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Abstract

With genome analysis expanding from the study of genes to the study of gene regulation,
‘regulatory genomics’ utilizes sequence information, evolution and functional genomics measure-
ments to unravel how regulatory information is encoded in the genome.

Sequencing and functional genomics have not only led to a
better understanding of genes and their expression collect-
ively, but also to a refueling of interest in how transcriptional
regulation is encoded in the ‘noncoding’ part of the genome.
For many years, the state of the art had been to collect
observed transcription factor binding sites (TFBSs) in DNA,
use them to build a description of the factor’s binding motif,
for example in the form of a positional weight matrix [1,2],
and then scan a putative regulatory region for hits to this
motif. Promoter-prediction programs were, and are still,
used to linearly scan genomic sequence for putative markers
of promoters, such as CpG islands and/or TATA box motifs,
Inr, and so on [3,4]. After experimental advances, many
more elements of this ‘linear’ code for transcription - such as
histone positioning, histone modifications and DNA methyl-
ation - are currently being studied. Large-scale sequencing
has enabled the comparative study of genomes, which in
turn helps identify regulatory sequences. Functional genomics
and, in particular, gene-expression data, is showing us the
consequences of transcriptional activation and has propelled
the quest to find regulatory sequences shared between
coexpressed groups of genes. This review will attempt to
summarize the past few years’ progress in integrating these

approaches for the purpose of identifying regulatory
sequence elements and their function.

Regulatory feature description with positional weight
matrices

Positional weight matrices (PWMs) have for many years
been the workhorse of TFBS annotation. A set of experi-
mentally determined binding sites for a transcription factor
is aligned and the distribution of bases in each position of
the binding site yields the weights in the PWM. There are
two major databases for eukaryotic PWMs: TRANSFAC [5]
and JASPAR [6]. PWMs and their application are reviewed
in [7]. Two operations in conjunction with PWMs are impor-
tant. First, coming up with the alignment for the PWM may
be non-trivial. For example, in a landmark paper, Bucher [8]
derived a PWM for the TATA box by extracting the relevant
sequence alignment from a set of promoters he had collected
[9]. Algorithms like the one used are still being improved
and will be briefly summarized in the section Motif discovery.

Second, because the PWM is meant to be a descriptor for a
TFBS, a method is required to identify the predicted binding
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sites. Scanning a sequence with a PWM in a search of
predicted binding sites seems simple. Yet because of the
notorious lack of information content in the individual
binding motif, a search over a long sequence region will
inevitably turn up large numbers of probably false-positive
results. Computationally, the program MATCH [10] uses
predefined cutoffs for determination of binding sites, where-
as patser [11], ProfileStats [12], and matrix-scan [13]
determine the statistics of PWM matching under different
background models. Weight-matrix based, biophysical
models of transcription-factor binding [14] constitute an
alternative to the ad hoc definition of a matching score. They
allow the design of learning algorithms [15-17] and can be
validated against experimental measurements [18].

When selecting the most appropriate algorithm for predict-
ing binding sites, one needs to distinguish between the two
application scenarios of either predicting target genes for a
factor with a given PWM, or predicting which factors,
represented by their PWMs, might bind upstream of a gene.
For the first task, a biophysical approach like TRAP [18],
which determines the likelihood that a factor binds some-
where in a, say, promoter region, appears to be most appro-
priate. After proper statistical normalization, this algorithm
can also determine a ranking of which factors might bind in
a given sequence region [19]. The program matrix-scan from
the RSAT package [11] is most appropriate for determining
actual binding sites for a factor, while also supporting the
detection of regions enriched in putative binding sites.

The false-positive problem, however, is inherent and to
remedy it more information is needed. Besides possibly
looking for evolutionarily conserved binding sites, this is
usually provided through better motif descriptions,
combination of motifs into cis-regulatory modules, and by
considering the evolutionary conservation of binding sites.

Phylogenetic footprinting recognizes regulatory motifs
in evolution

The most powerful remedy for the many false-positive
annotations is the presence of evolutionary conservation in
noncoding regions across several genomes. Because of the
selective pressure exerted on their regulatory function, cis-
acting elements are likely to be more conserved than the
surrounding noncoding sequences. The expression ‘phylo-
genetic footprints’ was proposed by Tagle et al. [20] to denote
anciently conserved cis-regulatory elements. Today, phylo-
genetic footprinting refers to conserved regulatory patterns in
orthologous genes, or in regions that are deemed ortholo-
gous. Duret and Bucher [21] pointed out the utility of evolu-
tionary sequence conservation for the identification of
regulatory elements. With the ever-increasing number of
genome sequences, phylogenetic footprint detection seems to
be the key approach to deciphering regulatory mechanisms.
Its utility is twofold: evolutionary conservation helps in
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defining a regulatory pattern and helps in reinforcing
binding-site predictions. Figure 1 illustrates the general
approach from motif discovery to phylogenetic footprinting.

Complex features: cis-regulatory modules

In 1998, by aligning large genome fragments between mouse
and human, Fickett and Wasserman observed that noncoding
regions contain conserved fragments of a few kilobases that
are enriched in cis-acting elements [22,23]. Inspection of
aligned regulatory regions typically yields a picture where
ungapped conserved elements (describable by a PWM) occur
at slightly different spacing in a set of sequences. Such an
element is frequently called a cis-regulatory module (CRM).
An early application of the concept can be found in Gailus-
Durner et al. [24], where promoters were characterized by
their arrangement of binding sites. Again, the problem of
identifying CRMs comes in different flavors. In a single
sequence the clustering of predicted TFBS may lead to the
definition of a CRM. This was shown in the work by Berman
et al. [25], who identified distal enhancer elements in the
genome of Drosophila melanogaster by locating a sequence
window with a high number of TFBSs. Similar windowed
counting methods have been used with good success on the
analysis of Drosophila early development [26,27]. Improved
probabilistic variants search clusters that are significant
according to some statistical model [28-33]. A comple-
mentary approach uses probabilistic models that consider
the likelihoods of binding sites and their distances [34-37].

The problem of finding CRMs from a single sequence is
naturally extended to multiple sequences. The resulting
methods work on the binding sites that lie on aligned DNA;
hence they depend on the correctness of the alignments,
which can be suspicious around the patchily conserved CRMs
[38]. The multiple sequence methods can also be divided into
combinatorial and probabilistic ones [37,39-42]. The
enhancer element locator (EEL) [43,44] is a recent CRM
prediction tool that takes an orthologous pair of genes from
two organisms (say, human and mouse) and searches through
the DNA flanking the two genes to locate conserved clusters of
TFBSs. The binding sites that might belong to such clusters
are computationally determined, using some given collection
of PWMs. The clusters are evaluated and ranked using a
scoring scheme that gives bonuses and penalties as implied by
the underlying biochemically motivated model of CRM
structure and evolution. EEL finds the clusters with highest
total score using an algorithm that is similar to the Smith-
Waterman algorithm for local alignments. The significance
analysis of the EEL scores can be based on generalized Karlin-
Altschul statistics for local alignment scores [45]. Entire
genomes with up to 1 Mbp flanking regions for orthologous
pairs of genes can be analyzed by EEL in reasonable time.
Some EEL predictions have successfully been verified to have
biological function in the mouse using in situ hybridizations
and transgenic reporter assays [43,46]. The method of
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lllustration of the flow of information in regulatory region annotation. Given a coexpressed group of genes, one can use (a) motif discovery or (b) search
for known motifs in the upstream regions (motif building). Weight matrices can be used to scan sequences in a variety of ways: (c) the sites predicted by
scanning the mouse Hspalb promoter with the TRANSFAC matrix M01023 (left) and the conservation of those sites in vertebrate promoters (right).

Blanco et al. [47] aligns sequences of binding sites in much
the same way as EEL, but their alignment is global instead of
local. The global alignment is not able to locate novel CRMs
from long sequences but requires exact knowledge about the
location of the regulatory element. Another recent method
[48] combines binding-site annotation and DNA alignment
into a single procedure.

Grouping genes into expression clusters

Whereas phylogenetic footprinting aims at delineating
conserved patterns in orthologous regulatory elements,
another logic says that coexpressed groups of genes from one
organism might share regulatory elements, which mediate
the coexpression. Clearly, in a first step the coexpressed
groups of genes need to be determined, typically from

microarray-generated gene-expression data. Many methods
for this purpose have been proposed, starting with the work
of Eisen et al. [49], who used single linkage clustering. The
literature on clustering is extensive, and specialized algo-
rithms for gene-expression data have been proposed by
Sharan and Shamir [50], and Tamayo et al. [51] among
others. Graphical methods have also proved useful in
identifying clusters and associations [52,53].

A number of databases are available to retrieve or submit
microarray data. In particular, the National Center for Bio-
technology Information (NCBI) runs the Gene Expression
Omnibus (GEO) [541], the European Bioinformatics Institute
(EBI) maintains the ArrayExpress (AE) database [55] and
Stanford University hosts the Stanford Microarray Database
(SMD) [56]. Based on AE, the ArrayExpress Warehouse [55]
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was established, allowing queries based on a range of gene
annotations, including gene symbols, GO terms and disease
associations. Coexpressed clusters can be defined by deter-
mining which expression profiles in an experiment are
significantly correlated with a ‘seed gene’, which supplies a
blueprint for the cluster.

The inclusion of protein links in AE opens up the possibility
of identifying human and mouse genes encoding trans-
cription factors. This allows the definition of a group of
expression profiles that is not only coherently expressed but
is also seeded by a transcription factor. Then, for the trans-
cription factor, all the probe sets significantly correlated to
its expression are pooled if they also exhibit significant
differential expression for the same experimental factor.
Probe sets present on the metazoan Affymetrix microarrays
stored in the warehouse have been mapped to ENSEMBL
gene entries along with their functional annotations,
facilitating the linking of results from protein sequence
searches to the expression data stored in the warehouse. An
application of this mapping information is the identification
of transcription factor expression profiles, initiating the
generation of clusters of coexpressed genes.

Motif discovery

Whereas phylogenetic footprinting spots conserved, probably
orthologous, patterns, a coexpressed group lets one ask
whether the genes in the group are also co-regulated. Motifs
that might be responsible for this assumed co-regulation can
then be searched for. In one approach, no assumptions
about known transcription factors binding in the promoter
regions of the genes are made - motifs are searched de novo.
An early example of such a method was used by Bucher [8].
Today, discovered motifs can a posteriori be compared with
databases of known motifs, to check if they are likely to be
bound by known transcription factors, or whether the motifs
are completely novel. The motif-discovery problem can be
addressed by various algorithmic approaches, which take as
input a set of sequences and return de novo predicted
motifs. The approaches can roughly be subdivided in two
classes: matrix-based or string-based pattern discovery.

Matrix-based pattern discovery algorithms evaluate a large
number of possible alignments between fragments of the
input sequences, and attempt to return the alignment (sum-
marized as a position-specific scoring matrix) that
optimizes some scoring function. Historically, the first
approach was developed by Gary Stormo’s group: their
program Consensus relies on a greedy algorithm, which
progressively incorporates sequences to build matrices with
maximal information content [11,57]. The Gibbs sampling
strategy, initially developed to detect protein domains
[58,59], has been adapted to discovery of transcription
factor binding motifs in promoters of coexpressed genes
[60-62]. More recent versions of the Gibbs sampling
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[63,64] support background models based on Markov
chains, which take into account the higher-order
dependencies between adjacent residues in biological
sequences. The program MEME implements an expectation-
maximization algorithm using multiple starting seeds in
order to sample a large number of possible motifs [65,66].
String-based pattern discovery is based on the statistical
detection of over-represented oligonucleotides [67-75] or of
dyads - that is, spaced pairs of oligonucleotides [76]. Many
of these algorithms have been compared and tested by
Tompa et al. [77] and many have also been adapted to detect
phylogenetic footprints in promoters of orthologous genes,
with the programs Footprinter [78], PhyloCon [79], PhyME
[80], OrthoMEME [81], PhyloGibbs [82] and Footprint-
analysis [83]. A problem common to these approaches is the
need to specify a theoretical background model, which
usually does not fully capture the complexity and
heterogeneity of real promoter sequences.

Where to search?

Patterns discovered among the regulatory regions of a
coexpressed cluster of genes will typically be PWMs, like
those derived from known TFBSs. The catch, however, is
that inspection of PWMs for real binding sites has taught us
not to expect well defined patterns with high information
content. On the other hand, patterns as badly defined as the
real ones can be easily extracted from any set of upstream
regions if only the region chosen is large enough. This
demonstrates an inherent limitation of the ability to identify
patterns from co-regulated genes. Nevertheless, in yeast
there has been considerable success with de novo identifi-
cation of motifs [84]. Pattern identification in Drosophila
has profited greatly from the many sequences that are now
available in conjunction with fairly well defined enhancer
regions made up of clearly discernible regulatory elements.
Vertebrate regulatory sequences, however, seem to be much
harder to identify. Difficulties stem from the lack of know-
ledge on how to narrow down the sequence regions in which
to look for patterns, and probably from the patchy nature of
vertebrate CRMs.

There are several ways of narrowing down the sequence
regions to be searched for regulatory patterns. First, syste-
matic identification of complete cDNAs together with new
technologies such as cap-analysis gene expression (CAGE)
tags have led to highly accurate identification of human and
mouse transcription start sites [85]. Therefore, focusing on
a promoter sequence is less guesswork today than it was a
few years ago. One price to be paid, though, is the increased
complexity of promoter definition resulting from the insight
that alternative promoters for a gene are more the rule than
the exception. It thus seems appropriate to study several
promoters per gene. The notion of an enhancer used to be
biologically defined, but with more and more complete
genomic sequences available, enhancers tend to be
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identified with highly conserved noncoding regions.
Systematic mapping of DNase I hypersensitive sites is also
contributing to pinpointing enhancer regions. However,
with the identification of transcriptional start sites that are
far upstream from the translational start, it is becoming
increasingly difficult to distinguish clearly between an
enhancer and a promoter.

CRMs and coexpressed groups

Even when one knows where to look for regulatory modules,
identification of a CRM that might be responsible for co-
regulation of a group of genes is hard, and methods develop-
ment is a very active field of research. In general, available
methods put the emphasis either on de novo pattern
discovery or on a dictionary-based approach. A dictionary of
patterns may contain PWMs from the existing databases,
patterns identified through systematic phylogenetic foot-
printing [86,87], or the output from de novo pattern identifi-
cation. The dictionary serves to search for associations
between sequence motifs and gene clusters. Often, this asso-
ciation is formalized as a statistical over-representation: that
is, that the genes in the clusters contain a certain motif more
often than expected.

The prototypic approach to over-representation is the use of
the hypergeometric distribution to quantify the probability
that within a large set two subsets have an overlap exceeding
a certain size. Hughes et al. [62] apply this to the predicted
target genes containing a certain motif and clusters of genes.
Clearly, if the overlap between the two sets is large, this hints
at a biological role for the motif. Dieterich et al. [88] analyze
human cell-cycle data and quantify the occurrence of motifs
upstream of genes that peak in particular phases of the cell
cycle. Many more procedures try to solve the problem of
finding novel CRMs similar to a dictionary of CRMs [89-92].
Good results have been achieved in flies, and to some extent
in mammals [23,27,90,93,94]. Bussemaker [95] has pio-
neered linear models to explain expression data in terms of
the occurrence of motifs in the upstream region of the genes.
A recent paper by Bulyk and co-workers [96] relates over-
represented CRMs to their target genes in human myogenic
differentiation. Other algorithms identify common CRMs
from a set of co-regulated genes without assuming a given
dictionary [33,97-101].

Some methods find CRMs by distinguishing the regulatory
DNA regions from neutrally evolved sequences and from
sequences conserved for a reason other than
transcriptional regulation [102-105]. These methods are
universal in the sense that they do not need prior
transcription factor binding information. The output
provides the putative regulatory sequences but gives no
clue of the transcription factors binding them. The tissue
specificity of the regulators can be tested in the wet lab or
predicted using other computational methods [106,107].
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The availability of gene-expression data in conjunction with
chromatin immunoprecipitation and DNA microarray
(ChIP-chip) and sequence data has led to many attempts to
construct entire gene regulatory networks, rather than
predicting particular regulatory connections. These efforts
are known as ‘reverse engineering’ of networks, but are
beyond the scope of this review.

What are the eventual chances of producing systematic
genomic annotation of regulatory elements in the human
genome? Impressive progress is clearly being made. The
ORegAnno database [108] collects binding-site information
for many organisms and the Encode project [85] has
provided a plethora of regulatory information, such as trans-
cription start sites, DNase I hypersensitive sites, histone-
modification data and more, much of which is available in
the Ensembl Regulatory Build [109]. The extension of
Encode to the entire human genome and to model organ-
isms will provide significantly more of this kind of infor-
mation. However, the obvious discrepancy between the large
number of transcription factors and the comparatively small
number of PWMs in the databases makes it clear that the
best we can hope for at the moment is an annotation with
regulatory elements. The actual binding factor may remain
unknown, although the sequence element can be used as a
predictor for expression in a certain tissue or under certain
conditions. Extensive transcription factor binding experi-
ments such as ChIP-chip, ChIP followed by DNA sequencing
(ChIP-seq), protein-binding arrays, and DNA adenine
methyltransferase tagging of TFBSs (DamID) will hopefully
help in establishing better links between experimental data
and computationally derived data. Likewise, the predicted
CRMs constitute a huge resource of hypotheses waiting to be
tested experimentally.
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