological diversity remain poorly understood. While current models assume that
species-specific morphologies are governed by differential use of conserved genetic regulatory
circuits, it is debated whether non-conserved taxonomically restricted genes are also involved in
making taxonomically relevant structures. The genomic resources available in Hydra, a member of
the early branching animal phylum Cnidaria, provide a unique opportunity to study the molecular
evolution of morphological novelties such as the nematocyte, a cell type characteristic of, and
unique to, Cnidaria.

Results: We have identified nematocyte-specific genes by suppression subtractive hybridization
and find that a considerable portion has no homologues to any sequences in animals outside Hydra.
By analyzing the transcripts of these taxonomically restricted genes and mining of the Hydra
magnipapillata genome, we find unexpected complexity in gene structure and transcript processing.
Transgenic Hydra expressing the green fluorescent protein reporter under control of one of the
taxonomically restricted gene promoters recapitulate faithfully the described expression pattern,
indicating that promoters of taxonomically restricted genes contain all elements essential for spatial
and temporal control mechanisms. Surprisingly, phylogenetic footprinting of this promoter did not
reveal any conserved cis-regulatory elements.

Conclusions: Our findings suggest that taxonomically restricted genes are involved in the
evolution of morphological novelties such as the cnidarian nematocyte. The transcriptional
regulatory network controlling taxonomically restricted gene expression may contain not yet
characterized transcription factors or cis-regulatory elements.
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Background
Cnidaria represent the simplest animals at the tissue grade of
organization. In order to catch prey, cnidarians have evolved
a unique "high-tech cellular weaponry" [1] - the stinging cells
(cnidocytes, nematocytes) - single cells able to shoot struc-
tures at their target and inject toxic substances into it. Nema-
tocytes are unique to and present in all species of the phylum
Cnidaria. Different phylogenetic lines have different nemato-
cyte types [2,3]. Evolution of cnidarian families appears to be
accompanied by expansion of the nematocyte repertoire [4].
In Hydra, four types of nematocytes can be distinguished
based on the distinct morphology of the nematocyte capsule:
stenotele, desmoneme, holotrichous isorhiza and atrichous
isorhiza. Previous work [5,6] has identified unusually short
proteins with a collagen-related domain (minicollagens) as
major constituents of the nematocyst capsule wall. Intermo-
lecular disulfide bonds between the cysteine-rich domains of
these minicollagens and an additional capsule protein,
NOWA, are thought to stabilize the capsule wall [7]. The
spines inside the capsules contain spinalin, another protein
unrelated to any protein in other animals [8].

How novel morphological structures evolve is an open and
important question. One currently popular view is that since
many genes are shared throughout the animal kingdom, ani-
mal diversity is largely based on differential use of conserved
genes and regulatory circuits [9-11]. However, all genome and
expressed sequence tag (EST) projects to date in every taxo-
nomic group studied so far have uncovered a substantial
amount of genes that are without known homologues [12,13].
A previous study [13] has discovered that a family of such tax-
onomically restricted 'orphan' genes plays a significant role in
controlling phenotypic features referred to as species-specific
traits in the genus Hydra. Thus, morphological diversity in
closely related species may be generated through changes in
the spatial and temporal deployment of genes that are not
highly conserved across long evolutionary distances [13].

We here have chosen an unbiased comparative approach
based on suppression subtractive hybridization (SSH) to
identify additional nematocyte-specific genes in Hydra.
Among those detected, a considerable portion has no homo-
logues in animals outside Hydra. Since they are exclusively
restricted to the phylum Cnidaria, they are considered as
'orphans' or 'taxonomically restricted genes' (TRGs) [13-16].

Analysis of these TRGs indicates striking complexity in their
genomic organization and transcript processing. In order to
understand how such TRGs are regulated, we generated
transgenic polyps that express green fluorescent protein
(GFP) under control of one of the TRG promoters. Transgenic
Hydra recapitulate faithfully the previously described
expression pattern, indicating that the promoter contains all
elements essential for spatial and temporal control mecha-
nisms. Surprisingly, phylogenetic footprinting of this pro-
moter did not reveal any conserved cis-regulatory elements.

This may indicate that the transcriptional regulatory network
controlling TRG expression may contain not yet character-
ized transcription factors or cis-regulatory elements.

Our data provide a detailed genomic description of several
taxonomically restricted genes in a basal metazoan, and func-
tional evidence that TRGs are integrated in transcriptional
regulatory networks to form functional signaling cascades.

Results
Identification of taxonomically restricted genes 
expressed in nematocytes
In order to isolate not yet identified genes potentially
involved in nematocyte differentiation, we made use of the sf-
1 mutant strain of H. magnipapillata, which has tempera-
ture-sensitive interstitial stem cells [17]. Interstitial cells are
located between the ectodermal epithelial cells and contain
both germline and somatic components, giving rise to all
nerve cells, gland cells and nematocytes [18]. Treatment for a
few hours at the restrictive temperature (28°C) induces quan-
titative loss of the entire interstitial cell lineage, including
nematocytes from the ectodermal epithelium [19].

To identify genes that are transcriptionally active in differen-
tiating nematocytes, we compared transcriptomes of control
and nematocyte-free H. magnipapillata by SSH of cDNAs. As
shown schematically in Figure 1, subtractive hybridization
resulted in a cDNA library enriched for interstitial stem cell
lineage-specific transcripts. Sequencing of 2,500 clones
revealed 105 consensus contig sequences that could be
grouped by BLASTx analysis into three different categories of
homology (Figure 1). One set (45 sequences; 43%) had strong
similarities (e-value < 1e-20) to known metazoan proteins.
The second set (44 sequences; 42%) had low e-values (>1e -7)
and represents genes related but not identical to previously
identified metazoan genes. The third set (16 sequences; 15%)
had no homologues in the National Centre for Biotechnology
Information (NCBI) protein database (Figure 1), represent-
ing, therefore, genes putatively restricted to Hydra or Hydro-
zoa. Further sequence analysis of these 16 contigs revealed
that some of them (contigs 049 and 129 as well as 035 and
109) represent fragments of the same primary transcript.
Thus, the approach resulted in identification of a total of 14
genes without significant homology.

Next, we analyzed the expression of these putative TRGs by
whole mount in situ hybridization. Out of the 14 genes, 9 rep-
resent transcripts expressed exclusively in differentiating
nematocytes. While five of them (Figure 2a-h; nb001, nb035,
nb039, nb042, nb082) show expression in all types of differ-
entiating nematocytes, three genes (Figure 2i-k; nb012,
nb054, nb092) are expressed only in isorhiza and desmon-
emes. One gene (nb031; Figure 2l) is exclusively expressed in
stenoteles, predominantly at the base of tentacles.
Genome Biology 2009, 10:R8
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To investigate whether the identified genes were restricted to
the species H. magnipapillata or are also present in other
Hydra species (Figure 3a), we analyzed their expression in
the related Hydra oligactis [20]. Figure 3b indicates that
genes nb012, nb035, nb039, nb042 and nb054 give a strong
in situ hybridization signal in differentiating nematocytes in
both H. magnipapillata and H. oligactis, representing, there-
fore, genes putatively restricted to the genus Hydra. TRGs
found to be expressed in nematocytes in both species share
high sequence similarity at the nucleotide and amino acid lev-
els. Figure 3b also indicates that transcripts for nb031,
nb082, and nb092 cannot be detected in H. oligactis, repre-
senting, therefore, genes putatively restricted to the species
H. magnipapillata. Interestingly, screening the genome of
the anthozoan sea anemone Nematostella vectensis provided
evidence for the presence of at least two of the above-
described nematocyte-specific TRGs in this distantly related
cnidarian (Figure 3b). Thus, these genes seem to be present in
many classes of the phylum Cnidaria but absent in other
metazoan taxa. Therefore, such genes might be considered
'cnidaria-specific'.

Characterization of taxonomically restricted genes 
expressed in nematocytes
A novel family of minicollagen proteins originates from one genomic 
locus
Detailed analysis of the gene nb001 revealed that it encodes a
novel member of the minicollagen family of proteins contain-
ing the previously reported [5,21,22] structural features such
as a signal peptide, propetide, cystein rich domain, and a pro-
line-repeat flanked collagen-like domain (Figure 4a). In a
recent review [4] the protein encoded by nb001 was referred
to as 'minicollagen 6'. At the nucleotide level, nb001 shares no
similarity to previously published [5,22] minicollagens.

Analysis of nb001 transcripts in the EST data bank and the
corresponding genomic locus uncovered five different splice
variants (Figure 4a, nb001-sv1 to nb001-sv5: CL1Contig4,
CL1Contig3, CL1Contig2, CL1Contig1 and CL1Contig5,
respectively). In addition, by PCR amplification we could
identify four more splice variants (nb001-sv6 to nb001-sv9;
Figure 4a). Interestingly, while the first two introns are
spliced by conventional splicing sites (GT/AG), additional
variants of the transcripts are generated by processing of exon
3. As a result of this process, which may use unconventional
'splicing' sites, various regions of exon 3 are removed.

The resulting nb001 predicted proteins (Figure 4b) indicate
domain length variations of the collagen-like domain as well
as the proline and cysteine repeats. In contrast to previously
reported minicollagens [5,22], all nb001 variants described
here have 19-27 Gly-X-Y repeats instead of 12-16, resulting in
an expanded collagen-like domain (Figure 4b). Other nb001
variants are characterized by a shortened praline repeat fol-
lowing the collagen-like domain. Three variants (nb001-sv7
to nb001-sv9) lack both the collagen-like domain and the pro-

Identification of interstitial cell lineage-specific genes in Hydra by suppression subtractive hybridization (SSH)Figure 1
Identification of interstitial cell lineage-specific genes in Hydra by 
suppression subtractive hybridization (SSH). H. magnipapillata 
(strain sf-1) cDNA was used as tester and cDNA of interstitial cell free H. 
magnipapillata (sf1) as driver to generate a library enriched for transcripts 
of the interstitial cell lineage. BLASTx analysis could group 105 EST-contig 
sequences into three categories of homology: 45 sequences (43%) had 
strong similarities (e-value < 1e-20) to known metazoan proteins; 44 
sequences (42%) had low e-values (>1e -7); 16 sequences (15%) had no 
homologues in the NCBI protein database, representing genes putatively 
restricted to the genus Hydra.
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line repeats. These variants contain only a single cystein rich
domain with an altered cysteine pattern - (CXXX)7-CC,
(CXXX)5-CC or (CXXX)2-CC - instead of the conserved
(CXXX)4-CC. Northern blot analysis (Figure 4c) shows a
strong signal at around 700 bp, indicating the presence of
nb001 transcripts corresponding to most of the predicted var-
iants.

Spinalin, a previously identified nematocyte-specific gene is a splice 
variant derived from a complex genetic locus
Genomic analysis of TRG nb054 (Figure 5a) revealed that the
corresponding 50 kb spanning genomic locus contains the
gene spinalin, which was previously reported [8] to be
involved in spine development of nematocysts. Sequence
analysis confirmed by PCR amplification studies revealed

Expression of taxonomically restricted genes identified in the suppression subtractive hybridization screening in Hydra nematocytesFigure 2
Expression of taxonomically restricted genes identified in the suppression subtractive hybridization screening in Hydra nematocytes. 
Whole mount in situ hybridization of nine TRG sequences represent transcripts expressed exclusively in differentiating nematocytes. (a-h) Five transcripts 
show expression in all types of differentiating nematocytes: nb001 (a), nb035 (e), nb039 (f), nb042 (g), nb082 (h). (b-d) Magnifications of nematoblast nests: 
stenotheles (b); izorhiza (c); desmonemes (d). (i-k) Three TRGs are expressed only in isorhiza and desmonemes: nb012 (i); nb054 (j); nb092 (k). (l) One 
TRG, nb031, is exclusively expressed in stenoteles predominantly at the base of tentacles.
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Comparative expression analysis of taxonomically restricted genes in different types of developing nematocytesFigure 3
Comparative expression analysis of taxonomically restricted genes in different types of developing nematocytes. (a) Phylogenetic 
relationships in the genus Hydra; colors indicate the examined species referred to in the table in (b); phylogenetic tree modified from [20]. (b) TRG 
expression in developing nematocytes in two different Hydra species (H. magnipapillata and H. oligactis) as well as conservation of corresponding TRGs 
between the two species and possible othologuous sequences in the distantly related anthozoan sea anemone Nematostella vectensis. aa, amino acid; nt, 
nucleotide.

 Nematostella vectensis

 Obelia geniculata

 Hydra viridissima

 Hydra circumcincta

 Hydra robusta

 Hydra oligactis

 Hydra carnea

 Hydra vulgaris (AEP)

 Hydra vulgaris

 Hydra magnipapillata0.05

(a)

nb-
gene

nb-gene expression in Hydra nb-gene conservation

aa-identity (%)nt-identity (%)stenoteles isorhiza desmonemes cell-type

H. magnipapillata H. oligactis H.mag vs. H.oli

001

012

031

035

039

042

054

082

092

+

-

+

+

+

+

-

+

-

+

+

-

+

+

+

+

+

+

+

+

-

+

+

+

+

+

+

cnidoblasts

cnidoblasts

-

cnidoblasts

cnidoblasts

cnidoblasts

cnidoblasts

-

-

94

93

-

96

89

59

88

-

-

92

89

-

95

88

58

87

-

-

(b)

N. vectensis

possible orthologue (e-value)

-

+     (3e-60)

-

+     (4e-29)

-

-

-

-

-



http://genomebiology.com/2009/10/1/R8 Genome Biology 2009,     Volume 10, Issue 1, Article R8       Milde et al. R8.6

Genome Biology 2009, 10:R8

Genomic organization and alternative transcripts of nb001/minicollagenFigure 4
Genomic organization and alternative transcripts of nb001/minicollagen. (a) Mapping of nb001 EST-contigs (nb001-sv1 to nb001-sv5; black) and 
amplified PCR products (nb001-sv6 to nb001-sv9; blue) to the corresponding genomic locus (H. magnipapillata genomic scaffold NW_002161526). nb001 
transcripts encode a protein with a signal peptide (sp; green), pro-peptide (pro; black) and a collagen-like domain (yellow) flanked by two praline repeats 
(Pn; magenta) and two cystein-rich-domains (CRD; red). (b) Alignment of the amino acid sequences of predicted splice variants. (c) Northern blot 
indicates the presence of nb001 transcripts corresponding to most of the predicted splice variants. Probe for hybridization corresponds to exon 2 and the 
first half of exon 3 (yellow line in (a)). Asterisks indicate stop codons.
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that spinalin and nb054 are, in fact, encoded by a single gene
and, therefore, must be considered as splice variants. While
the first six exons encode the previously identified spinalin,
splicing within the 6th exon leads to much longer transcript
variants containing the first 6 exons plus an additional 2-16
exons, resulting in a large number of differentially spliced
transcripts of about 3,000 bp (Figure 5a). The short 983 bp
transcript encoding spinalin is produced by alternative splic-
ing and usage of the resulting stop codon within exon 6. Since
this genomic region is rich in AT repeats (Figure 5a), some
sequence areas encoding the TRG nb054 remain unresolved
and, therefore, the final number of nb054-specific exons
remains to be determined. Northern blot analysis with spina-
lin- and nb054-specific probes (Figure 5b) revealed three dis-
tinct signals of about 1, 1.7 and 3 kb corresponding to the
predicted spinalin and nb054 transcripts.

Gene duplication contributes to the complexity of nematocyte-
specific gene families
The TRG nb039 has blast hits to two distinct but similar
genomic contigs (NW_002158707, NW_002162805), which
we named nb039-A and nb039-B (Figure 6a,b). Correspond-
ing ESTs could be grouped into two independent sets of EST

contigs, which are identical to the respective genomic locus
and represent several different splice variants. Additionally,
we were able to amplify 11 more partial splice variants for
nb039-A and three more partial splice variants for nb039-B.
From the locus nb039-A, two splice variants use alternative 3'
untranslated regions (UTRs; nb039a-sv4/CL1Contig423,
nb039a-sv10) due to early stop codons, which most likely
were inserted by alternative splicing. Comparison of the
exon/intron distribution pattern in the 5' adjacent region of
nb039-A and nb039-B (Figure 6a,b) indicates striking struc-
tural similarity. A comparative sequence analysis of both loci
(Figure 6c) provided evidence that they are the result of a
gene duplication event since the gene-encoding part of
nb039-A and nb039-B is highly conserved but flanked by
stretches of non-conserved genomic sequences.

A second example of a putative gene duplication event in a
TRG gene expressed in nematocytes was discovered when
analyzing the genomic locus of nb012. As shown in Figure 7a,
this gene consists of seven exons corresponding to one EST
contig (nb012a/CL243Contig1). The full-length transcript of
this EST-contig contains a laminin-G-like domain located on
exons 4 and 5. Screening the available Hydra EST collections

Genomic organization and alternative transcripts of nb054/spinalinFigure 5
Genomic organization and alternative transcripts of nb054/spinalin. (a) Mapping of spinalin and nb054 alternative transcripts to the 
corresponding genomic locus (H. magnipapillata genomic scaffold NW_002161446). The resulting gene-model shows two alternatively used stop codons 
indicated by asterisks. Since this genomic region is rich in AT repeats (n), some sequence areas remain unresolved and, therefore, the final number of 
nb054-specific exons remains to be determined. (b) Northern blot analysis with spinalin and nb054 specific probes (yellow lines in (a)).
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Genomic organization and alternative transcripts of nb039 loci A and BFigure 6
Genomic organization and alternative transcripts of nb039 loci A and B. (a) Genomic organization and alternative transcripts of nb039 locus A. 
(b) Genomic organization and alternative transcripts of nb039 locus B. (c) Comparative sequence analysis of both loci. Note that the gene-encoding part 
of nb039-A and nb039-B is highly conserved but flanked by stretches of non-conserved genomic sequences. Asterisks indicate stop codons.
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revealed a second partial transcript with a laminin G-like
domain with a sequence related but not identical to nb012a.
We termed this transcript nb012b (Figure 7b). The available
genome assembly suggests that this second partial transcript
is encoded within the gene encoding nb012a. PCR based anal-
ysis, however, did not provide evidence for a transcript con-
taining sequences of both nb012a and nb012b. Since a more
informative re-assembly of the nb012 locus is currently not
possible because of limited sequence data, we assume but

cannot prove that nb012a and nb012b represent gene dupli-
cation events. In situ hybridization using nb012a- and
nb012b-specific probes indicated (Figure 7c-e) that nb012b
indeed represents a gene co-expressed with nb012a. The low
level of sequence similarity in the probes used for the in situ
hybridization analysis excluded the possibility of cross-
hybridization. Double in situ hybridization confirmed that
both genes are spatially and temporarily co-expressed in the
same set of nematocytes (Figure 7e). Furthermore, Northern

Genomic organization of nb012 loci A and BFigure 7
Genomic organization of nb012 loci A and B. (a) Genomic organization of nb012 locus A. (b) Genomic organization of nb012 locus B. (c, d) 
Expression of nb012a and nb012b in nematoblasts. (e) Double in situ hybridization using digoxigenin- and biotin-labeled probes for n012a and nb012b, 
respectively. As indicated in the higher magnification inset, both transcripts are co-localized in the same set of nematoblasts. (f) Northern blot analysis 
using nb012a- and nb012b-specific probes (yellow lines in (a, b)). Asterisks indicate stop codons.
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blot analysis (Figure 7f) using the nb012a- and nb012b-spe-
cific probes indicated the presence of two independent tran-
scripts of about 1,700 and 2,200 bp, respectively. This
supports the view that both genes are located on different
genomic loci.

Sharing 3' UTRs in some nematocyte specific genes indicates 
common regulation of different splice variants
Analyzing the genomic locus encoding TRG nb035 revealed a
gene consisting of two exons (Figure 8a). While the first exon
encodes a large open reading frame of 2,347 bp, the second
exon is short and represents mainly 3' UTR. Three partial
contigs (CL1Contig431, CL1Contig609, CL1Contig10) could
be identified in the EST project and map to this locus. Rapid

amplification of cDNA ends (3' and 5' RACE; Figure 8a)
revealed that nb035 encodes three distinct splice variants
(nb035-sv1 to nb035-sv3) that share a common 3' UTR.
While the stop codon of nb035-sv1 is located at the end of the
first exon, the stop codons for nb035-sv2 and nb035-sv3 are
located in exon 2 (Figure 8a,b). As a result, corresponding
proteins differ in their carboxy-terminal parts. Exon 1
encodes an extensin-related domain, which is altered in
nb035-sv3. Northern blot analysis using probes specific for
the three splice variants (Figure 8c) shows three distinct sig-
nals of 1,400, 2,400 and 3,100 bp, respectively.

Genomic organization and alternative transcripts of nb035Figure 8
Genomic organization and alternative transcripts of nb035. (a) Genomic organization and splice variants of nb035 (H. magnipapillata genomic 
scaffold NW_002151021). (b) As a result of alternative splicing three proteins with different carboxy-terminal sequences are encoded. (c) Northern blot 
analysis using probes specific for the three splice variants (yellow lines in (a)). Asterisks indicate stop codons.
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How are taxonomically restricted genes regulated?
The 1 kb upstream region of nb001 lacks any conserved 
transcription factor binding sites
How are genes that lack sequence similarity to known genes
regulated? In an attempt to unravel the transcriptional regu-
latory network controlling expression of a TRG, we analyzed
the nb001 5' flanking sequence. To identify the 5' regulatory
sequence, we used the H. magnipapillata genome data
deposited at NCBI. Since nb001 is expressed in a seemingly
identical manner across species borders (Figure 3b), we rea-
soned that sequences important for control of nb001 expres-
sion were strongly conserved at the nucleotide level, since
their potential for mutation is constrained by their function.
As described previously [23], such evolutionarily conserved
cis-regulatory elements can be identified by phylogenetic
footprinting.

Approximately 1 kb of 5' flanking sequence of the nb001 gene
was analyzed from H. magnipapillata (strain 105) and closely
related H. vulgaris (strain AEP) using the previously
described ConSite platform [23]. As shown in Figure 9a, the
5' flanking regions are of unexpected high overall identity,
with three regions, named regions I, II and III (Figure 9a),
nearly identical between the two different species. These
regions were subjected to conserved transcription factor
binding site prediction (Figure 9b). As Hydra has an AT-rich
genome composition, several cycles of analysis were per-
formed with increasing transcription factor score thresholds,
thus modulating the stringency of the sequence analysis.
However, apart from AT-rich stretches, no conserved and
informative binding motif remained detectable (Figure 9b).

The 1 kb upstream region of nb001 is essential and sufficient for 
correct expression in vivo
To functionally characterize the putative regulatory sequence
of nb001 in vivo, we have generated transgenic polyps that
express enhanced GFP (eGFP) under the control of the iso-
lated nb001 5' flanking sequence. The transgenic construct
was made by placing the 1,035 bp nb001 promoter (-305 to -
1274 relative to the transcription initiation site and including
the signal peptide of nb001) in front of the GFP reporter gene
(Figure 10a). The plasmid was injected into Hydra embryos
as described [24]. Embryos hatched within 2-3 weeks after
injection. Figure 10 shows examples of such transgenic polyps
and demonstrates that the 1035 bp 5' flanking region of the
nb001 gene is able to direct the expression of eGFP in differ-
entiating nematocytes in a pattern that recapitulates precisely
the endogenous expression pattern of the nb001 gene (see
Figure 2 for comparison). Stereo- and confocal microscopy
(Figure 10b-f) shows nests of nematocytes with eGFP in
groups of 4, 8 and 16 along the body column. This provides in
vivo proof for the view [25-28] that differentiating nemato-
cytes undergo several rounds of synchronous cell division and
remain connected to each other by cytoplasmic bridges prior
to terminal differentiation. The nb001 gene has a signal pep-
tide, which was included in the construct (Figure 10a). Figure

10c-f shows that the signal peptide drives the eGFP reporter
protein into the lumen of the secretory vesicle within differen-
tiating nematocytes. In control transgenic Hydra expressing
eGFP in nematocytes driven by the Hydra actin promoter
without a signal peptide, the reporter protein is localized in
the cytoplasm (Figure 10g). These results identify the 1035 bp
as essential and sufficient for nb001 expression in vivo.

Discussion
One of the main challenges in evolutionary biology is to iden-
tify the molecular changes that underlie phenotypic differ-
ences that are of evolutionary significance [29]. Our results
suggest that taxonomically restricted genes are involved in
the evolution of morphological novelties such as the cnidar-
ian nematocyst.

The nematocyte, a cnidarian invention, expresses 
cnidarian-specific genes
The nematocyte is a cell type exclusively restricted to cnidar-
ians and - from an evolutionary perspective - is considered a
neuronal sensory cell [30-32]. During evolution, these neu-
ron-like cells obviously became highly diverged and acquired
new cytological features such as the nematocysts (capsules).
Each nematocyst consists of an inner and outer capsule wall,
an inverted tubule armed with long arrays of spines, and an
operculum (for a recent review, see [4]). Development of this
cnidarian-specific structure requires complex genetic
machinery, consisting of at least two sets of proteins, regula-
tory transcription factors and structural proteins. One of the
few transcription factors identified up to now as being
involved in nematocyte differentiation, Hyzic, is a homolog of
the Zn-finger transcription factor gene zic/odd-paired. Hyzic
is expressed in the early nematocyte differentiation pathway
[32] and may act before, and possibly directly upstream of,
Cnash, a homolog of the proneural basic helix-loop helix tran-
scription factor gene achaete-scute.

In contrast to these conserved transcription factors, the
downstream structural proteins responsible for putting the
nematocysts into shape appear to belong to the group of tax-
onomically restricted genes. Some of them, such as some
minicollagens, spinalin and NOWA, have been reported pre-
viously [5,8,33]. Interestingly, in addition to nematocysts,
novel proteins appear also to be essential components of
other structures of the nematocyte, such as the cnidocil, a cni-
darian-specific mechanosensory ciliary structure acting as a
'trigger' for discharge of the nematocyst capsule. The central
core of the cnidocil contains a protein, nematocilin, that lacks
homologues outside Hydra [34]. Two paralogous sequences
of nematocilin are present in the Hydra genome and appear
to be the result of recent gene duplication. Nematocilin is
absent in the anthozoan Nematostella vectensis; it seems,
therefore, to be a gene restricted to the class Hydrozoa.
Genome Biology 2009, 10:R8
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Analysis of the nb001 promoter by phylogenetic footprintingFigure 9
Analysis of the nb001 promoter by phylogenetic footprinting. (a) Conservation profile of H. vulgaris strain AEP and H. magnipapillata nb001 5' 
flanking regions. Three regions (1-3) exceed the conservation cut-off (98%) used for transcription factor (TF) binding site prediction. (b) Top-scoring 
motifs resulting from computational transcription factor binding site prediction (Consite).
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Nematocysts arguably are one of the most complex secretory
products produced by an animal cell [35]. How the different
nematocyst morphologies evolved is unknown. David and co-
workers [4] have proposed that a diverse set of minicollagen
proteins together with a disulfide-linked network of not yet
identified fiber-like structures could have been instrumental
in the evolution of the different nematocyst morphologies.
Our discovery of striking complexity of nematocyte-specific
genes at both the genomic and transcriptomic levels may
indicate that bundles of protein variants produced by alterna-
tive splicing (Figures 4 and 5) and transcription at multiple
loci (Figures 6 and 7) contribute to the conformational and
structural flexibility of the nematocyst.

Alternative splicing has been proposed as the primary driver
of the evolution of phenotypic complexity in mammals [36-
38]. While alternative splicing is known to affect more than
half of all human genes [38], it has been unclear whether and
to what extent a similar mechanism operates in early branch-
ing metazoans. Our finding of numerous splice variants in
Hydra, therefore, was surprising and points to a strong con-
servation of splicing regulation throughout animal evolution.

Taken together, as described here and consistent with previ-
ous studies [5,8,33], the majority of genes encoding nemato-
cyst components have no homologues in higher metazoans
and are unique to the cnidarian lineage.

Transgenic Hydra contribute to understanding 
regulatory evolution and transcriptional control of 
TRGs
The finding that the differentiation of a taxon-specific cell
type, the nematocyte, involves the expression of taxon-spe-
cific genes promises to unveil novel aspects of the evolution of
this complex cell type in particular and of species-specific
traits in general. The work also raises an important question:
how do these novel genes interact with upstream transcrip-
tional regulators? Do they contain binding sites for conserved
transcription factors? Or do they require novel transcription
factors? We have previously hypothesized [12] that taxon-
specific genes in combination with the rewiring of the genetic
networks of conserved regulatory genes accomplish specifica-
tion of cnidarian morphologies. Here, in order to address this

question experimentally, we took advantage of the recent
development of transgenic techniques by embryo-microinjec-
tion [24], which offers a rich opportunity to expand research
activities in Hydra [13,39-41]. As expected, transgenic Hydra
appear to yield usable insight into the regulatory network
controlling expression of genes that lack sequence similarity
to known genes. According to the functional analysis of the
nb001 promoter (Figure 10), the transcriptional machinery
regulating TRG expression may involve not yet identified
transcription factors. Alternatively, regulatory elements for
conserved transcription factors may be highly diverged in
promoters of TRGs and, therefore, not detectable in the
present approach. Current efforts are directed towards iden-
tification of transcription factors causally involved in control
of TRG expression.

Conclusions
Taken together, although certainly much remains to be dis-
covered about the role of TRGs in Hydra, the observations
presented here reaffirm the view [12,13] that taxon-specific
genes account for a substantial part of the Hydra genome and
may be of profound evolutionary significance both in animals
that reach back to the beginnings of metazoan life as well as
in more complex organisms.

Materials and methods
Animals and culture conditions
Experiments were carried out with H. vulgaris strain AEP, H.
magnipapillata strain 105, and H. magnipapillata strain sf1.
Transgenic animals were generated using H. vulgaris strain
AEP [24]. Animals were cultured according to standard pro-
cedures at 18°C.

Supression subtractive hybridization and cDNA library 
construction
For SSH, double-stranded cDNA was synthesized using 2 μg
of mRNA from the temperature sensitive mutant H. magni-
papillata sf1. SSH was performed using PCR-Select™ cDNA
Subtraction kit (Clontech, Mountain View, CA, USA) accord-
ing to the manufacturer's protocol. Two RNA pools were used
for subtractive hybridization (Figure 1). Tester double-

Functional analysis of the nb001 promoter using transgenic polypsFigure 10 (see previous page)
Functional analysis of the nb001 promoter using transgenic polyps. (a) Expression constructs for generation of transgenic Hydra (SP, signal 
peptide). (b) Polyp with eGFP-expressing differentiating nematocytes. Note that the nb001 driven eGFP expression recapitulates the nb001 expression 
shown in Figure 2a. As indicated by the dashed lines, expression is located only in the bodycolumn and not in the head or foot. (c) Confocal analysis of 
polyp containing eGFP-expressing nematocytes reveals that the promoter drives expression of eGFP in all four types of nematocytes; scale bar, 50 μm. 
The inset indicates control transgenic nematocytes with eGFP expression under control of actin promoter. (d) Transgenic nematocytes provide in vivo 
evidence for the view [28] that differentiating nematocytes undergo several rounds of synchronous cell division and remain connected to each other by 
cytoplasmic bridges to form nests of 4, 8 or more cells; scale bar, 25 μm. (e) Tentacle of transgenic polyp in which many but not all nematocytes are 
expressing eGFP. Confocal analysis. Green, eGFP protein; red, actin filaments; scale bar, 10 μm. (f) Confocal analysis of transgenic stenotele (arrow) in the 
gastric region showing eGFP protein localized within the capsule wall and tubule of the nematocyst. Red, actin filaments; scale bar, 15 μm. (g) Control 
transgenic polyp with eGFP expression under control of actin promoter. Note that eGFP is localized within the cytoplasm and the nematocyst is eGFP 
negative (arrows). Green, eGFP protein; red, actin filaments; scale bar, 15 μm.
Genome Biology 2009, 10:R8
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stranded cDNA was synthesized from mRNA isolated from
heat shocked animals free of i-cells and their derivatives.
Driver double-stranded cDNA was synthesized from mRNA
from untreated polyps containing all cell types. cDNAs were
cloned into pGEM-T vector (Promega, Madison, WI, USA)
and transformed into DH5 α Escherichia coli cells. Bacterial
clones were picked into 384 well plates using Q-Pix roboter
and plasmid inserts were sequenced at the Washington Uni-
versity Genome Sequencing Centre (St Louis, MO, USA). Raw
sequences were submitted to NCBI dbEST database ([Gen-
Bank:CO371734-CO372031], [GenBank:CO373914-
CO377781], [GenBank:CO508771-CO510748]).

Gene expression analysis
To analyze gene expression, whole mount in situ hybridiza-
tion was carried out as described previously [42]. Whole
mount double in situ hybridization was performed using
DIG- and Biotin-labeled RNA probes simultaneously. Anti-
body incubation and substrate reactions were carried out
consecutively as described previously [43]. NBT/BCIP- and
Fast Red substrates were used for probe detection according
to the manufacturer's instructions (Roche, Nutley, NJ, USA).
Riboprobes were prepared with the Dig- and Biotin- RNA
labeling kit according to the manufacturer's instructions
(Roche).

Northern blotting
RNA-electrophoresis, transfer, probe-labeling, hybridization
and detection procedures were carried out according to
standard protocols. For primer sequences used for probe
amplification, see Additional data file 1.

Access to primer and sequence data
For primer sequences used to amplify full-length sequences
and splice variants, see Additional data file 1. For retrieval of
sequence data and EST contigs, see Additional data file 2.

Generation of transgenic H. vulgaris AEP expressing 
nb001:eGFP
Transgenic founder polyps expressing eGFP under control of
the nb001 promoter were produced at the University of Kiel
Transgenic Hydra Facility [44]. The transgenic construct was
made by placing the 1,035 bp nb001 promoter (-1,075 to +65
relative to the transcription initiation site and including the
signal peptide of nb001) in front of the reporter gene for eGFP
(Figure 10a). The resulting plasmid ligAB was injected into
Hydra embryos as described [24]. Out of 64 injected
embryos, 21 (32%) hatched, from which two lines contained
eGFP-positive nematocytes and no eGFP expression in any
other cell type. Initial founder transgenic animals were
expanded into a mass culture by clonal propagation by bud-
ding.

Microscopy analysis
Fluorescent images were taken on a Zeiss Axioscope fluores-
cence microscope with an Axiocam (Zeiss) digital camera.

Confocal laser microscopy was done using a LEICA TCS SP1
CLS microscope. A Zeiss S420 microscope was used for scan-
ning electron microscopy.

Abbreviations
EGFP: enhanced GFP; EST: expressed sequence tag; GFP:
green fluorescent protein; NCBI: National Centre for Biotech-
nology Information; SSH: suppression subtractive hybridiza-
tion; TRG: taxonomically restricted gene; UTR: untranslated
region.
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